王芳 崔廣娟 呂順 曾莉莎 陳東儀 黃曉彥 曾國(guó)玲 劉文清 何建齊
摘? ? 要:【目的】由于香蕉高度不育和無(wú)性繁殖,經(jīng)過(guò)長(zhǎng)期的進(jìn)化,導(dǎo)致許多資源來(lái)源不清晰。開(kāi)發(fā)大蕉資源特異性分子靶標(biāo),為香蕉資源鑒定和遺傳改良提供技術(shù)支撐。【方法】利用香蕉線粒體cox2/2-3基因序列,根據(jù)大蕉在該序列的特異性位點(diǎn)進(jìn)行分子靶標(biāo)設(shè)計(jì),采用37份大蕉,以及香牙蕉、粉蕉、貢蕉、尖苞片蕉(Musa acuminata)、長(zhǎng)梗蕉(M. balbisiana)、芭蕉(M. basjoo)以及阿寬蕉(M. itinerans)等共計(jì)59份其他類(lèi)型香蕉資源進(jìn)行鑒定篩選,獲得特異性鑒定大蕉的分子靶標(biāo)DcR/DcF,并進(jìn)行評(píng)價(jià)。【結(jié)果】通過(guò)對(duì)共計(jì)96份香蕉資源的檢測(cè),發(fā)現(xiàn)37份大蕉均出現(xiàn)634 bp特異性條帶,香牙蕉、粉蕉、貢蕉未出現(xiàn)該條帶。在應(yīng)用該標(biāo)記對(duì)野生蕉檢測(cè)中發(fā)現(xiàn)僅有阿寬蕉出現(xiàn)該特異性條帶,長(zhǎng)梗蕉、尖葉蕉、芭蕉均未出現(xiàn)該特異條帶,同時(shí)大蕉和阿寬蕉的雜交后代出現(xiàn)了該特異條帶。【結(jié)論】成功開(kāi)發(fā)了一個(gè)大蕉特異性分子靶標(biāo)DcR/DcF,可以在栽培蕉中特異性地鑒定大蕉,并具有快速、簡(jiǎn)便、準(zhǔn)確的特點(diǎn),該技術(shù)對(duì)香蕉種質(zhì)資源鑒定、新品種選育等具有重要的應(yīng)用價(jià)值。
關(guān)鍵詞:大蕉;分子靶標(biāo);特異性鑒定,線粒體基因,評(píng)價(jià)
中圖分類(lèi)號(hào):S668.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)12-2661-11
收稿日期:2023-09-05 接受日期:2023-10-23
基金項(xiàng)目:東莞市2021年度省鄉(xiāng)村振興戰(zhàn)略專項(xiàng)資金“大專項(xiàng)+任務(wù)清單”(20211800400052);廣東省級(jí)農(nóng)業(yè)科技創(chuàng)新及推廣項(xiàng)目-香蕉菠蘿產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)(2023KJ109);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金項(xiàng)目(2022A1515140114)
作者簡(jiǎn)介:王芳,女,正高級(jí)農(nóng)藝師,碩士,研究方向?yàn)橄憬斗肿由锛夹g(shù)。E-mail:29333689@qq.com。#為共同第一作者。崔廣娟,女,碩士,研究方向?yàn)榉肿佑N。
*通信作者 Author for correspondence. E-mail:shunlv@qq.com
Development and evaluation of specific molecular target of Dajao
WANG Fang, CUI Guangjuan#, L? Shun*, ZENG Lisha, CHEN Dongyi, HUANG Xiaoyan, ZENG Guoling, LIU Wenqing, HE Jianqi
(Dongguan Agricultural Research Centre, Dongguan 523000, Guandong, China)
Abstract: 【Objective】Banana is an important fruit and food crop in the world, but it is facing the technical bottleneck of resource identification and genetic improvement. Banana plants are asexual and highly sterile. Because of long-term cultivation and exchanging between different regions, the origin of banana varieties is not clear. China has abundant cultivated and wild banana resources. Dajiao (Musa) is one of widely distributed banana resources in China which is different from plantain abroad, and there are many different types of Dajiao in different growing areas. Dajiao has many advantages, such as high yield, cold resistance, and strong disease resistance, so Dajiao is an important genetic resource. The aim of this study was to develop a specific molecular target of Dajiao for the rapid identification and genetic improvement of Chinese banana resources. 