摘要:過魚效果監(jiān)測(cè)與評(píng)估可為魚道設(shè)計(jì)優(yōu)化、功能完善及運(yùn)行管理提供參考依據(jù)。2020年6?9月采用陷阱法、張網(wǎng)法和水聲學(xué)等方法對(duì)安谷豎縫式魚道過魚效果進(jìn)行監(jiān)測(cè),以評(píng)估魚道出口高程改進(jìn)后的過魚效果,保護(hù)大渡河魚類資源。結(jié)果顯示:(1)魚道下游河段分布魚類34種,包括過魚種類蛇鮈、唇?、泉水魚、瓦氏黃顙魚、鲇5種和優(yōu)勢(shì)種光澤黃顙魚、蛇鮈、唇?、凹尾擬鲿、鯽5種;月均單位捕撈努力量(CPUE)為13.39 g/(net·h);(2)有24種魚進(jìn)入魚道進(jìn)口,占魚道下游種類數(shù)的70.59%;魚道進(jìn)口時(shí)均凈上行數(shù)量為0.44 尾/h,呈遞減趨勢(shì);相較于白晝,魚類更喜歡夜晚通過魚道進(jìn)口斷面;(3)有19種183尾魚通過魚道,占魚道進(jìn)口魚類種數(shù)的79.17%;其中包含目標(biāo)魚6種114尾,占過魚總數(shù)的62.30%;魚道出口時(shí)均過魚數(shù)量為0.11尾/h,呈現(xiàn)先減小后增加的趨勢(shì),魚道過魚效率為25%;(4)監(jiān)測(cè)期間,魚道流量在(0.11±0.03) m3/s和豎縫流速在0.50~0.58 m/s有利于魚類通過魚道。研究表明,安谷豎縫式魚道有效可用,具有一定的集魚和過魚功能;相較于改進(jìn)前,魚道集魚和過魚效果明顯提升。
關(guān)鍵詞:豎縫式魚道;集魚效果;過魚效果;安谷水電站
中圖分類號(hào):S956.3" " " " 文獻(xiàn)標(biāo)志碼:A" " " " 文章編號(hào):1674-3075(2024)05-0115-09
水利水電工程建設(shè)運(yùn)行阻斷了河流的連通性,嚴(yán)重影響魚類在索餌場(chǎng)和產(chǎn)卵場(chǎng)間的遷移,降低了魚類種群資源增殖和遺傳交流(Amoros amp; Bornette,2002; Pelicice et al, 2015)。為減緩大壩對(duì)河流生態(tài)系統(tǒng)尤其是魚類種群的影響,可以通過修建過魚設(shè)施來(lái)改善河流連通性,使魚類能順利上行或下行過壩(陳凱麒等,2012;Agostinho et al,2008; Bunt,2011)。過魚設(shè)施對(duì)維持河流生態(tài)系統(tǒng)的連通性以及維護(hù)河流生物多樣性具有重要意義(Bunt,2011;Muir amp; Williams,2012;Tummers et al,2016a)。
魚道等過魚設(shè)施在設(shè)計(jì)建成后,需要對(duì)運(yùn)行效果進(jìn)行全面監(jiān)測(cè)與評(píng)估,找出設(shè)計(jì)、建設(shè)過程中存在的問題,為過魚設(shè)施的功能完善與優(yōu)化以及運(yùn)行管理提供參考依據(jù)并積累經(jīng)驗(yàn)(Kroes et al,2006),同時(shí)也可為其他類似設(shè)施的設(shè)計(jì)提供實(shí)例參數(shù)(Roscoe amp; Hinch, 2010)。通過對(duì)不同型式魚道進(jìn)口(Bunt,2001;Moser et al,2019)和內(nèi)部進(jìn)行改造(Tummers et al,2016b;Cornu et al,2012;Pratt et al,2009),可大大提升魚道集魚和通過效果;此外,還能通過優(yōu)化調(diào)整魚道內(nèi)流量大小以提升魚道效果(Santos et al,2014)。魚道監(jiān)測(cè)與評(píng)估是不斷改進(jìn)魚道結(jié)構(gòu)、優(yōu)化運(yùn)行方式、保障魚道良好運(yùn)行、發(fā)揮過魚功能的重要手段,其過魚效果監(jiān)測(cè)與評(píng)價(jià)指標(biāo)包括過魚有效性(Passage effectiveness) 和過魚效率(Passage efficiency)兩方面(Larinier,2008)。近年來(lái),我國(guó)眾多學(xué)者從過魚有效性和效率方面對(duì)魚道過魚效果進(jìn)行了監(jiān)測(cè)和評(píng)價(jià),大渡河枕頭壩一級(jí)豎縫式魚道(王猛等,2022;Bao et al,2019)、沙坪二級(jí)豎縫式魚道(薛守寧等,2022)、流溪河水廠壩丹尼爾式魚道(何貞俊等,2019; Hu et al,2020)、峽江水利樞紐魚道(王曉等,2022)、黑水河松新魚道(石小濤等,2023) 、雅魯藏布江藏木豎縫式魚道(姚凡等,2023)、多布豎縫式魚道(夏朝輝等,2022)等相關(guān)研究積累了豐富的原始數(shù)據(jù)資料,但涉及魚道改進(jìn)后的效果評(píng)估還較為缺乏。
