張志祥,張付英,夏靖煒,馬駿,劉元剛
(1.天津科技大學(xué)機(jī)械工程學(xué)院,天津 300222;2.天津市輕工與食品工程機(jī)械裝備集成設(shè)計與在線 監(jiān)控重點實驗室,天津 300222;3.天津市科技發(fā)展服務(wù)中心,天津 300000)
油封因具有阻止設(shè)備內(nèi)潤滑油外泄和防止外界污染物進(jìn)入裝置的功能和結(jié)構(gòu)簡單的特點,被廣泛應(yīng)用于工業(yè)領(lǐng)域。油封在動態(tài)運(yùn)行過程中,可在密封件和軸之間產(chǎn)生幾微米厚的承載油膜,有助于減少摩擦和磨損,延長密封系統(tǒng)的使用壽命。油封的反向泵送效應(yīng)可防止?jié)櫥蛷拿芊饨佑|區(qū)域向空氣側(cè)逸出,因此通過設(shè)計宏觀或微觀的流體力學(xué)特征,也稱為泵送結(jié)構(gòu),如肋、螺旋、織構(gòu)、渦輪模式或密封輔助裝置等,均可增強(qiáng)反向泵送效應(yīng),提高密封效果,延長密封壽命。
目前已經(jīng)證明,在氣缸活塞環(huán)、軸承滑塊、機(jī)械密封等機(jī)械元件表面添加設(shè)計良好的表面織構(gòu)可以改善潤滑條件下的摩擦學(xué)性能[1-3],定向紋理[4-5]如橢圓形、三角形、矩形等形狀的微凹坑等,具有顯著的控制泄漏的能力。OTTO和PATERSON[6]最先在旋轉(zhuǎn)油封中應(yīng)用表面織構(gòu)技術(shù)。HADINATA和STEPHENS[7]用數(shù)值分析方法研究了微觀織構(gòu)對唇形密封的彈性流體動力學(xué)效應(yīng)。WARREN和STEPHENS[8]通過一系列油滴試驗表明,帶有微三角形凹坑的軸可以減少徑向唇形密封的摩擦扭矩和泄漏。在過去的10年中,學(xué)者們深入研究了表面織構(gòu)形態(tài)對旋轉(zhuǎn)唇形密封性能的影響。JIA等[9]提出了一種靜態(tài)彈性流體動力學(xué)模擬方法,分析了斜槽軸對泵送作用的影響,并通過實驗驗證了所提出的模型;數(shù)值和實驗結(jié)果都表明,凹槽可以顯著提高泵送速率?;谙嗤睦碚撃P?,GUO等[10]分析了接觸區(qū)的軸向位置對軸表面具有不同微凹坑紋理形狀(圓形、方形和三角形)的唇形密封性能的影響。LI等[11]對旋轉(zhuǎn)唇形密封件進(jìn)行了數(shù)值分析,將該密封件與帶有微三角形凹坑的軸接觸,獲得的反向泵送速率與實驗結(jié)果基本一致。ZHANG等[12]也對具有表面紋理的油封進(jìn)行了數(shù)值分析和計算,表明唇部表面紋理技術(shù)的應(yīng)用對油封的油膜厚度、摩擦扭矩和泵送速率有明顯影響。為了探索軸粗糙度對旋轉(zhuǎn)唇形密封性能的影響,EL GADARI等[13-14]提出了全膜潤滑下旋轉(zhuǎn)唇形密封的數(shù)值EHL模型,并考慮了軸和密封唇粗糙度的影響,結(jié)果表明,當(dāng)軸粗糙度超過唇緣粗糙度的1/2時,密封件可能會泄漏;之后,他們在軸表面添加斜槽,以提高泵送速率,并進(jìn)一步研究了紋理軸對旋轉(zhuǎn)唇形密封磨損的影響。
作者前期也研究了組合型表面微織構(gòu)對油封密封性能影響,證明了組合型織構(gòu)對油封油膜厚度以及泵吸率的提升都有顯著效果[15]。為了探究溫度對組合織構(gòu)油封的影響,本文作者通過有限元與數(shù)值模擬相結(jié)合的方法研究具有表面組合型織構(gòu)的油封在接觸區(qū)域的溫度分布,以及唇口溫度變化對油封密封性能的影響。
油封的密封系統(tǒng)由3個主要部件組成:軸、密封圈和潤滑劑,如圖 1所示。以唇尖作為分割點,右側(cè)為油液側(cè),左側(cè)為空氣側(cè)。以某變速器輸入軸外伸端軸承的油封為研究對象,其型號為60 mm×80 mm×8 mm,主體材料為丁腈橡膠(NBR),內(nèi)有金屬骨架支撐,外有緊固彈簧,過盈量為0.3 mm,油側(cè)唇角為45°,空氣側(cè)唇角為25°。
