朱奕,陳雪沁,冷麗智,2,林戈,2
綜 述
早期胚胎極性建立及對譜系分化的影響
朱奕1,陳雪沁1,冷麗智1,2,林戈1,2
1. 中南大學(xué)基礎(chǔ)醫(yī)學(xué)院生殖與干細(xì)胞工程研究所,長沙 410000 2. 中信湘雅生殖與遺傳專科醫(yī)院,長沙 410000
極性建立是影響早期胚胎發(fā)育的關(guān)鍵因素之一。極性建立起始于8細(xì)胞胚胎的肌球蛋白磷酸化,磷酸化激活肌動蛋白導(dǎo)致其啟動收縮力。隨后,肌動蛋白發(fā)生重組在每個卵裂球的非接觸表面形成富含微絨毛的頂端結(jié)構(gòu)域,并在極性蛋白復(fù)合物等的共同作用下形成標(biāo)志著頂端結(jié)構(gòu)域成熟的肌動球蛋白環(huán)。從極性建立的過程可知,頂端結(jié)構(gòu)域的形成受到肌動蛋白相關(guān)蛋白以及極性蛋白復(fù)合物的影響,并且部分合子基因組激活(zygote genome activation, ZGA)和譜系分化特異性基因也會調(diào)控極性建立。在早期胚胎發(fā)育過程中,極性建立是第一次細(xì)胞譜系分化的基礎(chǔ)。它通過影響不對稱細(xì)胞分裂、譜系分化因子的不對稱定位以及Hippo信號通路的活性來調(diào)控譜系分離和形態(tài)發(fā)生。本文對哺乳動物早期胚胎極性建立及對譜系分化影響的相關(guān)研究進行了梳理和總結(jié),并討論了目前已有研究在調(diào)控機制和物種方面的不足,以期為闡明早期胚胎極性建立提供線索與系統(tǒng)性視角。
早期胚胎發(fā)育;胚胎極性建立;譜系分化
細(xì)胞極化是指細(xì)胞形狀、蛋白質(zhì)分布和細(xì)胞功能的不對稱性,是細(xì)胞的基本特性之一[1]。細(xì)胞極化可以使細(xì)胞發(fā)生不對稱分裂,產(chǎn)生具有不同功能和細(xì)胞命運的細(xì)胞,進而發(fā)育成完整的正常組織并維持組織的穩(wěn)態(tài)。細(xì)胞極化已被證明是進化生物學(xué)中的一個關(guān)鍵事件。對于單細(xì)胞生物,例如釀酒酵母()和裂殖酵母()等,極化是繁殖發(fā)生的機制[1]。對于更復(fù)雜的生物,如秀麗隱桿線蟲()和黑腹果蠅()等,極化導(dǎo)致不同身體部位的發(fā)育和組織,包括神經(jīng)系統(tǒng)和翅膀組織[2,3]。因此,細(xì)胞極化是細(xì)胞分化、遷移、形成多細(xì)胞復(fù)雜生物體并維持基本生命活動的基礎(chǔ)[4]。
哺乳動物新一代的生命起始于卵母細(xì)胞與精子融合形成的受精卵,從受精卵到植入子宮之間的發(fā)育窗口稱為植入前胚胎發(fā)育過程。在人早期胚胎發(fā)育過程中,受精卵發(fā)生合子基因組激活(zygote genome activation,ZGA)、經(jīng)歷致密化(compaction)、建立胚胎極性并分化為內(nèi)細(xì)胞團(inner cell mass,ICM)和滋養(yǎng)外胚層(trophectoderm,TE),在第5天左右形成有腔囊胚[5]。人和小鼠早期胚胎的第一次細(xì)胞命運決定促使ICM和TE譜系分化,而觸發(fā)譜系分化的關(guān)鍵事件是胚胎極性的建立[6]。本文對早期胚胎極性建立過程進行了闡述,強調(diào)了肌動蛋白相關(guān)蛋白、缺陷性分配(partitioning defective,PAR)極性蛋白復(fù)合物和部分ZGA基因在極性建立過程中的重要作用,并總結(jié)了目前關(guān)于極性建立影響譜系分化的可能途徑。
從受精后至發(fā)育第3天,哺乳動物的受精卵會經(jīng)歷3次卵裂發(fā)育到8細(xì)胞。在8細(xì)胞階段之前,小鼠植入前胚胎內(nèi)早期卵裂球的細(xì)胞大小和形狀在形態(tài)上是無法區(qū)分的[7]。此時,胚胎通過一個稱為致密化的過程,相鄰卵裂球的位置變得更近,形態(tài)上從松散附著的細(xì)胞組合轉(zhuǎn)變成一個完整的實體,并在無細(xì)胞接觸的表面形成富含微絨毛的頂端結(jié)構(gòu)域[8]。有研究表明,胚胎發(fā)生致密化和建立細(xì)胞極性均與肌動蛋白重塑過程密切相關(guān)[9,10],并且肌動球蛋白網(wǎng)絡(luò)組織的極化是PAR極性蛋白復(fù)合物定位于頂端結(jié)構(gòu)域的先決條件[11]。胚胎進入8細(xì)胞階段后,卵裂球表面的肌球蛋白就會被其輕鏈的磷酸化激活,隨后與肌動蛋白細(xì)絲結(jié)合[12]。