【Methods】 The 96 samples of different banana resources used in this experiment included 6 cultivars of Cavendish, 9 cultivars of Pisang Awak, 1 cultivar of Longya banana, 4 cultivars of Pisang Mas, 37 cultivars of Dajiao, 3 wild resources of Musa acuminata, 6 wild resources of Musa balbisiana, 5 wild resources of Musa basjoo, 21 wild resources of Musa itinerans and 3 hybrids, which were collected from different producing areas of China. The genomic DNA from each sample was isolated from fresh young cigar leaves using CTAB method. The concentration and purity of each DNA were checked with BioDrop μLite. First, we selected eight varieties of four groups, including Huanong Zhongba Dajiao, Dongguan Zhongba Dajiao, 8818-1, Beida Aijiao, Zhongfen No. 1, Fenza No. 1, Gongjiao and Gongxuan as representatives, through cloning and sequencing of the mitochondrial gene cox2/2 -3, and aligning the sequences by Mega 5.0. We found the specific base sequence in Dajiao from the results. Then Primer Premier 5.0 was used to design the specific primer, the optimal PCR amplification system and agarose gel electrophoresis detection method were optimized. At last, we obtained the specific detection target through a certain range of screening and expanded range of validation. 【Results】 The concentration of DNA extraction reached 500-1000 ng·μL-1, OD260/OD280 = 1.8-2.0, and the quality was good, which met the requirements of the experiment. The DNA was finally diluted into 50 ng·μL-1 and used for the experiments. PCR amplification of the cox2/2-3 region produced a single fragment of about 750-1200 bp in all the samples, and the gene fragment of Dajiao was longest, about 1200 bp. Through comparing the gene sequence of eight banana resources, we found 9 different insertional mutations (175 bp in total) in Dajiao, located at 229-985 bp of this gene. The abundant variation facilitated the design of specific primers. According to the specificity of cox2/2-3 gene sequence in Dajiao, a pair of primers was designed, the forward primer was DCR: TATTGACCGGTATGTCGGTA, and the rewerse primer was DCF: AGGTATTAATTGGCGGCCTAA. The optimal PCR procedure was: 94 ℃ predenaturation for 3 min, 94 ℃ denaturation for 30 s, 60 ℃ annealing for 30 s, 72 ℃ extension for 1 min, 30 cycles, 72 ℃ extension for 10 min, 94 ℃ denaturation for 30 s, 60 ℃ annealing for 30 s, 72 ℃ extension for 10 min. The optimal PCR system was: 10×PCR reaction buffer 2.5 μL, 2.5 nmol·L-1 dNTPs 2 μL, 10 μmol·L-1 primer 1 μL, 50 ng·μL-1 template DNA 1 μL, 5 U·μL-1 TaqDNA polymerase 0.5 μL, the volume was replenished to 25 μL with sterilized double-distilled water. The optimal detection method was: 1.2% agarose gel, 0.5×TBE electrode buffer, 110 V electrophoresis for 30 min. Through the examination, a 634 bp specific band was found in all 37 banana resources of Dajiao, but not in banana resources of Cavendish, Pisang Awak, Pisang Mas and Longyajiao. The target band was clear, no miscellaneous band and the detection accuracy was 100% in cultivated species. Only