圖1 油封密封系統(tǒng)示意Fig.1 Schematic of an oil seal sealing system
大部分油封的表面微觀織構(gòu)采用十字狀、線狀、三角形、正方形、圓形等單一幾何形狀。由于不同幾何形狀對油封的泵吸率、膜厚等影響程度存在差異,因此將不同織構(gòu)形狀進(jìn)行組合設(shè)計,可綜合2種不同織構(gòu)的優(yōu)點,使其在密封的潤滑特性和密封特性方面都具有積極貢獻(xiàn)。
在前期等邊三角形、正方形和圓形表面微觀織構(gòu)對油封密封性能影響研究的基礎(chǔ)上,將三角形、圓形和正方形3種微織構(gòu)的形狀進(jìn)行相互組合設(shè)計,得到如圖2所示3種新的組合型表面微觀織構(gòu)形狀。
圖2 表面織構(gòu)示意Fig.2 Schematic of surface textures:(a) texture A; (b) texture B;(c) texture C
新設(shè)計的組合型微凹織構(gòu),均勻地加工分布在唇端兩側(cè),如圖3所示為微觀組合型織構(gòu)的分布。織構(gòu)參數(shù)設(shè)計是以面積相近為原則,考慮到制造精度以及經(jīng)濟(jì)性,對于僅0.29 mm的接觸寬度,數(shù)十微米范圍的紋理比例是合理的,其具體參數(shù)見表1。
圖3 油封唇部微觀織構(gòu)分布Fig.3 Texture distribution of oil seal lip
表1 織構(gòu)參數(shù)單位:μm
為獲得油封靜態(tài)接觸壓力以及徑向變形影響系數(shù)矩陣,需建立油封的有限元模型。為保證結(jié)果準(zhǔn)確度和快速求解,建立油封的有限元模型時做出如下假設(shè):
(1)旋轉(zhuǎn)軸與油封骨架為剛性材料;
(2)油封為軸對稱模型且其運(yùn)行過程保持靜止;
(3)忽略模型運(yùn)行期間,溫度、黏彈性、材料密度隨時間變化的影響,認(rèn)為其為常數(shù)。
油封材料及建模參數(shù)如表2所示。丁腈橡膠的應(yīng)力應(yīng)變性能是通過二項參數(shù)的Mooney-Rivlin模型來描述,其中常數(shù)項C10=0.994 MPa,C01=0.236 MPa[16]。劃分網(wǎng)格時,骨架、旋轉(zhuǎn)軸以及緊固彈簧采用C3D8R,油封采用C3D10M,織構(gòu)區(qū)域單獨處理進(jìn)行網(wǎng)格細(xì)化,以保證計算精度及結(jié)果的準(zhǔn)確性,油封的有限元模型分別如圖4和圖5所示。
表2 油封模型基本參數(shù)
圖4 油封有限元模型Fig.4 Finite element model of oil seal
圖5 油封唇口局部織構(gòu)Fig.5 Partial texture of oil seal lip
圖6所示為給定的圓周位置密封區(qū)示意圖。假設(shè)軸是完全光滑、剛性和旋轉(zhuǎn)的,而密封唇被視為粗糙、彈性和靜止的。由于膜厚度遠(yuǎn)小于密封半徑,因此使用笛卡爾坐標(biāo)系,并將坐標(biāo)系固定在軸上,以使問題穩(wěn)定。x、y分別表示圓周和軸向坐標(biāo),為了計算反向泵送速率,假設(shè)密封件的空氣側(cè)充滿液體。建立油封的數(shù)值模型時,假設(shè)唇部是軸對稱的,且唇部表面微凸體的微變形不影響唇部的宏觀變形。
流體力學(xué)由雷諾方程和質(zhì)量守恒邊界條件 (JFO 條件)控制。油封工作時,當(dāng)油膜壓力低于溶解氣體飽和蒸氣壓時,會發(fā)生空化。因此空化指數(shù)F和通用變量Φ用于說明這種影響。具有流量因子的通用平均雷諾方程為