這一過程的直接結(jié)果是肌球蛋白的收縮力被啟動,這會導(dǎo)致卵裂球頂端表面張力的凈增加,超過細(xì)胞連接處的張力,從而推動胚胎的致密化[13]。隨著胚胎的發(fā)育,肌球蛋白皮質(zhì)進一步重塑,在無細(xì)胞接觸的表面中間形成肌動蛋白帽。此時各種頂端極性蛋白也會在頂端富集,包括受外部肌動球蛋白限制的PAR極性蛋白復(fù)合物和絨毛相關(guān)的ERM(ezrin/radaxin/meosin)家族成員蛋白以及一些緊密連接蛋白,如JAM-1[14]。當(dāng)這種積累持續(xù)時,負(fù)向調(diào)節(jié)肌動球蛋白網(wǎng)狀結(jié)構(gòu)的PAR復(fù)合物和調(diào)節(jié)頂端蛋白橫向遷移的RhoA激酶一起將肌動蛋白帽從中心排除到生長的頂端斑塊的外圍,最終形成標(biāo)志著頂端結(jié)構(gòu)域成熟的肌動球蛋白環(huán)[11,15]。在哺乳動物植入前胚胎發(fā)育過程中,頂端-基底極性建立被認(rèn)為是導(dǎo)致第一次譜系分化的重要不對稱線索[16]。
現(xiàn)有研究認(rèn)為小鼠早期胚胎發(fā)育的極性建立過程分為兩個階段。從早期8細(xì)胞(細(xì)胞分裂后1 h內(nèi))到中期8細(xì)胞(細(xì)胞分裂后3~4 h)的第一個階段,肌動球蛋白網(wǎng)絡(luò)在胚胎致密化過程中極化到無細(xì)胞接觸表面,肌動蛋白逐漸在頂端定位,此時PAR極性蛋白復(fù)合物在細(xì)胞皮層周圍保持均勻分布;第二個階段發(fā)生在中晚期8細(xì)胞階段(細(xì)胞分裂后5~8 h),PAR極性蛋白復(fù)合物與其他保守的頂端蛋白開始向頂端積累,在極性蛋白發(fā)生頂端富集時,肌動蛋白重新分布形成環(huán)狀結(jié)構(gòu)包圍頂端結(jié)構(gòu)域[11]。因此,調(diào)控肌動蛋白重塑以及影響PAR極性蛋白復(fù)合物表達(dá)的關(guān)鍵基因均會影響早期胚胎的極性建立。
肌動蛋白相關(guān)蛋白2/3(actin-related protein 2/3, ARP2/3)復(fù)合物是一種關(guān)鍵的肌動蛋白成核因子,其核心成分是ARP2和ARP3以及將兩種肌動蛋白相關(guān)蛋白連接到母絲上的5個亞基——ARPC1-5[17~19]。這些蛋白質(zhì)最早是通過遺傳和基因組方法在釀酒酵母、裂殖酵母[20,21]、黑腹果蠅[22]和秀麗隱桿線蟲[23]中被分離鑒定出來的。后續(xù)研究發(fā)現(xiàn)ARP2/3復(fù)合物參與一系列生物學(xué)過程,如胞吞作用[24,25]、細(xì)胞遷移和粘附[26~28],抑制該復(fù)合物的活性會導(dǎo)致有絲分裂期間細(xì)胞極性建立失敗和細(xì)胞分裂異常[17,19]。
ARP2/3復(fù)合物對細(xì)胞極性建立的影響貫穿于卵母細(xì)胞成熟與精子發(fā)生以及胚胎發(fā)育的整個過程中。早在卵母細(xì)胞減數(shù)分裂成熟和精子發(fā)生時,ARP2/3復(fù)合物就起著重要的作用。2011年,Sun等[29]發(fā)現(xiàn)ARP2蛋白主要集中在小鼠卵母細(xì)胞的皮層中,并與肌動蛋白共定位。當(dāng)用特異性抑制劑處理或RNA干擾(RNA interference,RNAi)破壞ARP2/3復(fù)合物活性時,肌動蛋白帽和皮質(zhì)顆粒結(jié)構(gòu)域的形成受到影響;從而導(dǎo)致小鼠卵母細(xì)胞減數(shù)分裂成熟期間紡錘體遷移和細(xì)胞分裂失敗。該研究證明了ARP2/3蛋白通過對小鼠卵母細(xì)胞減數(shù)分裂成熟過程中皮質(zhì)重組、紡錘體遷移、不對稱細(xì)胞分裂的廣泛影響來調(diào)節(jié)卵母細(xì)胞極化[29]。此外,敲除肌動蛋白相關(guān)蛋白復(fù)合物亞基1b (actin-related protein complex subunit 1b,)也會擾亂生殖細(xì)胞進入G2/M期的能力,阻礙細(xì)胞分裂,并導(dǎo)致成熟精子極性建立缺陷[30]。