安谷水電站為大渡河最末級(jí)電站,建設(shè)有1號(hào)、2號(hào)仿自然和豎縫式魚道,因電站長(zhǎng)期低水位運(yùn)行,且魚道出口(進(jìn)水口) 底板高程較高,導(dǎo)致豎縫式魚道內(nèi)有時(shí)無(wú)水或低水(陸波等,2020);2019年建設(shè)和設(shè)計(jì)單位對(duì)豎縫式魚道出口高程進(jìn)行了改進(jìn),即鑿魚道出口混凝土深度27 cm,調(diào)整長(zhǎng)度約20 m,讓底坡與下游自然銜接(周武等,2024)。魚道改進(jìn)前,金瑤等(2022)以唇?和白甲魚為研究對(duì)象,采用PIT遙測(cè)技術(shù)對(duì)安谷豎縫式魚道過魚效率及魚類行為進(jìn)行了研究,但尚未對(duì)魚道有效性進(jìn)行評(píng)估。本研究對(duì)豎縫式魚道下游河段、魚道進(jìn)口段和出口段魚群特征進(jìn)行了監(jiān)測(cè),分析了通過魚道的目標(biāo)種類及數(shù)量、魚道進(jìn)出口過魚數(shù)量月變化規(guī)律、進(jìn)口斷面魚類的晝夜活動(dòng)節(jié)律和魚道周過魚種類、數(shù)量與周均流量、豎縫流速的關(guān)系,明確了過魚的有效性和效率以及改進(jìn)后對(duì)魚道過魚效果的提升作用,以期為魚道優(yōu)化改進(jìn)與運(yùn)行管理提供參考。
1" "材料與方法
1.1" "時(shí)間和地點(diǎn)
本研究監(jiān)測(cè)時(shí)間為2020年6-9月,地點(diǎn)為四川省大渡河安谷豎縫式魚道及下游河段(圖1)。豎縫式魚道布置于庫(kù)尾放水閘和水庫(kù)左岸副壩之間,魚道由進(jìn)出口、池室、觀測(cè)室等組成。全長(zhǎng)為340.26 m,坡度為1.50%;魚道寬度為2.50 m,單個(gè)池室長(zhǎng)度3.20 m,豎縫寬為0.30 m,共102個(gè)池室。主要過魚種類為胭脂魚(Myxocyprinus asiaticus)、長(zhǎng)薄鰍(Leptobotia elongata)、長(zhǎng)鰭吻鮈(Rhinogobio ventralis)、異鰾鰍鮀(Xenophysogobio boulengeri)、蛇鮈(Saurogobio dabryi);兼顧種類為犁頭鰍(Lepturichthys fimbriata)、四川白甲魚(Onychostoma angustistomata)、唇?(Hemibarbus labeo)、泉水魚(Pseudogyrinocheilus prochilus)、瓦氏黃顙魚(Pseudobagrus vachellii)、切尾擬鲿(Pseudobagrus truncatus)、鲇(Silurus asotus)、大鰭鳠(Hemibagrus macropterus)和黃顙魚(Tachysurus fulvidraco)。魚道過魚季節(jié)為每年3?10月,其中重點(diǎn)過魚時(shí)間為每年4?6月(金瑤等,2022)。
1.2" "評(píng)估指標(biāo)與監(jiān)測(cè)方法
本研究安谷豎縫式魚道過魚效果評(píng)估指標(biāo)為過魚有效性和效率。監(jiān)測(cè)方法包括張網(wǎng)法、排空法、陷阱法、漁業(yè)聲學(xué)法等。
6?9月采用地籠網(wǎng)(長(zhǎng)15 m、高0.3 m、寬0.35 m)和3層刺網(wǎng)(長(zhǎng)50~100 m、高1.5~2.0 m、網(wǎng)目1~4 cm)在魚道進(jìn)口下游河段開展魚類標(biāo)本采集,每月采集2~3 d。6月共使用3個(gè)地籠網(wǎng)、9張刺網(wǎng),放置時(shí)間共23 h;7月共使用4個(gè)地籠網(wǎng)、19張刺網(wǎng),放置時(shí)間共49 h;8月共使用4個(gè)地籠網(wǎng)、14張刺網(wǎng),放置時(shí)間共25 h;9月共使用4個(gè)地籠網(wǎng)、16張刺網(wǎng),放置時(shí)間共42 h。