M. itinerans showed this specific band in the detection of wild banana using this marker, no specific band was found in M. acuminata, M. balbisiana and M. basjoo. At the same time, the specific band appeared in 3 hybrid progenies, so this fragment would be also suitable for the identification of hybrid progenies from Dajiao × M. itinerans. Banana had a unique inheritance mode of mitochondrial paternal inheritance as reported early, and this specific molecular target was derived from mitochondrial genes. On the whole, the 634 bp special band appeared in 37 cultivars of Dajiao and 22 wild resources of M. itinerans, so there should be a certain relationship between the paternal origin of Dajiao and M. itinerans. 【Conclusion】 Compared with traditional evaluation method using morphological markers, this specific molecular target of Dajiao would be more stable, sensitive and accurate and could be efficiently used in selection of parents and early identification of hybrid offspring in cross breeding , the results of this study about Dajiao and M. itinerans would provide information for studying the origin and evolution of bananas.
Key words: Dajiao; Molecular target; Specificity identification; Mitochondrial gene; Evaluation
香蕉(Musa spp.)是芭蕉科(Musaceae)芭蕉屬(Musa L.)植物,不僅是世界上重要的水果之一,更是世界第四大糧食作物,全球4億人的主食[1-2]。香蕉栽培種主要是由尖苞片蕉Musa acuminata Colla.(記為A基因組)和長(zhǎng)梗蕉M. balbisiana Colla.(記為B基因組)這兩個(gè)原始野蕉種內(nèi)或種間雜交后代演化發(fā)展而來(lái)的[3]。香蕉屬于無(wú)性繁殖,高度不育,經(jīng)過(guò)長(zhǎng)期的栽培,再加上不同地域之間的交流,導(dǎo)致了許多來(lái)源不明的品種和資源,并且出現(xiàn)了很多同名異種和同種異名的現(xiàn)象[4-6],這種情況給香蕉種質(zhì)資源的鑒定和遺傳育種的研究帶來(lái)了很多困難。1955年,Simmonds等[7]根據(jù)不同香蕉品種的形態(tài),包括葉片、蕉蕾和假莖等相關(guān)性狀,結(jié)合染色體倍性,將栽培蕉分為了AA、BB、AB、AAA、AAB、ABB、AAAA、AAAB、AABB、ABBB。在之后廣大學(xué)者的研究中,不斷地補(bǔ)充和完善該種分類(lèi)方法。然而,僅通過(guò)這些形態(tài)性狀判定并不精確,并且該方法難以準(zhǔn)確反映不同基因型香蕉的基因組來(lái)源和組成[8]。之后的研究結(jié)果證實(shí)了這一點(diǎn),利用形態(tài)特征和分子標(biāo)記技術(shù)手段,發(fā)現(xiàn)了香蕉中還具有不同于A和B基因組的其他基因組,如有的香蕉品種帶有S(M. Schizocarpa)或者T(M. Textilis)基因組的特征[9-10]。
據(jù)報(bào)道,我國(guó)香蕉的種質(zhì)資源間的遺傳多樣性比較豐富,種類(lèi)繁多[11],栽培蕉主要有香牙蕉(AAA)、粉蕉(ABB)、粉大蕉(ABB)、大蕉(基因型不確定)、龍牙蕉(AAB)、貢蕉(AA)等[12]。而形態(tài)分類(lèi)法在調(diào)查研究時(shí)工作量大,并且耗費(fèi)時(shí)間久,容易受環(huán)境影響,存在一定的主觀性,因此需要進(jìn)一步發(fā)展其他更可靠的研究方法。隨著科學(xué)技術(shù)的進(jìn)步、分子生物學(xué)的快速發(fā)展,各類(lèi)分子標(biāo)記已經(jīng)被應(yīng)用于分析香蕉品種(系)的種群鑒定與分類(lèi)、遺傳多樣性研究[13-16],利用分子手段研究香蕉的基因組可以更直觀地呈現(xiàn),并且分子生物技術(shù)手段的出現(xiàn)加速了植物品種改良進(jìn)程[17]。筆者研究團(tuán)隊(duì)前期收集了大量我國(guó)各香蕉產(chǎn)區(qū)的大蕉資源,在對(duì)香蕉線粒體基因片段cox2/2-3序列的研究中(論文尚未發(fā)表),發(fā)現(xiàn)大蕉的該序列具有特異性,根據(jù)這段序列設(shè)計(jì)了可以特異性鑒定大蕉的靶標(biāo)引物,并對(duì)其檢測(cè)效果進(jìn)行了分析評(píng)價(jià),以期為香蕉種質(zhì)資源的鑒定和新品種的選育提供更加快速精準(zhǔn)的技術(shù)手段。
1 材料和方法
1.1 試驗(yàn)材料
于2019年3—6月采樣于東莞市農(nóng)業(yè)科學(xué)研究中心萬(wàn)江基地香蕉資源圃以及廣東省農(nóng)科院果樹(shù)所國(guó)家果樹(shù)種質(zhì)廣州香蕉荔枝圃。其中雜1、雜2、雜4為大蕉和阿寬蕉類(lèi)野蕉的雜交后代。