(1)
邊界條件為:Y方向,PY=0=Psealed,PY=1=1;X方向P周期性變化,即PX=0=PX=1,所有節(jié)點位置P≥0。
φx=1-0.9e-0.56H,φy=1-0.9e-H/0.56
(2)
剪切流量因子φs表示微觀表面上受流體的滑動影響,是額外流量因子,計算公式為
當(dāng)H≤5時,φs=1.899H0.98e-0.92H+0.05H2;
當(dāng)H>5時,φs=1.126e-0.25H。
當(dāng)膜厚低于表面粗糙峰高度時,密封區(qū)域必然存在粗糙峰接觸,接觸壓力效應(yīng)顯著,必須考慮。采用Greenwood-Williamson(G-W)表面接觸模型求解粗糙峰接觸壓力Pc,其計算公式為
(3)
式中:η為粗糙度密度;ξ是集成的虛擬變量;在G-W模型中,所有接觸粗糙體都被認(rèn)為是具有相同曲率半徑Rseal的球形凸體集合,其高度具有一定的統(tǒng)計分布;E′表示組合彈性模量,但由于文中將軸視為剛性,E′只是彈性體唇緣的“平面應(yīng)力模量”,其計算如式(4)所示。
(4)
式中:ν為油封唇口泊松比;E為唇口彈性模量。
φ(z)是密封唇表面粗糙峰高度分布的概率密度函數(shù),當(dāng)密封唇表面遵循高斯分布時,由式(5)計算。
(5)
σs表示粗糙度高度的標(biāo)準(zhǔn)偏差,其與粗糙度σ之間的關(guān)系為
(6)
油封唇口的隨機(jī)粗糙表面可通過密封唇表面高度分布的概率密度函數(shù)φ(z)和自相關(guān)函數(shù)c(x,y)來描述,自相關(guān)函數(shù)表征沿表面的凹凸的橫向分布,高斯分布的自相關(guān)函數(shù)如式(7)所示。
(7)
式中:λx和λy分別表示x、y方向上的相關(guān)長度,文中取λx=13.7,λy=29.6[17]。
圖7所示為數(shù)值生成粗糙表面截面的示例。
圖7 唇口粗糙面數(shù)值模擬Fig.7 Numerical simulation of the rough surface of lip
變形力學(xué)分析用于計算密封的凹凸的變形形狀,為了獲得密封件的變形,采用了影響系數(shù)法。該方法的有效性基于2個假設(shè):(1)在整個計算過程中,密封的剛度被視為不變;(2)根據(jù)小變形理論,假設(shè)在密封區(qū),任何位置的變形與每個位置施加的力成比例。
使用商業(yè)軟件包Abaqus,通過有限元分析獲得影響系數(shù)矩陣(I)ik以及靜態(tài)接觸壓力Psc,進(jìn)而求得潤滑區(qū)域的油膜厚度。油膜厚度由式(8)求得。
(8)
式中:Hw為紋理結(jié)構(gòu)參數(shù),是將織構(gòu)深度及形狀尺寸編輯為100×100的矩陣形式代入油封變形公式中;Hs為靜態(tài)油膜厚度;Pt為總壓力,由式(9)求得。
Pt=Pc+Pavg
(9)
式中:Pavg為平均流體壓力。
在密封處,隨著軸的轉(zhuǎn)動,摩擦?xí)a(chǎn)生熱量。一部分熱量通過油封與軸傳導(dǎo),另一部分被潤滑油帶走(對流)。因此,潤滑油溫度會因產(chǎn)生的熱量而升高。溫度升高會影響潤滑油的密度和黏度。特別當(dāng)潤滑油處于低溫條件時,溫度的微小上升會導(dǎo)致潤滑油黏度的顯著變化。由于潤滑油黏度對溫度變化非常敏感,因此使用基于能量方程的分析方法來計算潤滑油的溫度分布。通常,考慮油膜中的黏性耗散加熱效應(yīng),三維穩(wěn)態(tài)能量方程可以表示為
(10)
式中:T是潤滑油溫度;U、V分別是x和y方向上的流體速度,油膜中相應(yīng)的速度根據(jù)Navier-Stokes方程計算,用有限差分法求解,此處不再贅述,可參閱文獻(xiàn)[18];Z是徑向坐標(biāo),參數(shù)k、βT和cp分別是潤滑油的導(dǎo)熱系數(shù)、熱膨脹率和比定壓熱容。