在魚道進(jìn)魚口安裝Garmin Panoptix LiveScope?魚探儀及換能器(發(fā)射頻率530~1100 kHz,最大探測(cè)深度向下和向前約61 m,波束夾角為20°×135°)(圖2)。經(jīng)過現(xiàn)場(chǎng)驗(yàn)證,確定了探測(cè)目標(biāo)從右側(cè)向左側(cè)運(yùn)動(dòng)為上行(聲納實(shí)時(shí)界面圖中箭頭所示方向);反之,則為下行。水聲學(xué)監(jiān)測(cè)從2020年7月16日開始至9月22日結(jié)束,實(shí)際有效監(jiān)測(cè)時(shí)長(zhǎng)920 h。采用錄屏方式存儲(chǔ)視頻數(shù)據(jù),視頻數(shù)據(jù)不完全連續(xù)。2020年7月采用張網(wǎng)和排空法對(duì)進(jìn)入魚道進(jìn)口的魚類進(jìn)行了抽樣調(diào)查。
在豎縫式魚道出口段(第95號(hào)池室)安裝捕撈籠;7月13日至9月21日每天17:00收集籠中魚類,共計(jì)71 d,被捕撈籠采集到的魚類視為通過了魚道;參考相關(guān)文獻(xiàn)對(duì)魚類進(jìn)行種類鑒定,并測(cè)量常規(guī)生物學(xué)數(shù)據(jù)(丁瑞華,1994;陳宜瑜等,1998)。采用LS1206B型螺旋槳流速儀對(duì)魚道進(jìn)口流速和第46號(hào)池室豎縫流速進(jìn)行測(cè)量;采用測(cè)深桿測(cè)量第46號(hào)池室豎縫水深。每天10:00點(diǎn)和17:00分別測(cè)量1次,連續(xù)測(cè)量71 d。
1.3" "數(shù)據(jù)處理
本研究使用相對(duì)重要性指數(shù)(index of relative importance,IRI)表征魚道下游河段中魚類種類優(yōu)勢(shì)度(Pinkas et al,1971),劃定IRI大于1 000的為優(yōu)勢(shì)種:
IRI = (W + N) × F × 10000" " " " " " " " " " " " " " "①
式中:N為某一種類的尾數(shù)占總尾數(shù)的百分比,W為某一種類的質(zhì)量占總質(zhì)量的百分比,F(xiàn)為某一種類出現(xiàn)次數(shù)占總調(diào)查次數(shù)的百分比(僅含時(shí)間站位)。
本研究采用單位捕撈努力量(catch-per-unit effort,CPUE)表征魚道下游河段魚類資源量:
CPUE = M/(S × H)" " " " " " " " " " " " " " " " " ②
式中:CPUE為單位捕撈努力量[g/(net·h)],M為某月的漁獲物總重量(g),S為所用網(wǎng)具數(shù)量(net),H為捕撈時(shí)間(h)。
過魚效率為通過魚道出口某種魚的數(shù)量與進(jìn)入魚道進(jìn)口該種魚數(shù)量的比值(Bunt et al,1999; Aarestrup et al,2003)。本研究定義過魚效率(Ep)為魚道出口與進(jìn)口時(shí)均過魚數(shù)量的比值:
[EP=Nen/TenNex/Tex]" " " " " " " " " " " " " " " " " "③
式中:Ep為過魚效率(%),Nen和Nex分別為進(jìn)入魚道進(jìn)口和通過魚道出口的魚類數(shù)量(尾),Ten和Tex分別為在進(jìn)出口的監(jiān)測(cè)時(shí)間(h)。
魚道流量(Q)計(jì)算公式如下:
Q = w × h × v" " " " " " " " " " " " " " " " " " " "④
式中:w為豎縫寬度(m),h為豎縫水深(m),v為豎縫流速(m/s)。
對(duì)于水聲學(xué)數(shù)據(jù),通過重現(xiàn)和回放已錄制的視頻,人工識(shí)別魚類信號(hào),統(tǒng)計(jì)每1 h進(jìn)出魚道進(jìn)口斷面的魚類數(shù)量,并計(jì)算凈上行魚類數(shù)量。魚類凈上行數(shù)量為進(jìn)出魚道進(jìn)口魚類信號(hào)數(shù)量的差值。根據(jù)每1 h在魚道進(jìn)口監(jiān)測(cè)到的魚類信號(hào)數(shù),分析其晝夜活動(dòng)節(jié)律。