1.2 方法
1.2.1 香蕉基因組的DNA提取 選取香蕉無(wú)病蟲(chóng)害的嫩葉,分別進(jìn)行DNA提取。DNA提取方法采用十六烷基三甲基溴化銨(cetyltrimethylammonium bromide,CTAB)法[18]。
1.2.2 特異性序列測(cè)序 目的片段擴(kuò)增:采用線粒體基因組中細(xì)胞色素氧化酶亞基Ⅱ基因中的1個(gè)內(nèi)含子(cox2/2-3),PCR反應(yīng)體系及電泳檢測(cè)參考Duminil等[19]的方法。
目的片段測(cè)序:cox2/2-3片段經(jīng)DNA膠回收試劑盒回收純化后,克隆到pMD18-T載體中,陽(yáng)性克隆送至Invitrogen公司廣州分公司測(cè)序。為確保測(cè)序結(jié)果的準(zhǔn)確性,分別用引物對(duì)每個(gè)擴(kuò)增片段進(jìn)行正反鏈測(cè)序,將兩條鏈比對(duì)拼接。
1.2.3 特異性靶標(biāo)引物設(shè)計(jì)及PCR擴(kuò)增 采用MEGA 5進(jìn)行序列比對(duì);引物設(shè)計(jì)采用Primer premier 5.0,并對(duì)PCR退火溫度及體系中DNA模板和酶量進(jìn)行優(yōu)化;檢測(cè)采用瓊脂糖凝膠電泳。
1.2.4 香蕉資源的鑒定評(píng)價(jià) 采用1.2.3引物及擴(kuò)增檢測(cè)方法,進(jìn)行96個(gè)香蕉資源(表1,表2)的鑒定評(píng)價(jià)。
2 結(jié)果與分析
2.1 香蕉基因組DNA的提取
采用改良CTAB法提取香蕉葉片DNA,用BioDrop μLite(超微量蛋白核酸分析儀)檢測(cè)其質(zhì)量濃度和純度,DNA質(zhì)量濃度為500~1000 ng·μL-1,OD260/OD280=1.8~2.0,質(zhì)量較好,符合試驗(yàn)要求;
根據(jù)測(cè)得的濃度,吸取適量體積的DNA樣品,稀釋成質(zhì)量濃度50 ng·μL-1的工作液備用。
2.2 香蕉cox2/2-3基因測(cè)序
采用cox2/2-3基因?qū)Σ煌憬顿Y源進(jìn)行分析,不同香蕉資源該片段大小在750~1200 bp;大蕉與其他香蕉資源相比,基因片段最長(zhǎng),約1200 bp,大蕉的序列基本一致,序列為:TATGAGAGCCTTTCA
GCTCGTACTGCTCACACTCCTAGATCTGAACTAAGAGACCTCTGCGACCATAGTTTGAGCTGGGAGTTGCTCCTAGAATCCTTCCAAATGAGCTTGAAAGTCAACGTCAACAACACGAAAAGTACACGTTGGTTGCCTACTAATCAGATAATAGGTGAAATCCCTTCGCCTCTCGGAAGCTTGAAAGGGAGCTGAAAGTTTAGGGTGAGAAAGGTGAGAAAAGAGATTAGCTGGAGGTAGGGCGGGTCCTGAAACTAAGGTGTACATACATCAAAGCAGATTATGTCGGTATCCTTCCAATCCATATTGACCGGTATGTCGGTATCCTTCCAATCCATATTGACCGGGAAGAGTGGGGAGGCTAATGCAGAAGTATCTATGTATTAGAGAGATCCCTTATATTGATGATTGCTGGCTTCCCGGACTTGTCACAGATGGCTAGGAAGAAGAATAGGAGAAGTAGTCTCTGCCGTAGCAGGTCCTTCTCCTGTAGCTAAGACTGCCCTTACTTTGATTATTGTTCGTTCAGTTCACCGCGGCACTAATGAATAAGCTTGAGAATAACTTAGAGTGGCGCCTAACCTTTGAGAGCGTCTCTTGTCTTTGAATTTCAGAAGAAGAGTTGTAGATCTTGGACTGGCCCCCTTCGCATGACCTAGAATGAAAGGTCTGTGCTACTATAAGGCCTCTAAACTCCTTCCTCAGGACACTGTTGCGTTGCCATGGGACGGGGTATCCCCGACTTCTATAGTTCCTTGGTTCGACCTCCTAATGAGAATTGAGGTCCTTGCGCGGGCGTCTCATCCCTAAGACGAGTTTGCCTTTGTTTGTATGGAGTGTCCCGTGGTTACTCTAGTGCCAGCCGCAGAGAGGAATGCCATCAACTAGGGCGCTATTTGCCACTAACCACTCGCTCTTAGGCCGCCAATTAATACCTCCTCCGCGTTTCAAGTTGGTTATCCTAACCATTTCCCCTGCTCTACCGGGAGCCTGGCCCAATATTCGATCTTATATACTGCCTTGCTCCTCGGCTCCCTACTGCTCAAGCGGCTCGCTGTAATAGCTTGCTTATCGGGTGGCTCGCACCCCGACCACGGGTGGTGCGGC
TAAGCCAGAGTGGGCTCAGCTGTCGGCCTATG
TATCCGG。
2.3 特異性靶標(biāo)引物設(shè)計(jì)及檢測(cè)方法
通過(guò)對(duì)東莞中把大蕉、華農(nóng)中把大蕉、8818-1、北大矮、中粉1號(hào)、粉雜1號(hào)、貢蕉、貢選等8個(gè)香蕉資源cox2/2-3核苷酸序列的比對(duì),發(fā)現(xiàn)在該基因229~985 bp處,大蕉存在9處的插入突變(圖1),共計(jì)175 bp,可以進(jìn)行特異性靶標(biāo)引物設(shè)計(jì)。根據(jù)大蕉cox2/2-3核苷酸序列的特異性,設(shè)計(jì)了1對(duì)引物,上游引物為DcR:TATTGACCGGTATGTCGGTA;下游引物為DcF:AGGTATTAATTGGCGGCCTAA。上游引物位于336~355 bp處;下游引物位于948~969 bp處(見(jiàn)圖1黑色方框)。
經(jīng)過(guò)優(yōu)化獲得最優(yōu)的PCR程序:94 ℃預(yù)變性3 min;94 ℃變性30 s,60 ℃退火30 s,72 ℃延伸1 min,循環(huán)30次;72 ℃延伸10 min;其最優(yōu)的PCR體系:10×PCR反應(yīng)緩沖液2.5 μL、2.5 nmol·L-1 dNTPs 2 μL、10 μmol·L-1引物各1 μL、50 ng·μL-1模板DNA 1 μL、5 U·μL-1 TaqDNA聚合酶[TIANGEN,天根生化科技(北京)有限公司]0.5 μL,滅菌雙蒸水補(bǔ)足體積至25 μL;最優(yōu)檢測(cè)方法為:1.2%瓊脂糖凝膠、電極緩沖液為0.5×TBE、110 V電壓電泳30 min。