在小鼠植入前胚胎發(fā)育過程中,ARP2/3復(fù)合物集中在2~8細(xì)胞胚胎每個卵裂球頂端的皮質(zhì)層以及桑椹胚和囊胚的外圍區(qū)域,在受精卵階段,抑制ARP2/3復(fù)合物的活性會導(dǎo)致細(xì)胞分裂失敗,在單個細(xì)胞內(nèi)觀察到兩個或多個細(xì)胞核。在后續(xù)發(fā)育過程中,小鼠胚胎的肌動蛋白表達(dá)水平下降,胚胎未能致密化并失去頂端-基底極性,抑制8細(xì)胞胚胎表達(dá)ARP2/3復(fù)合物將導(dǎo)致囊胚形成失敗,具體表現(xiàn)為胚胎極性喪失以及TE和ICM譜系分化失敗[31]。這些數(shù)據(jù)表明ARP2/3復(fù)合物是小鼠植入前胚胎發(fā)育所必需的[31]。另外,在小鼠胚胎干細(xì)胞(mouse embryonic stem cells,mESCs)分化為外胚層樣細(xì)胞(epiblast- like cells,EpiLCs)過程中,其集落形態(tài)和肌動蛋白結(jié)構(gòu)的變化取決于ARP2/3復(fù)合物的活性,復(fù)合物活性的喪失會延遲胚胎進入多能狀態(tài)的進程,繼而破壞所有3個胚層(外胚層、滋養(yǎng)外胚層和原始內(nèi)胚層)的譜系分化[32]。
PAR極性蛋白復(fù)合物廣泛存在于秀麗隱桿線蟲單細(xì)胞胚胎[33~35]、果蠅神經(jīng)母細(xì)胞和上皮細(xì)胞[36,37]以及哺乳動物上皮細(xì)胞[38,39]中,在細(xì)胞連接和細(xì)胞極性建立過程中發(fā)揮著重要作用。PAR極性蛋白復(fù)合物是一類能夠相互結(jié)合并和多種其他細(xì)胞極性調(diào)節(jié)蛋白結(jié)合的多結(jié)構(gòu)域蛋白,包括PAR3、PAR6和非典型蛋白激酶C (atypical protein kinase C,aPKC,也稱為PKCζ)[40]。在早期胚胎發(fā)育過程中,PAR極性蛋白復(fù)合物在小鼠胚胎中的不對稱分布始于致密化過程中的8細(xì)胞階段,并且參與胚胎的第一次譜系分化和囊胚形態(tài)發(fā)生[41]。隨著早期胚胎發(fā)育過程的推進,PAR3和aPKC逐漸局限于卵裂球頂端質(zhì)膜和緊密連接處,干擾它們的表達(dá)會導(dǎo)致細(xì)胞偏向于發(fā)育為ICM[42]。但是aPKC的表達(dá)對8細(xì)胞和桑椹胚極性的影響是不同的,其表達(dá)對于8細(xì)胞胚胎極性的建立是可有可無的,但對于桑椹胚極性的定位和穩(wěn)定至關(guān)重要[43]。
在哺乳動物植入前胚胎發(fā)育過程中,研究最多的PAR極性蛋白復(fù)合物成員是PAR6。在小鼠中發(fā)現(xiàn)了3種PAR6同系物,即PARD6A、PARD6B和PARD6G[44],其中是植入前胚胎發(fā)育過程中表達(dá)的主要基因[41,45]。是囊胚形態(tài)發(fā)生所必需的,其通過調(diào)控頂端-基底細(xì)胞極性建立、緊密連接形成、細(xì)胞旁通透性封閉和TE譜系特異性基因的表達(dá)來影響囊胚形成[46]。同時,Hippo信號通路的異常激活將拮抗PAR復(fù)合物組分PARD6B和aPKC蛋白的頂端定位,抑制頂端結(jié)構(gòu)域的正常形成,從而將細(xì)胞引導(dǎo)到內(nèi)部的ICM命運[47]。
首先,除了肌動蛋白相關(guān)蛋白會調(diào)控早期胚胎極性建立外,另一細(xì)胞骨架成分——角蛋白在細(xì)胞分裂過程中會被外層子細(xì)胞不對稱遺傳,它是小鼠和人類早期胚胎的細(xì)胞骨架中第一個表現(xiàn)出顯著細(xì)胞間異質(zhì)性的主要成分。它會通過穩(wěn)定肌動蛋白皮層以促進胚胎頂端極化和基因的特異性表達(dá),從而指定早期胚胎的滋養(yǎng)外胚層譜系分化[48]。
在探究小鼠胚胎從頭極化機制的研究中發(fā)現(xiàn),頂端結(jié)構(gòu)域的形成需要兩個關(guān)鍵條件:在小鼠胚胎中發(fā)生在1~4細(xì)胞階段而在人胚胎中發(fā)生在2~8細(xì)胞階段的ZGA和肌動球蛋白復(fù)合物的皮質(zhì)定位,該研究找到了兩個對胚胎極性建立起關(guān)鍵調(diào)控作用的ZGA基因——轉(zhuǎn)錄因子AP-2γ (transcription factor AP-2 gamma,)和TEA結(jié)構(gòu)域轉(zhuǎn)錄因子4(TEA domain transcription factor 4,)[5,15]。干擾和會延遲8~16細(xì)胞階段的極化,而過度表達(dá)則會導(dǎo)致4細(xì)胞胚胎提早極化,和通過激活等ARP2/3復(fù)合物基因的表達(dá)來調(diào)控胚胎極化。干擾基因的表達(dá)以及用CK666 (一種ARP2/3蛋白復(fù)合物的抑制劑)處理都會導(dǎo)致胚胎頂端結(jié)構(gòu)域形成缺陷,并抑制了和誘導(dǎo)的4細(xì)胞胚胎頂端蛋白提早極化,依賴于和的肌動蛋白動力學(xué)調(diào)節(jié)是ezrin簇生長和頂端蛋白形成所必需的[15]。事實上,早在2012年,Choi等[49]就發(fā)現(xiàn)對于小鼠植入前胚胎發(fā)育過程中桑椹胚到囊胚的過渡至關(guān)重要,它直接與、、、和等基因的啟動子結(jié)合,進而調(diào)控胚胎極性建立、緊密連接、液體積聚和細(xì)胞增殖。對的進一步研究發(fā)現(xiàn),其在小鼠早期胚胎中充當(dāng)CDX2表達(dá)和位置依賴性Hippo信號傳導(dǎo)的新型上游調(diào)節(jié)因子,它通過激活表達(dá)、控制肌動蛋白動力學(xué)以及增強細(xì)胞極性等多種途徑抑制Hippo信號傳導(dǎo),進而調(diào)控小鼠胚胎的TE分化[50]。