2" "結(jié)果與分析
2.1" "過魚種類和數(shù)量
本次監(jiān)測(cè)共采集到魚類3目7科34種,共計(jì)1 595尾(表1)。在魚道下游河段共采集到魚類27種、1 263尾,包括過魚種類蛇鮈、唇?、泉水魚、瓦氏黃顙魚、鲇和優(yōu)勢(shì)種光澤黃顙魚、蛇鮈、唇?、凹尾擬鲿、鯽各5種。壩下河段6?9月CPUE為8.41~20.62 g/(net·h),均值為13.39 g/(net·h)。在魚道內(nèi)采集到魚類15種、149尾,包括過魚種蛇鮈、鲇和優(yōu)勢(shì)種凹尾擬鲿;在魚道出口采集到魚類19種、183尾,包括過魚種蛇鮈、泉水魚、瓦氏黃顙魚和優(yōu)勢(shì)種光澤黃顙魚、凹尾擬鲿、鯽;其中,通過魚道的過魚種和優(yōu)勢(shì)種數(shù)量共計(jì)6種114尾,占比62.30%。
結(jié)合進(jìn)入魚道進(jìn)口和通過魚道的種類,有24種魚進(jìn)入魚道進(jìn)口,占采集種類的70.59%;有19種魚通過魚道,占魚道進(jìn)口種類的79.17%。魚道下游河段分布的5種過魚對(duì)象和5種優(yōu)勢(shì)種中有7種進(jìn)入魚道進(jìn)口,分別為蛇鮈、泉水魚、瓦氏黃顙魚、鲇、光澤黃顙魚、凹尾擬鲿和鯽;通過魚道的分別有3種過魚對(duì)象和優(yōu)勢(shì)種,為蛇鮈、泉水魚、瓦氏黃顙魚、光澤黃顙魚、凹尾擬鲿和鯽。
2.2" "魚道進(jìn)出口過魚月變化和過魚效率
監(jiān)測(cè)期間,魚道進(jìn)口斷面凈上行魚類409尾,時(shí)均凈上行0.44尾/h。7?9月凈上行數(shù)量分別為121、95、193尾;時(shí)均凈上行為0.83、0.38、0.37尾/h;月均凈上行數(shù)量呈遞減趨勢(shì)(圖3)。
魚道出口段共過魚19種183尾,時(shí)均過魚數(shù)量為0.11尾/h。7?9月分別過魚12種52尾、8種42尾、11種89尾;時(shí)均過魚分別為0.11、0.06、0.18 尾/h。過魚種類和數(shù)量呈現(xiàn)先減小、后增加的趨勢(shì)(圖4)。
根據(jù)魚道進(jìn)出口時(shí)均過魚數(shù)量,過魚效率為25%。
2.3" "魚類晝夜活動(dòng)節(jié)律
在白晝共觀測(cè)到魚類信號(hào)1 263個(gè),夜晚(19:00?6:00)共觀測(cè)到2 526個(gè)。相較于白晝,發(fā)現(xiàn)魚類更喜歡在夜晚通過魚道進(jìn)口斷面(圖5)。
2.4" "魚道過魚效果與流量和豎縫流速的關(guān)系
魚道周均流量和豎縫流速均呈現(xiàn)先增加后減小的趨勢(shì)(圖6-A),而過魚種類和數(shù)量則呈現(xiàn)先減小、后增加的趨勢(shì)(圖6-B)。第4?7周的周均流量和豎縫流速均較高,分別為(0.15±0.06)~(0.23±0.04) m3/s和(0.68±0.13)~(0.74±0.04) m/s;而此時(shí)段過魚種類和數(shù)量均較少;在第2周和第10周的過魚數(shù)量和種類均相對(duì)較高,相應(yīng)的周均流量分別為(0.11±0.02) m3/s和(0.11±0.04) m3/s;周均豎縫流速分別為(0.50±0.09) m/s和(0.58±0.07) m/s。因此,在7?9月控制流量在(0.11±0.03) m3/s和維持豎縫流速在0.50~0.58 m/s有利于魚類通過魚道。
3" "討論
3.1" "安谷魚道改進(jìn)前后的過魚效果對(duì)比
本研究從過魚有效性和過魚效率兩方面對(duì)安谷豎縫式魚道過魚效果進(jìn)行了評(píng)估。在過魚有效性方面,必須首先確定具體的生物學(xué)目標(biāo)(溫靜雅等,2019)。安谷豎縫式魚道設(shè)計(jì)階段確定過魚對(duì)象14種,而該河段的優(yōu)勢(shì)種類也應(yīng)作為目標(biāo)種,以滿足魚道上下游優(yōu)勢(shì)種群的遺傳交流。本次研究表明,有24種魚進(jìn)入魚道進(jìn)口,占采集到魚類種類的70.59%;有19種魚通過魚道,占魚道進(jìn)口種類的79.17%;有7種目標(biāo)魚進(jìn)入魚道進(jìn)口,有6種目標(biāo)魚通過魚道。在過魚數(shù)量方面,魚道進(jìn)口凈上行魚類409尾,時(shí)均凈上行數(shù)量0.44尾/h;魚道出口共過魚183尾,時(shí)均過魚數(shù)量為0.11尾/h。通過魚道的目標(biāo)魚數(shù)量共計(jì)114尾,占比62.30%。在過魚效率方面,魚道通過效率為25%。