2.4 特異性靶標(biāo)的PCR擴(kuò)增
對(duì)46份不同基因型的香蕉資源進(jìn)行分析,分別選用部分大蕉和香牙蕉、粉蕉、貢蕉等栽培蕉和BB、AAw、basjoo類(lèi)野蕉類(lèi)進(jìn)行對(duì)比檢測(cè),結(jié)果顯示只有大蕉在634 bp處出現(xiàn)特異的條帶,而其余蕉類(lèi)均沒(méi)有條帶出現(xiàn)(圖2、圖3)。
2.5 擴(kuò)大群體進(jìn)行特異性靶標(biāo)引物準(zhǔn)確性的檢測(cè)
對(duì)37份大蕉資源以及3個(gè)雜交種進(jìn)行特異性擴(kuò)增,所有供試大蕉品種均出現(xiàn)634 bp特異性條帶(圖4、圖5)。雜1、雜2、雜4為大蕉和阿寬蕉的雜交后代,這3份資源也出現(xiàn)了634 bp特異性條帶(圖4),檢測(cè)準(zhǔn)確率100%。
2.6 利用特異性靶標(biāo)引物對(duì)阿寬蕉類(lèi)野蕉的檢測(cè)
對(duì)從我國(guó)各地收集的22份阿寬蕉類(lèi)野蕉資源進(jìn)行特異性擴(kuò)增,所有供試品種均出現(xiàn)634 bp特異性條帶(圖6)。
3 討 論
近年來(lái),應(yīng)用單個(gè)或多個(gè)分子標(biāo)記技術(shù)來(lái)鑒定香蕉種質(zhì)資源的研究逐漸增多[20-23],但是多數(shù)是針對(duì)不同香蕉基因組的鑒定,而對(duì)某一類(lèi)香蕉的快速鑒定分子標(biāo)記研究比較少。本研究利用cox2/2-3基因序列,根據(jù)大蕉在序列上的特異性位點(diǎn)進(jìn)行大蕉特異性分子靶標(biāo)設(shè)計(jì),獲得了可以在香蕉栽培種中特異性鑒定大蕉的一對(duì)引物,具有快速、簡(jiǎn)便、準(zhǔn)確的特點(diǎn),該類(lèi)分子標(biāo)記對(duì)香蕉種質(zhì)資源鑒定、新品種選育等具有重要的應(yīng)用價(jià)值。
研究表明,根據(jù)香蕉的植株形態(tài)和經(jīng)濟(jì)性狀,栽培蕉主要分為香牙蕉、龍牙蕉、粉蕉、大蕉、粉大蕉、和貢蕉等[12]。國(guó)內(nèi)易把我國(guó)大蕉和國(guó)外煮食蕉中作糧食用的飯蕉(Plantain,AAB)混淆[24-25],我國(guó)的大蕉一般鮮食用,不同于國(guó)外的飯蕉。受到消費(fèi)市場(chǎng)的限制,大蕉的種植相對(duì)較少,傳播范圍也較小,對(duì)其研究不多,但是我國(guó)的大蕉具有抗病、高產(chǎn)、耐貧瘠、抗寒等多個(gè)優(yōu)點(diǎn)[26-29]。大蕉大多為三倍體,具有單性結(jié)果和高度不育性。目前研究表明少量三倍體的栽培品種具有較微弱的雌性可育性[30-32],其中大蕉與野生蕉雜交可少量結(jié)籽[33]。筆者研究組也開(kāi)展了相關(guān)雜交試驗(yàn),大蕉和尖苞片蕉、長(zhǎng)梗蕉及阿寬蕉等野生蕉雜交均能結(jié)籽,結(jié)籽率較低??梢?jiàn)我國(guó)大蕉是一類(lèi)具有特殊性及重要研究利用價(jià)值的香蕉種質(zhì)資源。通常,國(guó)內(nèi)外學(xué)者普遍認(rèn)為大蕉是ABB基因型,與粉蕉的基因型一致;但是王正詢等[34]通過(guò)對(duì)廣東大蕉的形態(tài)、染色體配對(duì)及核型分析,認(rèn)為是BBB型;也有研究人員通過(guò)形態(tài)學(xué)指標(biāo)觀察、測(cè)量,按照“Simmonds”標(biāo)準(zhǔn)分類(lèi)法評(píng)分,結(jié)合染色體計(jì)數(shù),判定三江大蕉基因型為AAB[35];筆者研究組按照“Simmonds”標(biāo)準(zhǔn)分類(lèi)法對(duì)香蕉品種資源表型基因型進(jìn)行調(diào)查和評(píng)價(jià),大部分大蕉的得分介于AAB與ABB之間,偏向AAB,利用流式細(xì)胞技術(shù)對(duì)香蕉倍性分析結(jié)果顯示大蕉DNA相對(duì)含量(或倍性值)與其他ABB基因型資源有一定差異,基因組更大一些[36]。筆者在本研究中通過(guò)分析發(fā)現(xiàn)該來(lái)源于線粒體的大蕉分子靶標(biāo)在栽培種香蕉資源中只有大蕉出現(xiàn)特異性條帶,在野生種香蕉資源中僅有阿寬蕉類(lèi)野蕉出現(xiàn)了該特異性條帶,同時(shí)以大蕉為母本、阿寬蕉為父本獲得的雜交種也出現(xiàn)了該特異性條帶,而香蕉具有線粒體父本遺傳的獨(dú)特遺傳方式[37],因此推測(cè)阿寬蕉類(lèi)野蕉與大蕉的父本來(lái)源存在一定的關(guān)系。
4 結(jié) 論
栽培蕉遺傳背景狹窄,病蟲(chóng)害高發(fā),亟須引入新的遺傳基因,雜交育種是根本、有效的途徑。目前國(guó)內(nèi)育種者開(kāi)始嘗試香蕉雜交育種,從大量的雜交后代中篩選優(yōu)良種質(zhì),工作量大、周期長(zhǎng),精確高效的早期篩選技術(shù)對(duì)雜交種的鑒定和篩選十分重要,目前這方面的研究還比較少,筆者在本研究中成功開(kāi)發(fā)了一個(gè)大蕉特異性分子靶標(biāo)(DcR/DcF),可以在栽培蕉中特異性地鑒定大蕉,并具有快速、簡(jiǎn)便、準(zhǔn)確的特點(diǎn),該特異性分子靶標(biāo)為具有多種優(yōu)異性狀的大蕉類(lèi)資源的應(yīng)用提供了技術(shù)支撐,該類(lèi)技術(shù)的開(kāi)發(fā)在香蕉改良工程中具有重要的意義。
參考文獻(xiàn) References:
[1] MAYMON M,SELA N,SHPATZ U,GALPAZ N,F(xiàn)REEMAN S. The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East[J]. Scientific Reports,2020,10(1):1590.