尾部相關(guān)同源盒蛋白2(caudal-related homeobox protein 2,CDX2)是Hippo信號通路調(diào)控的下游分子,它是TE發(fā)育所必需的轉(zhuǎn)錄因子[51]。Jedrusik等[52]發(fā)現(xiàn)胚胎極性建立和表達(dá)之間存在互相增強的關(guān)系:可以通過上調(diào)的表達(dá)與穩(wěn)定極性表型來促進極性建立,但CDX2分布也會受到胚胎極性建立的影響,頂端結(jié)構(gòu)域的成功形成可以確保mRNA正確定位到外部卵裂球。另外,在小鼠4細(xì)胞胚胎卵裂球中具有異質(zhì)性的組蛋白共激活劑相關(guān)精氨酸甲基轉(zhuǎn)移酶1(coactivator-associated arginine methyltransferase 1,CARM1)[53]的過表達(dá)會下調(diào)細(xì)胞極性基因(如和)以及轉(zhuǎn)錄因子的表達(dá),但會增加拮抗劑的表達(dá),進而調(diào)控不對稱分裂導(dǎo)致胚胎向ICM譜系分化[54]。
除此之外,最近的研究還發(fā)現(xiàn),翻譯調(diào)節(jié)因子BZW1(basic leucine zipper and W2 domains 1)在小鼠早期胚胎發(fā)育過程中,通過維持翻譯起始密碼子選擇的平衡來保障蛋白質(zhì)的翻譯水平,從而推動胚胎發(fā)育和致密化進程,敲低胚胎無法進行壓實,并表現(xiàn)出囊胚形成率降低[55]。
發(fā)生在哺乳動物8細(xì)胞胚胎中的頂端-基底細(xì)胞極性建立在早期胚胎TE和ICM譜系分化過程中起關(guān)鍵作用,它主要通過調(diào)控不對稱細(xì)胞分裂、譜系分化因子的不對稱定位以及Hippo信號通路的活性來影響譜系分化。
在有絲分裂過程中,頂端結(jié)構(gòu)域的存在使細(xì)胞發(fā)生不對稱細(xì)胞分裂,從而產(chǎn)生極性(有頂端結(jié)構(gòu)域)和非極性(無頂端結(jié)構(gòu)域)子細(xì)胞。在8細(xì)胞到桑椹胚階段的過渡期間,定向分裂可以將部分子細(xì)胞推向胚胎內(nèi)部,這一不對稱分裂由頂端結(jié)構(gòu)域中存在的差異收縮力驅(qū)動[56,57]。并且只有當(dāng)表面收縮力的差異超過可預(yù)測的閾值時,細(xì)胞才會發(fā)生內(nèi)化,用激光消融肌球蛋白的連接后,發(fā)現(xiàn)皮質(zhì)張力的減小會導(dǎo)致某些細(xì)胞的頂端表面收縮力減小,進而導(dǎo)致它們無法被分配到胚胎內(nèi)部[57]。后續(xù)還有研究利用生物物理測量的方法證實了頂端結(jié)構(gòu)域的不對稱分離會使得卵裂球產(chǎn)生不同的收縮力,從而引導(dǎo)它們分配到內(nèi)部和外部位置[58]。Korotkevich等[16]則將頂端結(jié)構(gòu)域移植到無頂端結(jié)構(gòu)域的卵裂球上,發(fā)現(xiàn)頂端結(jié)構(gòu)域會控制細(xì)胞分裂過程中紡錘體的方向,進而誘導(dǎo)不對稱細(xì)胞分裂。
頂端結(jié)構(gòu)域能保證微管和肌動蛋白細(xì)胞骨架的完整性,以維持和穩(wěn)定關(guān)鍵譜系分化轉(zhuǎn)錄本及其調(diào)控元件在極性和非極性細(xì)胞中的不對稱定位。例如調(diào)控TE譜系分化的基因,mRNA定位取決于開放閱讀框(open reading frame,ORF)內(nèi)的97 nt順式元件,其正確定位依賴于完整的肌動蛋白和微管細(xì)胞骨架以及成熟的頂端結(jié)構(gòu)域,在小鼠胚胎8細(xì)胞晚期,優(yōu)先定位于頂端,在8細(xì)胞向桑椹胚過渡期間會不對稱地遺傳給內(nèi)外子細(xì)胞。定位元件的不對稱定位導(dǎo)致外部細(xì)胞獲得更多的mRNA,進而指導(dǎo)外部細(xì)胞分化為TE;而內(nèi)部細(xì)胞不會遺傳轉(zhuǎn)錄本,不表達(dá)CDX2蛋白,使得它們發(fā)育為ICM[59]。