魚道高程改進(jìn)前,因安谷電站長(zhǎng)期低水位運(yùn)行,豎縫式魚道內(nèi)有時(shí)無(wú)水或低水,導(dǎo)致魚道不能持續(xù)正常運(yùn)行(陸波等,2020)。改進(jìn)前的監(jiān)測(cè)結(jié)果顯示,在魚道下游河段共采集到魚類26種440尾,包括目標(biāo)魚8種;在魚道內(nèi)采集到18種魚358尾,包括目標(biāo)魚5種,唇?和白甲魚通過魚道的效率為8.28%(金瑤等,2022)。相較于改進(jìn)前,改進(jìn)后進(jìn)入魚道內(nèi)的魚類增加了6種,其中目標(biāo)魚2種,魚道過魚效率增加了16.72%,改進(jìn)后的魚道集魚效果和過魚效果均有提高。
3.2" "安谷豎縫式魚道過魚種類及數(shù)量偏少
安谷豎縫式魚道過魚種類、相對(duì)過魚數(shù)量、過魚效率分別為19種、0.11尾/h、25%。在過魚種類方面,種類數(shù)低于大渡河枕頭壩一級(jí)豎縫式魚道(Bao et al,2019)、洋塘垂直豎槽式魚道(徐維忠和李生武,1988)、Engenheiro Sergio Motta隔板豎縫式(Sérgio et al,2007)、Burnett River barrage豎縫式魚道(Stuart amp; Berghuis,2002)、水廠壩丹尼爾魚道(Hu et al,2020)、連江西牛垂直豎槽式魚道(李捷等,2013;2019)和峽江水利樞紐魚道(王曉等,2022);高于裕溪閘隔板豎縫式(安徽省巢湖地區(qū)水產(chǎn)資源調(diào)查小組,1975)、崔家營(yíng)航電樞紐淹沒孔口式魚道(王珂等,2013)和沙坪二級(jí)豎縫式魚道(薛守仁等,2023)。在相對(duì)過魚數(shù)量方面,相較于國(guó)內(nèi)外研究明顯偏少。在過魚效率方面,低于豎縫式魚道過魚效率均值45%(Bunt et al,2011),主要過魚對(duì)象為非鮭形目種類的豎縫式魚道(31.1%)(陶江平等,2018)、雅魯藏布江藏木(63.22%)和加查(46.10%)豎縫式魚道、黑水河松新豎縫式魚道(44.44%)(石小濤等,2023)、大渡河枕頭壩一級(jí)豎縫式魚道(71.2%)(Bao et al,2019)和沙坪二級(jí)豎縫式魚道(52.94%)(薛守仁等,2023)的過魚效率也均高于安谷豎縫式魚道的25%,主要原因可能與生態(tài)河道魚的種類和資源量較低[13.39 g/(net·h)]以及監(jiān)測(cè)時(shí)間為非主要過魚季節(jié)和進(jìn)口集誘魚能力較差[進(jìn)口流速0.02~0.38 m/s,均值為(0.12±0.08) m/s]有關(guān);此外,副壩下泄流量(約100 m3/s)顯著高于魚道流量,魚類更易被誘集至副壩壩下。因此,建議下一步在魚道進(jìn)口增設(shè)相關(guān)設(shè)施,提升進(jìn)口集誘魚的能力。
3.3" "魚類晝夜活動(dòng)節(jié)律具有種間差異
魚道進(jìn)口水聲學(xué)結(jié)果顯示,魚類活動(dòng)具備明顯的晝夜節(jié)律,其更偏向于在夜晚上溯進(jìn)入或出魚道進(jìn)口。淡水石首魚(Aplodinotus grunniens)、斑點(diǎn)叉尾鮰(Ictalurus punctatus)、長(zhǎng)吻似鮈(Pseudogobio esocinus)、銀吸口魚(Moxostoma anisurum)、河川吸口魚(Moxostoma carinatum)、長(zhǎng)吻?(Hemibarbus longirostris)和黑斑原鮡(Glyptosternum maculatum)主要是在夜間上溯,而寬鰭鱲(Zacco platypus)、小口黑鱸(Micropterus dolomieu)、褐鱒(Salmo trutta)、真亞口魚(Catostomus catostomus)、大鱗吸口魚(Moxostoma macrolepidotum)和異齒裂腹魚(Schizothorax oconnori)主要在白晝上溯(姚凡等,2023;Thiem et al,2012;Kim et al,2015;Hatry et al,2016;Dodd et al,2017)。魚類的活動(dòng)節(jié)律與其生理習(xí)性密切相關(guān),因而具有明顯的種間差異;此外,本研究區(qū)域緊臨沙灣市區(qū),夜晚相較于白晝更為安靜,更有利于魚類活動(dòng)。