[2] 黃媛媛,徐小俊. 全球香蕉產(chǎn)業(yè)現(xiàn)狀與發(fā)展趨勢(shì)[J]. 熱帶農(nóng)業(yè)工程,2021,45(5):34-38.
HUANG Yuanyuan,XU Xiaojun. Current situation and development trend of banana industry in global[J]. Tropical Agricultural Engineering,2021,45(5):34-38.
[3] SIMMONDS N W. The evolution of the bananas[M]. London:Longmans,1962:1-16.
[4] 牟海飛,林貴美,鄒瑜,李小泉,李朝生,韋華芳,吳代東,張進(jìn)忠,王趣有,潘永杰,陳忠良. 利用 ISSR 分子標(biāo)記分析香蕉品種的遺傳多樣性[J]. 西南農(nóng)業(yè)學(xué)報(bào),2010,23(4):1206-1210.
MOU Haifei,LIN Guimei,ZOU Yu,LI Xiaoquan,LI Chaosheng,WEI Huafang,WU Daidong,ZHANG Jinzhong,WANG Quyou,PAN Yongjie,CHEN Zhongliang. Genetic diversity analysis of banana (Musa spp.) based on ISSR molecular marker[J]. Southwest China Journal of Agricultural Sciences,2010,23(4):1206-1210.
[5] 郭計(jì)華. 不同基因組類(lèi)型香蕉抗旱的遺傳物質(zhì)分析[D]. ??冢汉D洗髮W(xué),2012.
GUO Jihua. Genetic material analysis of drought resistance different genotypes banana[D]. Haikou:Hainan University,2012.
[6] 姚錦愛(ài),蔡鴻嬌,石妞妞,甘林,楊秀娟,陳福如. 香蕉種質(zhì)資源親緣關(guān)系的ISSR分析[J]. 福建農(nóng)業(yè)學(xué)報(bào),2012,27(1):37-42.
Yao Jinai,CAI Hongjiao,SHI Niuniu,GAN Lin,YANG Xiujuan,CHEN Furu. Genetic Relationship among Banana (Musa spp.) germplasms revealed by iSSR analysis[J]. Fujian Journal of Agricultural Sciences,2012,27(1):37-42.
[7] SIMMONDS N W,SHEPHERD K. The taxonomy and origins of the cultivated bananas[J]. Botanical Journal of the Linnean Society,1955,55(359):302-312.
[8] PILLAY M,OGUNDIWIN E,NWAKANMA D C,UDE G,TENKOUANO A. Analysis of genetic diversity and relationships in East African banana germplasm[J]. Theoretical and Applied Genetics,2001,102(6):965-970.
[9] SHEPHERD K,F(xiàn)ERREIRA F R. The Papua New Guinea biological foundations banana collection at Laloki,Port Moresby,Papua New Guinea[J]. IBPGR/SEAN Newsletter,1982,8(4):28-34.
[10] DHONT A,PAGET-GOY A,ESCOUTE J,CARREEL F. The interspecific genome structure of cultivated banana,Musa spp. revealed by genomic DNA in situ hybridization[J]. Theoretical and Applied Genetics,2000,100(2):177-183.
[11] 李錫文. 云南芭蕉科植物[J]. 植物分類(lèi)學(xué)報(bào),1978,16(3):54-64.
Li Xiwen. Musaceae from Yunnan[J]. Acta Phytotaxonomica Sinica,1978,16(3):54-64.
[12] 寧淑萍,許林兵,魏平,葛學(xué)軍. 中國(guó)主栽香蕉品種和INIBAP引進(jìn)品種的SSR分析研究[J]. 熱帶亞熱帶植物學(xué)報(bào),2007,15(1):16-22.
NING Shuping,XU Linbing,WEI Ping,GE Xuejun. Genetic diversity of Chinese main banana cultivars (Musa spp.) and introduced accessions from INIBAP using simple sequence repeats(SSRs)[J]. Journal of Tropical and Subtropical Botany,2007,15(1):16-22.
[13] 孫嘉曼,尹玲,張進(jìn)忠,韋紹龍,李朝生,劉金成,盧江. 廣西香蕉種質(zhì)資源的SSR分析[J]. 西南農(nóng)業(yè)學(xué)報(bào),2016,29(8):1952-1957.
SUN Jiaman,YIN Ling,ZHANG Jinzhong,WEI Shaolong,LI Chaosheng,LIU Jincheng,LU Jiang. SSR analysis of banana cultivars/accessions in Guangxi[J]. Southwest China Journal of Agricultural Sciences,2016,29(8):1952-1957.
[14] 譚衛(wèi)萍,張秋明,于曉英,曾繼吾,黃秉智,易干軍. 香蕉種質(zhì)遺傳多樣性與親緣關(guān)系的AFLP分析[J]. 植物遺傳資源學(xué)報(bào),2010,11(6):715-720.
