賀 瑋,李 波,麻旭東
(1.中北大學(xué) 機電工程學(xué)院, 太原 030051; 2.中國人民解放軍61767部隊)
引信作為彈藥的控制系統(tǒng),其安全性歷來被設(shè)計、研制和使用部門所重視[1]。引信安全性是整個武器系統(tǒng)的重要性能和關(guān)鍵技術(shù)指標(biāo)之一,是衡量引信的設(shè)計特性,判定引信的使用特性以及引信的戰(zhàn)術(shù)、技術(shù)指標(biāo)的重要依據(jù)。引信安全性還與引信的生產(chǎn)制造、使用保障因素密切相關(guān)。因此,須采取相應(yīng)的保障措施,以求達(dá)到引信的可靠性要求[2]。
傳統(tǒng)的機電引信故障樹分析一般是基于Bell靜態(tài)故障樹邏輯門來進(jìn)行可靠性評估。但隨著可靠性技術(shù)的發(fā)展,人們意識到整個系統(tǒng)的失效分析并不能僅僅基于靜態(tài)的邏輯門進(jìn)行分析,如機電引信在經(jīng)過長期貯藏,內(nèi)部的電子元件、彈性元件、火工品等部件會發(fā)生部分性能退化,造成引信性能的下降,還有引信在工作過程中受到環(huán)境和軟件故障的影響,這使得引信的安全性影響往往難以評估。并且傳統(tǒng)機電引信故障樹中事件發(fā)生具有時序性,底事件的概率值較為精確,對于精密復(fù)雜的引信系統(tǒng),二元的故障描述狀態(tài)并不能準(zhǔn)確地描述引信系統(tǒng)的具體失效狀態(tài)。鑒于此,譚正超等[3]提出了基于層次分析法的引信安全性評估方法,即通過設(shè)計準(zhǔn)則滿足情況作為切入點,建立基于設(shè)計準(zhǔn)則的安全性評估模型,并應(yīng)用層次化分析方法進(jìn)行優(yōu)化分析。但這種安全性評估方法未考慮實現(xiàn)安全系統(tǒng)的軟、硬件的安全失效概率,僅關(guān)注了安全系統(tǒng)不同架構(gòu)之間的優(yōu)劣判斷。
模糊故障樹作為一種新進(jìn)發(fā)展的故障樹分析方法,它相對于Bell故障樹,能夠描述底事件與上級事件的模糊關(guān)系和復(fù)雜系統(tǒng)的多態(tài)、組合和順序等事件關(guān)系[4]。在安全性分析應(yīng)用上,宋華等人提出了模糊故障樹分析方法,并對INS/GPS組合導(dǎo)航系統(tǒng)進(jìn)行了實例分析[5]。姚成玉等人提出了模糊故障樹的重要度概念及其計算方法,并用部件重要度分析方法進(jìn)行算例對比與分析,驗證方法的可行性[6]。劉勇等人將模糊故障樹模型應(yīng)用到多態(tài)導(dǎo)航系統(tǒng)性能分析中,求解系統(tǒng)在多故障狀態(tài)下的性能可靠性指標(biāo),并進(jìn)行了實例分析[7]。本文中根據(jù)現(xiàn)有的研究成果,結(jié)合模糊故障樹基本理論,提出模糊故障樹的構(gòu)建和分析方法,并參考標(biāo)準(zhǔn)GJB z29A—2021《引信典型故障樹手冊》中的引信典型故障樹實例,對引信的部分作用過程建立模糊故障樹進(jìn)行重要度分析和概率值計算,與傳統(tǒng)的Bell靜態(tài)故障樹的分析計算進(jìn)行對比,為引信的安全性優(yōu)化和故障樹診斷提供參考。
模糊故障樹模型是基于學(xué)者Takagi等[8]提出的使用模糊含義和推理的系統(tǒng)模糊模型,通過可定義的邏輯規(guī)則來描述下級事件的狀態(tài)對上級事件的影響。基于模糊故障樹的引信安全性分析方法如圖1所示,具體步驟如下:
1) 對引信系統(tǒng)進(jìn)行分析,確定頂事件和底事件類型;
2) 構(gòu)建邏輯門,描述規(guī)則和構(gòu)建方法,確定中間事件類型;
3) 確定引信底事件的隨機模型和可靠性數(shù)據(jù);