在式(10)中,左側(cè)表示對流與熱量傳導(dǎo),右側(cè)分別表示黏性耗散和壓縮加熱。此外,當(dāng)膜厚過小時,應(yīng)考慮粗糙峰接觸對生熱的貢獻(xiàn)。粗糙峰接觸對生熱Qasp由式(11)計算。
(11)
式中:kasp為摩擦因數(shù)。
在方程(10)的求解過程中,油封和軸的表面溫度尤為重要。潤滑油帶走了一部分熱量,其余部分則通過邊界接觸面進(jìn)行傳熱。流向表面的熱流決定其表面溫度,進(jìn)而調(diào)節(jié)潤滑油溫度。根據(jù)YANG等[19]的研究,表面溫度可以通過如式(12)所示的油封傳熱方程、式(13)所示的油封與潤滑油界面上的熱流連續(xù)性條件、式(14)所示的潤滑油與軸界面上的相應(yīng)連續(xù)性條件和式(15)所示的軸傳熱方程獲得。
(12)
(13)
(14)
(15)
式中:ζseal為油封線速度,文中假設(shè)油封固定,速度為0;ζshaft為軸的線速度;kseal、ρseal、cseal與kshaft、ρshaft、cshaft分別代表油封與軸的導(dǎo)熱系數(shù)、密度、比熱容;Zseal、Zshaft與坐標(biāo)Z方向相同,Zseal=0位于油封表面,Zshaft=0位于軸表面。
關(guān)于Zseal、Zshaft和Z的量綱一化處理方法,可以參考文獻(xiàn)[19]。在求解能量方程時,熱邊界條件如下:油膜與空氣交界處溫度等于大氣溫度,油膜與油腔交界處溫度等于油腔溫度,油腔與空氣為定溫。油膜與油封表面交界處溫度等于油封表面溫度,與軸表面交界處溫度等于軸表面溫度。
因為潤滑油的黏度和溫度緊密相關(guān),所以用式(16)的黏壓-黏溫方程計算流體黏度[20]。
μ=μ0·θ·exp{(lnμ0+9.67)[-1+(1+5.1×10-9p)ψ[(T-138)/(T0-138)]-s0]}
(16)
(17)
式中:ψ、s0分別由式(18)、式(19)計算;θ為密度比;ρ1為與溫度、壓力相關(guān)的流體密度,由式(20)計算。
(18)
(19)
(20)
式中:α、β分別為黏壓、黏溫系數(shù);T0為初始溫度。
泵吸率是描述油封密封性能的一項重要參數(shù)。泵吸率過小時,會因為密封腔體內(nèi)側(cè)壓力小于外壓,潤滑油會因此泄漏。合適的泵吸率是判斷油封性能是否合格的關(guān)鍵。式(21)為油封泵吸率的表達(dá)式。
(21)
式中:μ為流體黏度。
將量綱一化參數(shù)引入式(21),進(jìn)行歸一化后得泵吸率Q,如式(22)所示。
(22)
泵吸率Q為負(fù)值時說明油封密封空間內(nèi)的潤滑油會發(fā)生泄漏;泵吸率為正值時,說明密封腔體內(nèi)潤滑油被反向泵吸回油側(cè)。
摩擦扭矩是研究油封密封性能的另一項重要指標(biāo)。文中的摩擦扭矩由式(23)計算。
(23)
式中:ff為總摩擦力,是干摩擦力矩和黏性摩擦力矩的總和,由式(24)計算。
ff=-?τx|z=hdxdy
(24)
τx|z=h為密封唇口表面周向剪切力,由下式給出:
(25)
參數(shù)φf、φfp、φfs分別由式(26)—(28)計算。
當(dāng)H≤3時,
z(60+147z)))))]}
(26)
當(dāng)H>3時,
(27)
式中:z=H/3。
φfp=1-1.4e-0.66H
(28)
φfs=11.1H2.31e-2.38H+0.11H2
(29)
干摩擦力主要是由粗糙峰接觸而產(chǎn)生,由粗糙峰接觸壓力pc與固體摩擦因數(shù)kasp乘積所得,固體摩擦因數(shù)kasp取0.2[20]。因此:
(30)
為順利建立油封唇口溫度分布的數(shù)值模型,針對穩(wěn)定運(yùn)行油封唇口溫度的模擬計算,對油封模型進(jìn)行以下假設(shè):