TAN Weiping,ZHANG Qiuming,YU Xiaoying,ZENG Jiwu,HUANG Bingzhi,YI Ganjun. Studies on the genetic diversity and relationship of banana by AFLP[J]. Journal of Plant Genetic Resources,2010,11(6):715-720.
[15] 藺維成,郭計(jì)華. ISSR技術(shù)應(yīng)用于香蕉種質(zhì)資源的研究進(jìn)展[J]. 興義民族師范學(xué)院學(xué)報(bào),2021(3):116-119.
LIN Weicheng,GUO Jihua. Research progress of ISSR technology applied to banana germplasm resources[J]. Journal of Xingyi Normal University for Nationalities,2021(3):116-119.
[16] 漆艷香,張欣,彭軍,張賀,謝藝賢. 香蕉種質(zhì)資源的SRAP遺傳多樣性分析[J]. 分子植物育種,2017,15(10):4220-4227.
QI Yanxiang,ZHANG Xin,PENG Jun,ZHANG He,XIE Yixian. Genetic diversity analysis of banana germplasms based on SRAP molecular markers[J]. Molecular Plant Breeding,2017,15(10):4220-4227.
[17] 李歡,張文洋,田志強(qiáng),張震,葉文超,周子鍵,陳甲法,吳建宇. 高通量分子標(biāo)記檢測(cè)方法的研究進(jìn)展[J],玉米科學(xué),2022,30(3):1-9.
LI Huan,ZHANG Wenyang,TIAN Zhiqiang,ZHANG Zhen,YE Wenchao,ZHOU Zijian,CHEN Jiafa,WU Jianyu. Research progress of high-throughput molecular marker detection methods[J]. Journal of Maize Sciences,2022,30(3):1-9.
[18] 李英豪. 福建香蕉種質(zhì)資源遺傳多樣性的RAPD分析[D]. 福州:福建農(nóng)林大學(xué),2007.
LI Yinghao. RAPD analysis of genetic diversity in Fujian banana germplasm resources[D]. Fuzhou:Fujian Agriculture and Forestry University,2007.
[19] DUMINIL J,PEMONGE M H,PETIT R J. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA[J]. Molecular Ecology Notes,2002,2(4):428-430.
[20] 吳斌,陳漢清,王必尊,曾會(huì)才,謝藝賢,黃秉智. 19個(gè)華蕉類(lèi)栽培品種的SCAR標(biāo)記鑒別[J]. 分子植物育種,2015,13(5):1053-1059.
WU Bin,CHEN Hanqing,WANG Bizun,ZENG Huicai,XIE Yixian,HUANG Bingzhi. Identifying 19 cultivars of Musa acuminata subgroup cavendish (AAA) by using SCAR molecular markers[J]. Molecular Plant Breeding,2015,13(5):1053-1059.
[21] 王芳,牛玉清,黃秉智,崔廣娟,張珂恒,曾莉莎,劉文清,呂順,郭權(quán)香,何建齊. 香蕉與B基因組相關(guān)的SCAR標(biāo)記研究[J]. 園藝學(xué)報(bào),2019,46(3):577-589.
WANG Fang,NIU Yuqing,HUANG Bingzhi,CUI Guangjuan,ZHANG Keheng,ZENG Lisha,LIU Wenqing,L? Shun,GUO Quanxiang,HE Jianqi. Studies on SCAR marker related with B genome in Musa[J]. Acta Horticulturae Sinica,2019,46(3):577-589.
[22] BORBORAH K,SAIKIA D,REHMAN M,ISLAM M A,MAHANTA S,CHUTIA J,BORTHAKUR S K,TANTI B. Comparative analysis of genetic diversity in some non-commercial cultivars of Musa L. from Assam,India,using morphometric and ISSR markers[J]. International Journal of Fruit Science,2020,20(Suppl. 2):1814-1828.
[23] 況夢(mèng)宇,詹妮,范迎康,易干軍,羅充,盛鷗. 香蕉栽培品種基因組類(lèi)型的分子標(biāo)記鑒定體系建立[J]. 分子植物育種,2022,20(9):3011-3018.
KUANG Mengyu,ZHAN Ni,F(xiàn)AN Yingkang,YI Ganjun,LUO Chong,SHENG Ou. Establishment of an integrated molecular marker system for identifying genomic composition of banana accessions[J]. Molecular Plant Breeding,2022,20(9):3011-3018.
[24] 許林兵,黃秉智,楊護(hù). 香蕉品種與栽培彩色圖說(shuō)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2008:28-29.
XU Linbing,HUANG Bingzhi,YANG Hu. Color illustration of banana varieties and cultivation [M]. Beijing:China Agriculture Press,2008:28-29.
[25] 陳才林. 烏干達(dá)農(nóng)產(chǎn)品降價(jià)[J]. 世界熱帶農(nóng)業(yè)信息,2002(9):22.
CHEN Cailin. Uganda cuts prices for agricultural products [J]. World Tropical Agriculture Information,2002(9):22.
[26] 黃秉智,許林兵,楊護(hù),唐小浪,魏岳榮,邱繼水,李貫球. 香蕉種質(zhì)資源枯萎病抗性田間評(píng)價(jià)初報(bào)[J]. 廣東農(nóng)業(yè)科學(xué),2005,(6) :9-10.