3.4" "魚道運(yùn)行流量及流速優(yōu)化建議
魚道過魚效果除與其設(shè)計(jì)工藝參數(shù)有關(guān)外,還與魚類本身的生活習(xí)性及環(huán)境因子有關(guān)(Bizzotto et al,2010);其中,環(huán)境因子主要包括流速、流量、水溫、透明度、水位等(李捷等,2019;Kim et al,2015;Yoon et al,2015)。本研究中,魚道周均流量和豎縫流速均呈現(xiàn)先增加、后減小的趨勢(shì)(圖6-A),而過魚種類和數(shù)量則呈現(xiàn)先減少、后增加的趨勢(shì)(圖6-B),過魚效果與流量和流速總體呈現(xiàn)負(fù)相關(guān)。周均流量和豎縫流速分別在(0.11±0.02) m3/s和0.50~0.58 m/s時(shí),魚道出口周過魚種類和數(shù)量相對(duì)較多,且月過魚數(shù)量呈現(xiàn)先減少、后增加的趨勢(shì)(圖4)。第4~7周(8月)較高的流量(0.15~0.23 m3/s)和豎縫流速(0.68~0.74 m3/s)不利于目標(biāo)魚類通過(圖6-A)。魚道出口目標(biāo)種主要為蛇鮈、凹尾擬鲿、光澤黃顙魚等,數(shù)量占62.30%,其通常棲息于靜緩流水體中,游泳能力相對(duì)較弱。因此,建議在7-9月控制流量在(0.11±0.03) m3/s和維持豎縫流速在0.50~0.58 m/s,有利于目標(biāo)魚類通過魚道。
參考文獻(xiàn)
安徽省巢湖地區(qū)水產(chǎn)資源調(diào)查小組,1975. 裕溪閘魚道過魚效果及其漁業(yè)效益的探討[J]. 淡水漁業(yè), (7):19-23.
陳凱麒,常仲農(nóng),曹曉紅,等,2012. 我國(guó)魚道的建設(shè)現(xiàn)狀與展望[J]. 水利學(xué)報(bào), 43(2):182-188.
陳宜瑜,褚新洛,羅云林,等,1998.中國(guó)動(dòng)物志:硬骨魚綱:鯉形目(中卷)[M]. 北京:科學(xué)出版社.
丁瑞華,1994. 四川魚類志[M]. 成都:四川科學(xué)技術(shù)出版社.
何貞俊,莫偉均,楊聿,等,2019. 流溪河水廠壩丹尼爾式魚道運(yùn)行效果初探[J]. 水生態(tài)學(xué)雜志, 40(1):35-40.
金瑤,王翔,陶江平,等,2022. 基于PIT遙測(cè)技術(shù)的豎縫式魚道過魚效率及魚類行為分析[J]. 農(nóng)業(yè)工程學(xué)報(bào), 4(38):251-259.
李捷,李新輝,潘峰,等,2013. 連江西牛魚道運(yùn)行效果的初步研究[J]. 水生態(tài)學(xué)雜志, 34(4):53-57.
李捷,李新輝,朱書禮,等,2019. 連江西牛魚道過魚效果及其影響因子研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 35(12):1593-1600.
陸波,喻衛(wèi)奇,陳靜,等,2020. 淺談水電工程魚道運(yùn)行管理[J]. 水力發(fā)電, 46(2):85-89.
石小濤,白天翔,許家煒,等,2023. 金沙江下游支流黑水河松新電站魚道過魚效果監(jiān)測(cè)與評(píng)估[J]. 湖泊科學(xué), 35(3):972-984.
陶江平,溫靜雅,賀達(dá),等,2018. 上行過魚設(shè)施過魚效果監(jiān)測(cè)研究進(jìn)展[J]. 長(zhǎng)江流域資源與環(huán)境, 27(10):2270-2280.
王珂,劉紹平,段辛斌,等,2013. 崔家營(yíng)航電樞紐工程魚道過魚效果[J]. 農(nóng)業(yè)工程學(xué)報(bào), 29(3):184-189.
王猛,金志軍,杜健康,等,2022. 枕頭壩一級(jí)魚道過魚效果監(jiān)測(cè)[J]. 水力發(fā)電, 48(11):22-27,42.
王曉,高雷,王珂,等,2022. 峽江水利樞紐魚道過魚效果的初步研究[J]. 中國(guó)水產(chǎn)科學(xué), 29(1):130-140.