最近,Hawdon等[60]使用熒光RNA染料實時成像的方法發(fā)現(xiàn),在小鼠胚胎發(fā)育的2~8細(xì)胞階段,RNA以點狀病灶的形式廣泛分散到卵裂球的整個細(xì)胞質(zhì)中,沒有明顯的時空模式。而在晚期16細(xì)胞胚胎中,RNA的量從卵裂球頂端到基底逐漸增加,并且這種時空控制的轉(zhuǎn)運過程需要微管、溶酶體囊泡和膜聯(lián)蛋白共同發(fā)揮作用,但RNA翻譯所需的組件在16細(xì)胞胚胎的外卵裂球中顯示出優(yōu)先的頂端定位[60]。
此外,收縮力也會控制Yes相關(guān)蛋白(yes- associated protein,YAP)的亞細(xì)胞定位,當(dāng)收縮力增加時,YAP更加定位在細(xì)胞核中,從而調(diào)控胚胎譜系分化[61]。在小鼠早期胚胎譜系分化過程中,隨著細(xì)胞發(fā)生內(nèi)化,卵裂球頂端皮層的核纖層蛋白表達(dá)降低,使得肌動蛋白成核因子FORMIN2和ARP2/3復(fù)合物的定位從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì)。細(xì)胞質(zhì)中肌動蛋白豐度的增加可以穩(wěn)定血管抑制素結(jié)合蛋白(angiomotin,AMOT)的表達(dá),促進YAP磷酸化和ICM命運的獲得;而在外細(xì)胞中核纖層蛋白表達(dá)升高,高水平的核纖層蛋白可以防止YAP磷酸化,未磷酸化的YAP可以進入細(xì)胞核與結(jié)合使表達(dá)指定TE譜系命運[62]。這些都說明頂端結(jié)構(gòu)域能夠通過調(diào)控核纖層蛋白的表達(dá)來控制肌動蛋白的分布,以差異調(diào)節(jié)譜系分化因子的定位。
早期胚胎的每個細(xì)胞都依賴于細(xì)胞極性和細(xì)胞粘附之間的平衡來調(diào)節(jié)位置依賴性Hippo信號通路的傳導(dǎo)和下游譜系特異性基因的活性,極性狀態(tài)將胚胎細(xì)胞分為兩個具有不同Hippo信號活性的群體,進而調(diào)節(jié)TE和ICM譜系特異性轉(zhuǎn)錄因子的差異表達(dá)以決定細(xì)胞的譜系命運[51]。在外層極性細(xì)胞中,頂端結(jié)構(gòu)域和RhoA激酶將AMOT從連接處隔離出來,將其定位在頂端與皮質(zhì)肌動蛋白結(jié)合并保持未磷酸化狀態(tài),LATS1/2激酶活性因此受到抑制,Hippo信號通路處于失活狀態(tài)?;钚员灰种频腖ATS1/2激酶無法將轉(zhuǎn)錄輔因子YAP磷酸化,而未磷酸化的YAP會進入細(xì)胞核并與結(jié)合,進而激活調(diào)控TE分化的關(guān)鍵轉(zhuǎn)錄因子和表達(dá),促使細(xì)胞向TE發(fā)育;在內(nèi)層非極性細(xì)胞中,AMOT被包圍在細(xì)胞的連接處并與E-鈣粘蛋白和Nf2間接結(jié)合,在那里它通過LATS1/2激酶磷酸化而被激活,Hippo信號通路處于活化狀態(tài)。LATS1/2激酶也會磷酸化YAP,磷酸化的YAP無法進入細(xì)胞核,激活因此受阻,多能性轉(zhuǎn)錄因子和表達(dá)上調(diào),促使細(xì)胞向ICM發(fā)育[63~65]。
近年來,研究者們通過與其他物種和其他細(xì)胞(如上皮細(xì)胞和神經(jīng)細(xì)胞等)進行類比的方式對哺乳動物早期胚胎的極性建立進行了探究,對此有了一些新的見解,圖1總結(jié)了早期胚胎極性建立的過程及其對譜系分化的影響,但仍存在許多未解決的問題。首先,Hippo信號通路的重要效應(yīng)分子YAP-TEAD復(fù)合物可能對早期胚胎極性建立也起到關(guān)鍵調(diào)控作用。Yu等[66]發(fā)現(xiàn)小鼠卵母細(xì)胞中積累的母源性YAP是早期胚胎ZGA的關(guān)鍵激活因子,母源YAP的敲除會影響小鼠2~4細(xì)胞胚胎的發(fā)育進程。并且,在人和小鼠的衰老過程中,卵母細(xì)胞的發(fā)育潛能下降與母源mRNA的降解不足密切相關(guān)[67],而YAP-TEAD介導(dǎo)的轉(zhuǎn)錄對于母源mRNA清除至關(guān)重要,大多數(shù)清除不成功的胚胎未能發(fā)育成囊胚,并阻滯在4~8細(xì)胞階段[68]。那么YAP-TEAD復(fù)合物是否是通過調(diào)控母源mRNA降解從而為8細(xì)胞胚胎的極性建立和致密化發(fā)生提供分子基礎(chǔ)和前提呢?