4) 根據(jù)各事件代碼來搭建引信模糊故障樹;
5) 計算引信上級事件和頂事件概率值;
6) 對引信底事件進(jìn)行重要度分析;
7) 進(jìn)行引信安全性評估和故障樹診斷。
圖1 引信模糊故障樹的構(gòu)建和分析方法框圖
一個簡單的引信模糊故障樹模型如圖2所示,其中X1,X2,…,Xn為底事件,y為上級事件,S為一個可以定義規(guī)則的邏輯門。
圖2 一個引信模糊故障樹
若在規(guī)則l中,下級事件x=(x1,x2,…,xn)的各故障狀態(tài)的概率值分別為
則S門描述規(guī)則的輸入規(guī)則l(l=1,2,…,r)的執(zhí)行可能性為
(1)
(2)
1.2 引信模糊故障樹底事件重要度計算方法
重要度可以表示底事件概率值的變化對頂事件概率值的影響程度,對引信系統(tǒng)安全性評估和優(yōu)化具有重要作用,本文中采用概率重要度和關(guān)鍵重要度進(jìn)行分析。
1.2.1模糊故障樹底事件概率重要度計算方法
模糊故障樹概率重要度可以表示為
(3)
則基本事件xi對頂事件T故障狀態(tài)為Tq的T-S故障樹概率重要度為
(4)
式(4)中:ki為底事件xi所有故障狀態(tài)的個數(shù),若故障狀態(tài)為0、0.5、1,則ki=3。
1.2.2模糊故障樹底事件關(guān)鍵重要度計算方法
模糊故障樹關(guān)鍵重要度可以表示為
(5)
式(5)中:P(T=Tq)為頂事件T為Tq的概率值。
則基本事件xi對頂事件T故障狀態(tài)為Tq的T-S故障樹關(guān)鍵重要度為:
(6)
本文中以GJB z29A—2021《引信典型故障樹手冊》中某小口徑高炮無線電引信在預(yù)定的解除保險和接觸隔離流程開始前引信作用故障樹為例進(jìn)行分析[9]。由于該故障樹中存在概率相同的相似底事件,因此對該故障樹和底事件進(jìn)行簡化。
建造如圖3所示的故障樹,記頂事件為T12,中間事件為A12、B12、C12、D12和T11,底事件為X1~X8,故障樹事件代號、名稱和發(fā)生概率如表1所示。
圖3 某小口徑高炮無線電引信在預(yù)定的解除保險和 接觸隔離流程開始前引信作用故障樹
表1 故障樹事件代號、名稱和發(fā)生概率
假設(shè)X3~X8、A12、B12、C12、D12和T11的故障狀態(tài)為(0,0.5,1),其中0表示正常狀態(tài),0.5表示半故障狀態(tài),1表示失效狀態(tài),且故障狀態(tài)為0.5的故障率與故障狀態(tài)為1的相同。G1~G6為可定義規(guī)則的邏輯門,其中G1門規(guī)則見表2,G2和G5門規(guī)則見表3,G3和G4見表4和表5。由于G6門下B12先于A12發(fā)生,即B12事件的故障狀態(tài)為0.5和1時A12事件才發(fā)生,如表6所示。在進(jìn)行Bell故障樹計算和分析時,G1、G3、G6為與門,G2、G4、G5為或門,底事件的概率值與表1相同。
表2 G1門規(guī)則
表3 G2和G5門規(guī)則
表4 G3門規(guī)則
續(xù)表(表4)
表5 G4門規(guī)則
表6 G6門規(guī)則
2.1.1計算模糊故障樹頂事件的概率
以中間事件D12為例根據(jù)G2門規(guī)則計算D12在故障狀態(tài)為0、0.5和1時的概率值
同理,利用上述方法根據(jù)表1的故障概率值和表2—表6的規(guī)則,求得中間事件A11、B11、C11、T11和頂事件T12的故障狀態(tài)為0、0.5、1的概率值如表7所示。
表7 中間事件和頂事件各故障狀態(tài)概率值