(1)假設(shè)潤滑油滿足黏性內(nèi)摩擦定律,為牛頓流體;
(2)潤滑油、旋轉(zhuǎn)軸、油封橡膠的導(dǎo)熱系數(shù)、比熱容均為常數(shù);
(3)在油封開始工作瞬間,油封接觸區(qū)域的溫度一定,且受力均勻;
(4)假設(shè)油封材料特性不隨溫度的升高而變化。
數(shù)值計算流程如圖8所示。
圖8 數(shù)值計算流程Fig.8 Numerical calculation flow
圖9所示為通過有限元分析軟件Abaqus仿真分析得到的不同織構(gòu)油封的靜態(tài)接觸壓力分布??梢钥闯觯头馀c旋轉(zhuǎn)軸軸向接觸寬度Ly=0.290 0 mm,最大接觸壓力位于唇尖處為6.046 8 MPa。由于微織構(gòu)為凹坑式設(shè)計,因此織構(gòu)處的靜態(tài)接觸壓力小于唇尖其他部位。
圖9 不同織構(gòu)油封靜態(tài)接觸壓力分布Fig.9 Static contact pressure distribution of oil seals with different textures
圖10所示為不考慮微織構(gòu)油封的徑向變形影響系數(shù)矩陣。以上矩陣是在Abaqus軟件中將單周期內(nèi)區(qū)域劃分成100×100個節(jié)點,在油封唇口節(jié)點處依次施加單位節(jié)點力后,分析所有節(jié)點變形情況所得到的。
圖10 無織構(gòu)時油封的徑向變形影響系數(shù)矩陣Fig.10 Radial deformation influence coefficient matrix of oil seal without texture
為驗證數(shù)值模型正確性,采用與文獻(xiàn)[21]相同模型數(shù)據(jù)和實驗數(shù)據(jù)對文中模型進(jìn)行了驗證。文獻(xiàn)[21]選用90 mm×118 mm×10 mm氟橡膠油封,試驗軸轉(zhuǎn)速為1 000 r/min,油封過盈量為0.65 mm,油溫為73 ℃。文中模型計算的唇口最高溫度和文獻(xiàn)試驗結(jié)果如表3所示。兩者結(jié)果對比誤差小于1%,故驗證了文中模型可靠性。
表3 油封唇口最高溫度計算值和文獻(xiàn)值比較
圖11所示為軸轉(zhuǎn)速為1 000 r/min,油腔溫度為70 ℃,粗糙度為1 μm時油封唇口接觸寬度上油膜溫度分布。
圖11 不同織構(gòu)油封唇口溫度分布Fig.11 Temperature distribution of oil seals with different textures
可見,無論織構(gòu)油封還是非織構(gòu)油封唇口溫度最高值位于唇尖位置,這是由于唇尖處的接觸壓力最大,產(chǎn)生的摩擦力也最大,摩擦產(chǎn)生的熱量就越多,溫度最高。從唇尖到接觸區(qū)兩側(cè)溫度逐漸降低。3種表面織構(gòu)由于其面積相近,而形狀的不同對最高溫度的數(shù)值影響非常微小,各種織構(gòu)油封油膜溫度分布幾乎一樣,無織構(gòu)油封油膜溫度較織構(gòu)油封在唇尖處溫度略高,無織構(gòu)油封油膜熱量在唇尖處更加集中。
圖12所示為最高溫度隨旋轉(zhuǎn)軸轉(zhuǎn)速變化情況。最高溫度都隨轉(zhuǎn)速增加近似線性遞增。隨著轉(zhuǎn)速的增加,摩擦產(chǎn)生的熱量也會增加,雖然轉(zhuǎn)速增加也會引起唇口處流體流動性增強(qiáng),換熱能力增加,但摩擦產(chǎn)生的熱量大于散失的熱,最終使得最終唇口最高溫度逐漸升高。
圖12 不同織構(gòu)油封唇口最高溫度隨轉(zhuǎn)速的變化Fig.12 Variation of maximum lip temperature of oil seals with different textures with rotation speed