溫靜雅,陳昂,曹娜,等,2019. 國(guó)內(nèi)外過魚設(shè)施運(yùn)行效果評(píng)估與監(jiān)測(cè)技術(shù)研究綜述[J]. 水利水電科技進(jìn)展, 39(5):49-55.
夏朝輝,張彤,牛樂,等,2022. 多布水電站魚道運(yùn)行效果評(píng)價(jià)[J]. 西北水電, (5):66-71.
徐維忠,李生武,1988. 洋塘魚道過魚的晝夜、季節(jié)變化的初步研究[J]. 內(nèi)陸水產(chǎn), (1):9-12,21.
薛守寧,2022. 沙坪二級(jí)水電站魚道工程過魚效果研究[J]. 人民長(zhǎng)江, 53(S2):42-46.
周武,張祺,施家月,等,2024. 大渡河安谷水電站過魚設(shè)施改造效果研究[J]. 人民珠江, 45(1):114-121.
Aarestrup K, Lucas M C, Hansen J A, 2003. Efficiency of a nature-like bypass channel for sea trout (Salmo trutta) ascending a small Danish stream studied by PIT telemetry[J]. Ecology of Freshwater Fish, 12:160-168.
Agostinho A A, Pelicice F M, Gomes L C, 2008. Dams and the ?sh fauna of the Neotropical region: impacts and management related to diversity and ?sheries[J]. Brazilian Journal of Biology, 68:1119-132.
Amoros C, Bornette G, 2002. Connectivity and Biocomplexity in Waterbodies of Riverine Floodplains[J]. Freshwater Biology, 47:761-776.
Bao J H, Li W W, Zhang C S, et al, 2019. Quantitative assessment of ?sh passage efficiency at a vertical-slot fishway on the Daduhe River in Southwest China[J]. Ecological Engineering, 141:105597.
Bizzotto P M, Godinho A L, Vono V, et al, 2010. Influence of seasonal, diel, lunar, and other environmental factors on upstream fish passage in the Igarapava Fish Ladder, Brazil[J]. Ecology of Freshwater Fish, 18(3):461-472.
Bunt C M, 1999. Fishways for warmwater species: utilization patterns, attraction efficiency, passage efficiency and relative physical output[D]. Ontario: University of Waterloo.
Bunt C M, 2001. Fishway entrance modifications enhance fish attraction[J]. Fisheries Management and Ecology, 8(2):95-105.
Bunt C M, Castro-Santos T, Haro A, 2011. Performance of fish passage structures at upstream barriers to migration[J]. River Research and Applications, 28(4):457-478.
Cornu V, Baran P, Calluaud D, et al, 2012. Effects of various configurations of vertical slot fishways on fish behaviour in an experimental flume[M]//Proc. Int. Conf. 9th International symposium on ecohydraulics, Helmut Mader, Julia Kraml, eds. BOKU, Vienna:1-7.
Dodd J R, Cowx I G, Bolland J D, 2017. Efficiency of a nature-like bypass channel for restoring longitudinal connectivity for a river-resident population of brown trout[J]. Journal of Environmental Management, 204:318-326.
Hatry C, Thiem J D, Hatin D, et al, 2016. Fishway approach behaviour and passage of three redhorse species (Moxostoma anisurum, M. carinatum, and M. macrolepidotum) in the Richelieu River, Quebec[J]. Environmental Biology of Fishes, 99:249-263.
Hu X Z, Zhang Y Y, Yang F, et al, 2020. An efficiency analysis of the low-head gate Dam Fishway for freshwater fish ascending Liuxi River in South China[J]. Ecological Engineering, 158:1-8.
Kim J H, Yoon J D, Baek S H, et al, 2015. An Efficiency Analysis of a Nature-Like Fishway for Freshwater Fish Ascending a Large Korean River[J]. Water, 8(1):DOI:10.3390/w8010003
Kroes J, Gough P, Schollema P P, et al, 2006. From sea to source: practical guidance for restoration of fish migration in European Rivers[M]. London: Philip's, Octopus Publishing Group Ltd.
Larinier M, 2008. Fish passage experience at small-scale hydro-electric power plants in France[J]. Hydrobiologia, 609(1):97-108.
Moser M L, Corbett S C, Keefer M L, et al, 2019. Novel fishway entrance modifications for Pacific lamprey[J]. Journal of Ecohydraulics, 4(1):71-84.
Muir W D, Williams J G, 2012. Improving connectivity between freshwater and marine environments for salmon migrating through the lower Snake and Columbia River hydropower system[J]. Ecological Engineering, 48:19-24.
Pelicice F M, Pompeu P S, Agostinho A A, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish[J]. Fish and Fisheries, 16:697-715.