圖1 早期胚胎極性建立的過程及其對譜系分化的影響
在小鼠早期胚胎發(fā)育過程中,8細(xì)胞階段的ZGA使、和等轉(zhuǎn)錄因子表達(dá),從而調(diào)控頂端極性蛋白的協(xié)同募集。協(xié)同募集與RhoA激酶調(diào)控的頂端蛋白橫向移動相互作用,成功建立頂端結(jié)構(gòu)域。早期胚胎極性的成功建立會通過影響早期胚胎卵裂球的不對稱細(xì)胞分裂、關(guān)鍵譜系分化因子的不對稱定位以及Hippo信號通路的活性來調(diào)控譜系分化。
另外,盡管負(fù)責(zé)頂端結(jié)構(gòu)域形成的分子相互作用——肌動蛋白的重塑以及肌動蛋白環(huán)的形成,已經(jīng)得到了很好的研究,但激活哺乳動物早期胚胎極化的確切分子機制仍不清楚。最近的工作已經(jīng)闡明了一些可能的信號通路。例如,在小鼠植入前胚胎發(fā)育過程中,磷脂酶C (phospholipase C,PLC)介導(dǎo)的磷脂酰肌醇二磷酸(phosphatidylinositol(4,5)bisphosphate,PIP2)水解會激活PKC,從而啟動頂端皮層肌動蛋白的積聚。PKC繼續(xù)激活RhoA激酶,進一步促進肌動蛋白網(wǎng)絡(luò)極化,PAR極性蛋白復(fù)合物也被招募到頂端表面,從而將肌動蛋白排除在外層,形成完整的頂端結(jié)構(gòu)域[11]。同樣,PLC信號通路也是人早期胚胎極性建立所必需的,其激活是觸發(fā)人胚胎極化的上游機制,對TE譜系分化起著至關(guān)重要的作用[69]。但極性建立過程是否僅靠PLC信號通路就能完成?用來構(gòu)建頂端結(jié)構(gòu)域的其他分子機制還有哪些?近年來日益發(fā)展的實時成像技術(shù)、新組學(xué)技術(shù)以及計算建模和基于人工智能的技術(shù)可能有助于人們深入了解這些理論。
最后,目前關(guān)于早期胚胎極性建立的研究大多以小鼠胚胎為研究對象,但是小鼠與人早期胚胎的極性建立過程存在明顯差異。例如,在小鼠胚胎中,只有當(dāng)所有的8細(xì)胞胚胎卵裂球都發(fā)生極化之后,才會在后續(xù)的卵裂過程中分化出非極性細(xì)胞,但人胚胎中內(nèi)部非極性細(xì)胞的產(chǎn)生可能不需要預(yù)先建立胚胎極性[69]。總體而言,早期胚胎極性建立的具體機制及其對譜系分化的影響十分復(fù)雜,并且許多問題迄今只在動物研究中得到了初步回答,關(guān)于人類的相關(guān)研究仍很缺乏。目前而言,伴隨著人類類囊胚(blastoid)模型的成功構(gòu)建與類囊胚培養(yǎng)技術(shù)的不斷成熟,人們將不斷拓寬和加深對人植入前胚胎發(fā)育過程以及過程中關(guān)鍵事件(如極性建立和譜系分化等)的認(rèn)識[70]。
[1] Nelson WJ. Adaptation of core mechanisms to generate cell polarity., 2003, 422(6933): 766–774.
[2] Mlodzik M. Planar cell polarization: do the same mechanisms regulatetissue polarity and vertebrate gastrulation?, 2002, 18(11): 564–571.
[3] Knoblich JA. Mechanisms of asymmetric stem cell division., 2008, 132(4): 583–597.
[4] Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin., 2005, 437(7056): 275–280.
[5] Schulz KN, Harrison MM. Mechanisms regulating zygotic genome activation., 2018, 20(4): 221–234.
[6] Zhu M, Zernicka Goetz M. Building an apical domain in the early mouse embryo: lessons, challenges and perspectives., 2020, 62: 144–149.
[7] Claire C, Yojiro Y. Lineage specification in the mouse preimplantation embryo.,2016, 143(7): 1063–1074.
[8] Pratt HP, Ziomek CA, Reeve WJ, Johnson MH. Compaction of the mouse embryo: an analysis of its components., 1982, 70: 113–132.
[9] Lim HYG, Plachta N. Cytoskeletal control of early mammalian development., 2021, 22(8): 548–562.
[10] Zenker J, White MD, Gasnier M, Alvarez YD, Lim HYG, Bissiere S, Biro M, Plachta N. Expanding actin rings zipper the mouse embryo for blastocyst formation., 2018, 173(3): 776–791.e17.
[11] Zhu M, Leung CY, Shahbazi MN, Zernicka-Goetz M. Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo., 2017, 8(1): 921.
[12] Vicente-Manzanares M, Ma XF, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration., 2009, 10(11): 778–790.
[13] Ma?tre JL, Niwayama R, Turlier H, Nédélec F, Hiiragi T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo., 2017, 17(7): 849–855.
[14] Leung CY, Zhu M, Zernicka-Goetz M. Polarity in cell-fate acquisition in the early mouse embryo., 2016, 120: 203–234.
[15] Zhu M, Cornwall-Scoones J, Wang PZ, Handford CE, Na J, Thomson M, Zernicka-Goetz M. Developmental clock and mechanism ofpolarization of the mouse embryo., 2020, 370(6522): eabd2703.
[16] Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, Hiiragi T. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo., 2017, 40(3): 235–247.e7.
[17] Goley ED, Welch MD. The ARP2/3 complex: an actin nucleator comes of age., 2006, 7(10): 713–726.
[18] Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly., 2010, 11(4): 237–251.