圖13所示為泵吸率隨溫度變化曲線。顯然,油封泵吸率隨油封唇口溫度升高而下降,潤滑油從空氣側(cè)向油側(cè)回流能力減弱。當(dāng)溫度升高到一定值,如織構(gòu)油封在340 K,油封泵吸率會下降到零以下,增加了泄漏風(fēng)險。在不同溫度下織構(gòu)油封較無織構(gòu)油封對泵吸率都有明顯提升作用,其中以織構(gòu)A對油封泵吸率的影響效果最佳。
圖13 不同織構(gòu)油封泵吸率隨溫度的變化Fig.13 Variation of pump suction rate of oil seals with different textures with temperature
圖14所示為摩擦扭矩隨溫度的變化曲線。顯然,在轉(zhuǎn)速相同情況下,隨著溫度的升高摩擦扭矩減小,這是由于油液黏度隨溫度升高而降低導(dǎo)致黏滯摩擦力減小。相同溫度下,無織構(gòu)油封所產(chǎn)生的摩擦扭矩大于織構(gòu)油封,因為織構(gòu)的存在使油膜厚度增大,減少了粗糙峰接觸摩擦力。 油液黏度在低溫時對溫度變化更敏感,溫度升高也會導(dǎo)致油膜厚度變小,粗糙峰接觸引起的摩擦力也會增加,因此,隨著溫度的升高摩擦扭矩的下降趨勢也逐漸放緩。
圖14 不同織構(gòu)油封摩擦扭矩隨溫度的變化Fig.14 Variation of friction torque of oil seals with different textures with temperature
圖15所示為最小油膜厚度隨溫度的變化情況??梢?,隨著溫度升高油封唇口最小油膜厚度持續(xù)下降。若唇口溫度繼續(xù)升高,油膜厚度會持續(xù)下降,直到不能保持油膜的完整性,導(dǎo)致唇口與軸間的接觸區(qū)域的干摩擦過大,使得油封唇口磨損、唇口材料老化變形,進(jìn)而使?jié)櫥А?/p>
圖15 不同織構(gòu)油封油膜厚度隨溫度的變化Fig.15 Variation of oil film thickness of oil seals with different textures with temperature
圖16所示為軸轉(zhuǎn)速為1 000 r/min,油腔溫度為70 ℃時,油膜厚度軸向分布??梢?,與無織構(gòu)油封相比,織構(gòu)油封除在織構(gòu)處存在潤滑油集聚因而油膜厚度較高外,其余部分油膜厚度無明顯差別。因此在求平均油膜厚度時,織構(gòu)油封所產(chǎn)生的平均油膜厚度值更大一些。
圖16 不同織構(gòu)油封油膜厚度的軸向分布(1 000 r/min,70 ℃)Fig.16 Axial distribution of oil film thickness of oil seals with different textures(1 000 r/min,70 ℃)
(1)油封工作時,最高溫度位于唇尖處,接觸區(qū)溫度從油封唇尖至兩側(cè)溫度值逐漸降低,無織構(gòu)油封最高溫度略高于織構(gòu)油封,無織構(gòu)油封在唇尖處熱量會更集中。隨著旋轉(zhuǎn)軸轉(zhuǎn)速增加,摩擦產(chǎn)生的熱量也逐漸增加,油封唇口最高溫度幾乎呈線性遞增,由于織構(gòu)的存在會導(dǎo)致摩擦減小。
(2)織構(gòu)油封對泵吸率的提升效果較為明顯,其中以織構(gòu)A油封效果最為顯著??棙?gòu)也會引起油液的聚集,從而提升平均油膜厚度,增強(qiáng)潤滑效果。
(3)隨著油液溫度升高,會導(dǎo)致潤滑油黏度逐漸減小,油封泵吸率、摩擦扭矩以及油膜厚度都會下降,油封密封性能明顯降低。當(dāng)溫度升高到一定程度,油封泵吸率會降為負(fù)值,存在油液泄漏風(fēng)險。