由上述結(jié)果可得,失效事件和頂事件的無故障、半故障和失效狀態(tài)的概率值之和為1。某引信小口徑無線電引信在預(yù)定的解除保險和解除隔離流程開始前引信出現(xiàn)故障和半故障是一個小概率事件,該事件的概率值比底事件的概率值小4個數(shù)量級。而引信正常工作的可能性非常大,與實際的引信安全性分析一致,驗證了本文中提出的模糊故障樹在引信安全性評估上的可行性和準(zhǔn)確性。其中,電雷管炸、在預(yù)定的解除保險和解除隔離流程開始前安全失效、安全系統(tǒng)原發(fā)性失效這3個中間事件發(fā)生的概率較其他事件高出幾個數(shù)量級,因此,在該小口徑無線電引信出現(xiàn)故障時需要重點關(guān)注這3部分的工作狀況。
2.1.2計算Bell故障樹頂事件的概率
首先用上行法求所有最小割集,將頂事件表示為各底事件積之和的最簡布爾表達(dá)式[10],即
T12=X1X5+X1X6+X1X7X8+X2X3X4X5+X2X3X4X6+X2X3X4X7X8
根據(jù)不交布爾代數(shù)法將上式變?yōu)椴唤缓?即
將表1的數(shù)據(jù)代入,并通過首項近似的方法,得頂事件概率值P(T12)≈1.2×10-9。
模糊故障樹和Bell故障樹計算所得的頂事件概率值處在同一數(shù)量級且比較接近,證明了模糊故障樹計算方法的可行性和準(zhǔn)確性。
在計算頂事件概率時,Bell故障樹可以使用上行法快速得到結(jié)構(gòu)函數(shù),代入底事件的概率值計算得到頂事件的概率值。但在故障樹較為復(fù)雜或底事件較多時,會發(fā)生“組合爆炸”問題,一般情況下可以采用首項近似的方法快速得到頂事件的概率值。而模糊故障樹在計算時由于考慮有半故障的故障狀態(tài)存在,在計算時較為繁瑣,需要借助軟件編程進(jìn)行輔助計算。
2.2.1計算模糊故障樹底事件的概率重要度
根據(jù)式(3),底事件X8故障程度為0.5對頂事件T12故障狀態(tài)為0.5的模糊故障樹概率重要度為
底事件X8故障程度為0.5對頂事件T12故障狀態(tài)為1的模糊故障樹概率重要度為
底事件X8故障程度為1對頂事件T12故障狀態(tài)為0.5的模糊故障樹概率重要度為
底事件X8故障程度為1對頂事件T12故障狀態(tài)為1的模糊故障樹概率重要度為
由式4即可計算底事件X8故障狀態(tài)為0.5和1對頂事件T12的概率重要度分別為
同理,可得各底事件對頂事件T11故障狀態(tài)為0.5和1的模糊故障樹概率重要度如表8所示。
表8 底事件對頂事件T11故障狀態(tài)為0.5和1的 模糊故障樹概率重要度
續(xù)表(表8)
2.2.2計算模糊故障樹底事件的關(guān)鍵重要度
根據(jù)式(5),底事件X8故障程度為0.5和1對頂事件T12故障狀態(tài)為0.5和1的模糊故障樹關(guān)鍵重要度為
由式(6)即可計算底事件X8故障狀態(tài)為0.5和1對頂事件T12的概率重要度分別為
同理,可得各底事件對頂事件T12故障狀態(tài)為0.5和1的模糊故障樹關(guān)鍵重要度如表9所示。
表9 底事件對頂事件T12故障狀態(tài)為0.5和1的 模糊故障樹關(guān)鍵重要度
由表8的模糊故障樹概率重要度和表9的模糊故障樹關(guān)鍵重要度可知,該小口徑無線電引信在在預(yù)定的解除保險和解除隔離流程開始前,引信系統(tǒng)出現(xiàn)半故障時,X5,X7,X8,X6的關(guān)鍵重要度較大,設(shè)計中要對隔爆機構(gòu)和保險機構(gòu)進(jìn)行重點優(yōu)化,同時按照可X5,X7,X8,X6,X1,X2,X3,X4的順序依次排查;引信系統(tǒng)出現(xiàn)失效故障時,X1,X5的關(guān)鍵重要度較大,提高電雷管和隔爆材料的性能對預(yù)防引信系統(tǒng)失效故障的效果明顯,同時按照可X1,X5,X6,X7,X8,X2,X3,X4的順序依次排查。