HUANG Bingzhi,XU Linbing,YANG Hu,TANG Xiaolang,WEI Yuerong,QIU Jishui,LI Guanqiu. Prelimiary results of field evaluation of banana germplasm resistant to Fusarium wilt disease[J]. Guangdong Agricultural Science,2005,2(6):9-10.
[27] 劉文清,余銘,李洪波,呂順,周建坤,向欣葉,劉建平,何建齊. 與東莞大蕉加工適宜性相關(guān)的農(nóng)藝性狀研究[J]. 廣東農(nóng)業(yè)科學(xué),2012,39(14):29-31.
LIU Wenqing,YU Ming,LI Hongbo,L? Shun,ZHOU Jiankun,XIANG Xinye,LIU Jianping,HE Jianqi. Study of the procession-associated agronomic characteristics of Musa sapientum Linn. (Dongguan)[J]. Guangdong Agricultural Sciences,2012,39(14):29-31.
[28] 劉凱,胡春華,杜發(fā)秀,張玉娥,魏岳榮,易干軍. 東莞大蕉超表達(dá)擬南芥CBF1基因及其抗寒性檢測(cè)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2012,45(8):1653-1660.
LIU Kai,HU Chunhua,DU Faxiu,ZHANG Yue,WEI Yuerong,YI Ganjun. Over-expression of the Arabidopsis CBF1 gene in Dongguandajiao (Musa spp. ABB group) and detection of its cold resistance[J]. Scientia Agricultura Sinica,2012,45(8):1653-1660.
[29] 吳爍凡,何維弟,李春雨,董濤,畢方鋮,盛鷗,鄧貴明,胡春華,竇同心,高慧君,劉思文,易干軍,姚振,楊喬松. 香蕉抗寒分子機(jī)制研究進(jìn)展[J]. 果樹(shù)學(xué)報(bào),2022,39(3):483-494.
WU Shuofan,HE Weidi,LI Chunyu,DONG Tao,BI Fangcheng,SHENG Ou,DENG Guiming,HU Chunhua,DOU Tongxin,GAO Huijun,LIU Siwen,YI Ganjun,YAO Zhen,YANG Qiaosong. Research progress in molecular mechanism of cold resistance in banana[J]. Journal of Fruit Science,2022,39(3):483-494.
[30] RABOIN L M,CARREEL F,NOYER J L,BAURENS F C,HORRY J P,BAKRY F,DU MONTCEL H T,GANRY J,LANAUD C,LAGODA P J L. Diploid ancestors of triploid export banana cultivars:molecular identification of 2n restitution gamete donors and n gamete donors[J]. Molecular Breeding,2005,16(4):333-341.
[31] PILLAY M,TRIPATHI L. Banana breeding[M]. Boston:Blackwell,2007:393-428.
[32] PILLAY M,TENKOUANO A. Banana breeding:Progress and challenges[M]. Boca Raton:CRC Press,2011:21-39.
[33] 李偉明,胡會(huì)剛,胡玉林,段雅婕,陳晶晶,謝江輝,王文華. 3個(gè)野生近緣種與不同栽培蕉的雜交親和性[J]. 熱帶作物學(xué)報(bào),2021,42(12):3500-3507.
LI Weiming,HU Huigang,HU Yulin,DUAN Yajie,CHEN Jingjing,XIE Jianghui,WANG Wenhua. Cross-compatibility among three wild banana species and various cultivars[J]. Chinese Journal of Tropical Crops,2021,42(12):3500-3507.
[34] 王正詢,駱慧明,吳淑淳,潘坤清. 廣東大蕉分類(lèi)位置的探討[J]. 熱帶亞熱帶植物學(xué)報(bào),1995,3(1):49-53.
WANG Zhengxun,LUO Huiming,WU Shuchun,PAN Kunqing. The taxonomic position of Guangdong plantain[J]. Journal of Tropical and Subtropical Botany,1995,3(1):49-53.
[35] 孫長(zhǎng)君,程志號(hào),孫佩光,吳瓊. ‘三江大蕉植物學(xué)性狀觀察及分類(lèi)學(xué)地位[J]. 中國(guó)熱帶農(nóng)業(yè),2018(2):35-38.
SUN Changjun,CHENG Zhihao,SUN Peiguang,WU Qiong. Botanical characters and taxonomic status of ‘Sanjiang Dajiao[J]. China Tropical Agriculture,2018(2):35-38.
[36] 呂順,任毅,王芳,胡桂兵,黃秉智,劉文清,何建齊,劉建平,曾莉莎,周建坤,麥景郁,張珂恒. 利用流式細(xì)胞術(shù)快速鑒定 169 份香蕉種質(zhì)資源的染色體倍性[J]. 果樹(shù)學(xué)報(bào),2018,35(6):668-684.
L? Shun,REN Yi,WANG Fang,HU Guibing,HUANG Bingzhi,LIU Wenqing,HE Jianqi,LIU Jianping,ZENG Lisha,ZHOU Jiankun,MAI Jingyu,ZHANG Keheng. Ploidy identification of 169 Musa germplasms by flow cytometry[J]. Journal of Fruit Science,2018,35(6):668-684.
[37] FAUR? S,NOYER J L,CARREEL F,HORRY J P,BAKRY F,LANAUD C. Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata)[J]. Current Genetics,1994,25(3):265-269.