[19] Rouiller I, Xu XP, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D. The structural basis of actin filament branching by the Arp2/3 complex., 2008, 180(5): 887–895.
[20] Lees-Miller JP, Henry G, Helfman DM. Identification of act2, an essential gene in the fission yeastthat encodes a protein related to actin., 1992, 89(1): 80–83.
[21] Schwob E, Martin RP. New yeast actin-like gene required late in the cell cycle., 1992, 355(6356): 179–182.
[22] Fyrberg FE. Ahomologue of thegene., 1993, 31(7–8): 329–341.
[23] Waterston R, Martin C, Craxton M, Huynh C, Coulson A, Hillier L, Durbin R, Green P, Shownkeen R, Halloran N. A survey of expressed genes in., 1992, 1(2): 114–123.
[24] Moreau V, Galan JM, Devilliers G, Haguenauer-Tsapis R, Winsor B. The yeast actin-related protein Arp2p is required for the internalization step of endocytosis., 1997, 8(7): 1361–1375.
[25] Schaerer-Brodbeck C, Riezman H. Functional interactions between the p35 subunit of the Arp2/3 complex and calmodulin in yeast., 2000, 11(4): 1113– 1127.
[26] Bailly M, Ichetovkin I, Grant W, Zebda N, Machesky LM, Segall JE, Condeelis J. The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension., 2001, 11(8): 620–625.
[27] Rogers SL, Wiedemann U, Stuurman N, Vale RD. Molecular requirements for actin-based lamella formation inS2 cells., 2003, 162(6): 1079–1088.
[28] Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, Rottner K, Stradal TEB. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes., 2006, 17(6): 2581–2591.
[29] Sun SC, Wang ZB, Xu YN, Lee SE, Cui XS, Kim NH. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes., 2011, 6(4): e18392.
[30] Kumar A, Dumasia K, Deshpande S, Gaonkar R, Balasinor NH. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis., 2016, 1863(8): 1996–2005.
[31] Sun SC, Wang QL, Gao WW, Xu YN, Liu HL, Cui XS, Kim NH. Actin nucleator Arp2/3 complex is essential for mouse preimplantation embryo development., 2012, 25(4): 617–623.
[32] Aloisio FM, Barber DL. Arp2/3 complex activity is necessary for mouse ESC differentiation, times formative pluripotency, and enables lineage specification., 2021, 17(6): 1318–1333.
[33] Bowerman B, Shelton CA. Cell polarity in the earlyembryo., 1999, 9(4): 390–395.
[34] Rose LS, Kemphues KJ. Early patterning of theembryo., 1998, 32(1): 521–545.
[35] Etemad-Moghadam B, Guo S, Kemphues KJ. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in earlyembryos., 1996, 83(5): 743–752.
[36] Matsuzaki F. Asymmetric division ofneural stem cells: a basis for neural diversity., 2000, 10(1): 38–44.
[37] Wodarz A, Ramrath A, Grimm A, Knusta E.atypical protein kinase C associates with bazooka and controls polarity of epithelia and neuroblasts., 2000, 150(6): 1361–1374.
[38] Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures., 2001, 152(6): 1183–1196.
[39] Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions., 2001, 154(3): 491–497.
[40] Tepass U. The apical polarity protein network inepithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival., 2012, 28(1): 655–685.
[41] Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallée S. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction., 2005, 282(2): 307–319.
[42] Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preim-plantation mouse embryo., 2005, 118(3): 505–515.
[43] Nicolas D, Tran L, Bernard M, Louvet-Vallée S. Inactivation of aPKCλ reveals a context dependent allocation of cell lineages in preimplantation mouse embryos., 2009, 4(9): e7117.
[44] Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42., 2000, 2(8): 531–539.
[45] Cui XS, Li XY, Shen XH, Bae YJ, Kang JJ, Kim NH. Transcription profile in mouse four-cell, morula, and blastocyst: genes implicated in compaction and blastocoel formation., 2007, 74(2): 133–143.
[46] Alarcon VB. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo., 2010, 83(3): 347–358.
[47] Frum T, Murphy TM, Ralston A. Hippo signaling resolves embryonic cell fate conflicts during establishment of pluripotency., 2018, 7: e42298.
[48] Lim HYG, Alvarez YD, Gasnier M, Wang YM, Tetlak P, Bissiere S, Wang HM, Biro M, Plachta N. Keratins are asymmetrically inherited fate determinants in the mammalian embryo., 2020, 585(7825): 404–409
[49] Choi I, Carey TS, Wilson CA, Knott JG. Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis., 2012, 139(24): 4623–4632.
[50] Cao ZB, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG. Transcription factor AP-2γ induces early Cdx2 expression and represses Hippo signaling to specify the trophectoderm lineage., 2015, 142(9): 1606–1615.
[51] Nishioka N, Inoue KI, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass., 2009, 16(3): 398–410.
[52] Jedrusik A, Parfitt DE, Guo GJ, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo., 2008, 22(19): 2692–2706.
[53] Hupalowska A, Jedrusik A, Zhu M, Bedford MT, Glover DM, Zernicka-Goetz M. CARM1 and paraspeckles regulate pre-implantation mouse embryo development., 2019, 175(7): 1902–1916.
[54] Parfitt DE, Zernicka-Goetz M. Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo., 2010, 21(15): 2649–2660.
[55] Zhang J, Pi SB, Zhang N, Guo J, Zheng W, Leng LZ, Lin G, Fan HY. Translation regulatory factor BZW1 regulates preimplantation embryo development and compaction by restricting global non-AUG Initiation., 2022, 13(1): 6621.