Pinkas L, Oliphant M S, Iverson I L K, 1971. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. Fish Bulletin, 152:1-105.
Pratt T C, Oconnor L M, Hallett A G, et al, 2009. Balancing aquatic habitat fragmentation and control of invasive species: enhancing selective fish passage at sea lamprey control barriers[J]. Transactions of the American Fisheries Society, 138(3):652-665.
Roscoe D W, Hinch S G, 2010. Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions[J]. Fish and Fisheries, 11:12-33.
Santos J M, Branco P, Katopodis C, et al, 2014. Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: Effect of boulder density and fishway discharge[J]. Ecological Engineering, 73:335-344.
Sérgio M, Maristela C M, Ricardo L W, et al, 2007. Utilization of the fish ladder at the Engenheiro Sergio Motta Dam, Brazil, by long distance migrating potamodromous species[J]. Neotropical Ichthyology, 5(2):197-204.
Stuart I G, Berghuis A P, 2002. Upstream passage of fish through a vertical-slot fishway in an Australian subtropical river[J]. Fisheries Management and Ecology, 9:111-122.
Thiem J D, Binder T R, Dumont P, et al, 2012. Multispecies fish passage behaviour in a vertical slot fishway on the richelieu river, quebec, canada[J]. River Research and Applications, 29:582-592.
Tummers J S, Hudson S, Lucas M C, 2016a. Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach[J]. Science of the Total Environment, 569/570:850-860.
Tummers J S, Winter E, Silva S, et al, 2016b. Evaluating the effectiveness of a Larinier super active baffle fish pass for European river lamprey Lampetra fluviatilis before and after modification with wall-mounted studded tiles[J]. Ecological Engineering, 91:183-194.
Yoon J D, Kim J H, Yoon J, et al, 2015. Ef?ciency of a modi?ed Ice Harbor-type ?shway for Korean freshwater ?shes passing a weir in South Korea[J]. Aquatic Ecology, 49:417-429.
(責(zé)任編輯" "萬(wàn)月華)
Monitoring and Assessment of Angu Vertical Slot Fishway Performance
in the Dadu River
CAI Yue‐ping1, JIANG Hao1,2, HUANG Jin3, GE Jing4, LIU Wei5
(1. Power China Leshan Ecological Environmental Protection Technology Co. Ltd., Leshan" "614000, P.R. China;
2. China Renewable Energy Engineering Institute, Beijing" "100120, P.R. China;
3. China Hydropower Construction Group Shengda Hydropower Co. Ltd., Chengdu" "610000, P.R. China;
4. Power China Hydropower Development Group Co. Ltd., Chengdu" "610000, P.R. China;
5. Tibet Brahmaputra Hydropower Development Investment Co. LTD, Shannan" "856000, P.R. China)
Abstract:Monitoring and assessment of fishway performance provides a reference for design optimization, function improvement and operation management. In this study, we evaluated the performance of the Angu vertical slot fishway after modifying the exit elevation, and assessed fishway effectiveness and passage rate by monitoring fish in the lower reach, entrance and exit of the fishway from June to September of 2020. Fish monitoring was carried out by fish trapping, net-catching and acoustical methods. Target fish species, quantity, weekly and monthly variation of fish species, quantity passing the entrance and exit, and the diurnal and nocturnal activity rhythm of fish at the entrance were recorded. Results were as follows: (1) A total of 34 fish species, from 7 families and 3 orders were collected downstream of the fishway, including five target species (barbel steed, Chinese lizard gudgeon, P. prochilus, P. vachellii, Amur catfish) and five dominant species (barbel steed, Chinese lizard gudgeon, goldfish, T. nitidus, P. pratti). The average monthly catch per unit effort (CPUE) was 13.39 g/(net·h). (2) The number of fish species that entered the fishway was 24, 70.59% of the species collected downstream. The average quantity of fish entering the fishway was 0.44 tail/h and there was a decreasing trend from July to September. Additionally, the fish showed a preference for entering the fishway at night rather than the day. (3) The 183 tails passing through the fishway belonged to 19 species and accounted for 79.17% of the fish species entering the fishway, and included 6 target species (114 tails, 62.3%). The average number of fish exiting fishway was 0.11 per hour, initially lower and then increasing from July to September. The passage rate of the fish through the fishway was 25%. (4) During the monitoring period, we found that fish preferred to pass through the fishway when the flow rate was (0.11±0.03) m3/s and the velocity of the vertical slot was in the range of 0.50-0.58 m/s. In conclusion, the Angu vertical slot fishway was effective in attracting and passing fish. Furthermore, fishway performance improved significantly after modifying the exit elevation. Our results will provide a reference for optimization and operation of fishways and support the effort to protect fish resources in Dadu River.
Key words:vertical slot fishway; effectiveness of attracting fish; fish passing effect; Angu Hydropower Station