其中X2,X3,X4和X7,X8由于處于“與門”下,幾個底事件對頂事件變化的影響較小。而在對故障樹進(jìn)行優(yōu)化時,底事件X1對頂事件T概率值的影響最大,可以對X1進(jìn)行優(yōu)化設(shè)計,或者在頂事件下增加安全系統(tǒng)設(shè)計,從而提高引信的安全性。
2.2.3計算Bell故障樹底事件的概率重要度
底事件的概率重要度表示第i個底事件的概率重要度,定義為
(7)
式(7)中:Q(q1,q2,…,qn)為頂事件發(fā)生的概率,在底事件相互獨立的條件下,為各底事件發(fā)生概率q1,q2,…,qn的一個函數(shù)。
可求得在圖3所示故障樹的函數(shù)為
Q(q1,q2,…,qn)=q1q5+(1-q5)q1q6+ (1-q5)(1-q6)q1q7q8+(1-q1)q2q3q4q5+ (1-q1)(1-q5)q2q3q4q6+ (1-q1)(1-q5)(1-q6)q2q3q4q7q8
將表1的數(shù)據(jù)代入式(7),得底事件X1—X6的概率重要度如表10所示。
表10 Bell故障樹底事件的概率重要度
2.2.4計算Bell故障樹底事件的關(guān)鍵重要度
事件的關(guān)鍵重要度表示第i個底事件的相對概率重要度,定義為
仍將表1的數(shù)據(jù)代入式(8),得底事件X1—X6的關(guān)鍵重要度如表11所示。
表11 Bell故障樹底事件的關(guān)鍵重要度
在計算底事件的重要度時,模糊故障樹是通過對底事件的各故障狀態(tài)的故障概率值賦1,計算出此時頂事件的概率值,并與底事件的完全無故障情況下頂事件的概率值做差進(jìn)行計算的。由于在引信的故障樹中,底事件的概率值很低,靠近頂事件的部分底事件在Bell故障樹重要度計算結(jié)果中,要比其余底事件的重要度高出幾個數(shù)量級,如表8—表11所示的情況。模糊故障樹和Bell故障樹的重要度計算結(jié)果基本都處于同一數(shù)量級下,證明了模糊故障樹計算方法的可行性。
模糊故障樹的重要度計算可以直觀地顯示底事件對頂事件各故障狀態(tài)的重要程度,并且并不依賴于故障樹結(jié)構(gòu)函數(shù)的分析和運算,而是直接根據(jù)規(guī)則進(jìn)行計算,降低了分析難度,有利于后續(xù)對引信系統(tǒng)的優(yōu)化。
本文中基于模糊故障樹理論,提出一種引信安全性評估方法,對引信模糊故障樹的構(gòu)建和分析進(jìn)行闡述,并結(jié)合典型無線電引信故障樹實例,對其的部分作用過程建立模糊故障樹,進(jìn)行安全性評估和重要度計算,還與傳統(tǒng)的Bell靜態(tài)故障樹的可靠性計算和重要度分析進(jìn)行了對比,通過對比得出結(jié)論:
1) 對某小口徑高炮無線電引信在預(yù)定的解除保險和解除隔離流程開始前引信作用故障樹為例進(jìn)行故障分析時,模糊故障樹計算所得的半故障率和失效率分別為8.4×10-6和2.1×10-9,Bell故障樹計算所得的頂事件概率值約為1.2×10-9,與模糊故障樹失效率為同一數(shù)量級且較接近,驗證了使用模糊故障樹方法進(jìn)行引信安全性評估的可行性。
2) 在重要度計算分析中,對比模糊故障樹和Bell故障樹的計算結(jié)果發(fā)現(xiàn):模糊故障樹和Bell故障樹的重要度計算結(jié)果基本都處于同一數(shù)量級下,證明了模糊故障樹計算方法的可行性和準(zhǔn)確性。但Bell故障樹在故障樹較為復(fù)雜或底事件較多時,重要度計算和分析比較困難。在引信系統(tǒng)工程應(yīng)用中,可以同時采用模糊故障樹和Bell故障樹對引信進(jìn)行安全性評估。
本文實例中半故障機理和規(guī)則的建立為假設(shè)估計,具體模型和數(shù)值需要收集專家意見和長期的工程統(tǒng)計,進(jìn)行進(jìn)一步研究。