[56] Dard N, Louvet-Vallée S, Maro B. Orientation of mitotic spindles during the 8- to 16-cell stage transition in mouse embryos., 2009, 4(12): e8171.
[57] Samarage CR, White MD, álvarez YD, Fierro-González JC, Henon Y, Jesudason EC, Bissiere S, Fouras A, Plachta N. Cortical tension allocates the first inner cells of the mammalian embryo., 2015, 34(4): 435–447.
[58] Ma?tre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T. Asymmetric division of contractile domains couples cell positioning and fate specification., 2016, 536(7616): 344–348.
[59] Skamagki M, Wicher KB, Jedrusik A, Ganguly S, Zernicka-Goetz M. Asymmetric localization of Cdx2 mRNA during the first cell-fate decision in early mouse development., 2013, 3(2): 442–457.
[60] Hawdon A, Geoghegan ND, Mohenska M, Elsenhans A, Ferguson C, Polo JM, Parton RG, Zenker J. Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo., 2023, 14(1): 2909.
[61] Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Digabel JL, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction., 2011, 474(7350): 179–183.
[62] Skory RM, Moverley AA, Ardestani G, Alvarez Y, Domingo-Muelas A, Pomp O, Hernandez B, Tetlak P, Bissiere S, Stern CD, Sakkas D, Plachta N. The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization., 2023, 14(1): 3101.
[63] Hirate Y, Hirahara S, Inoue KI, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos., 2014, 23(13): 1181–1194.
[64] Shi XL, Yin ZX, Ling B, Wang LL, Liu C, Ruan XH, Zhang WY, Chen LY. Rho differentially regulates the Hippo pathway by modulating the interaction between Amot and Nf2 in the blastocyst., 2017, 144(21): 3957–3967.
[65] Cockburn K, Biechele S, Garner J, Rossant J. The Hippo pathway member Nf2 is required for inner cell mass specification., 2013, 16(13): 1195–1201.
[66] Yu C, Ji SY, Dang YJ, Sha QQ, Yuan YF, Zhou JJ, Yan LY, Qiao J, Tang FC, Fan HY. Oocyte-expressed yes- associated protein is a key activator of the early zygotic genome in mouse., 2016, 26(003): 275–287.
[67] Wu YW, Li S, Zheng W, Li YC, Chen L, Zhou Y, Deng ZQ, Lin G, Fan HY, Sha QQ. Publisher correction: dynamic mRNA degradome analyses indicate a role of histone H3K4 trimethylation in association with meiosis-coupled mRNA decay in oocyte aging., 2022, 13(1): 3441.
[68] Sha QQ, Zhu YZ, Li S, Jiang Y, Chen L, Sun XH, Shen L, Ou XH, Fan HY. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse., 2020, 48(2): 879–894.
[69] Zhu M, Shahbazi M, Martin A, Zhang CX, Sozen B, Borsos M, Mandelbaum RS, Paulson RJ, Mole MA, Esbert M, Titus S, Scott RT, Campbell A, Fishel S, Gradinaru V, Zhao H, Wu KL, Chen ZJ, Seli E, de Los Santos MJ, Zernicka-Goetz M. Human embryo polarization requires PLC signaling to mediate trophectoderm specification., 2021, 10: e65068.
[70] Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, Reimer YSO, Castel G, Bruneau A, Maenhoudt N, Lammers J, Loubersac S, Freour T, Vankelecom H, David L, Rivron N. Human blastoids model blastocyst development and implantation., 2022, 601(7894): 600–605.
Early embryonic polarity establishment and implications for lineage differentiation
Yi Zhu1, Xueqin Chen1, Lizhi Leng1,2, Ge Lin1,2
Polarity establishment is one of the key factors affecting early embryonic development. Polarity establishment begins with myosin phosphorylation in the 8-cell embryo, and phosphorylation activates actin leading to its initiation of contractility. Subsequently, actin undergoes reorganization to form an apical domain rich in microvilli on the non-contacting surface of each blastomere, and form the actomyosin ring that marks the maturation of the apical domain in conjunction with polar protein complexes and others. From the process of polarity establishment, it can be seen that the formation of the apical domain is influenced by actin-related proteins and polar protein complexes. Some zygote genome activation (ZGA) and lineage-specific genes also regulate polarity establishment. Polarity establishment underlies the first cell lineage differentiation during early embryonic development. It regulates lineage segregation and morphogenesis by affecting asymmetric cell division, asymmetric localization of lineage differentiation factors, and activity of the Hippo signaling pathway. In this review, we systematically summarize the mechanisms of early embryonic polarity establishment and its impact on lineage differentiation in mammals, and discuss the shortcomings of the currently available studies in terms of regulatory mechanisms and species, thereby providing clues and systematic perspectives for elucidating early embryonic polarity establishment.
early embryonic development; embryo polarity establishment; lineage differentiation
2023-10-25;
2023-12-21;
2024-01-10
國家自然科學(xué)基金項目(編號:82001556)資助[Supported by the National Natural Science Foundation of China(No. 82001556)]
朱奕,碩士研究生,專業(yè)方向:生殖遺傳學(xué)。E-mail: 13387481620@163.com
林戈,博士,研究員,研究方向:生殖醫(yī)學(xué)。E-mail: linggf@hotmail.com
10.16288/j.yczz.23-268
(責(zé)任編委: 杜茁)