崔艷波
小學數(shù)學大單元教學是立足于整個小學數(shù)學知識體系,以整體化的視角和聯(lián)系的觀點,剔除無意義的重復課時,重組教材,更加貼近學情,引領(lǐng)學生深度學習的新課改學習方式。本文就小學數(shù)學大單元教學策略進行分析。
一、小學數(shù)學大單元教學模式介紹
數(shù)學的本質(zhì)是高階思維的提升,而高階思維的提升絕不僅僅是學會一課一課的知識那么簡單,高階思維是學生跳出課時,立足于整個知識體系,將教材中相關(guān)聯(lián)的知識點進行重組,合成相關(guān)聯(lián)的學習模塊進行深度學習的方式。在小學數(shù)學大單元教學中,知識重組的過程也是學生結(jié)構(gòu)化思維形成的過程。教師結(jié)合學情擬定課程綱要,對重難點內(nèi)容做出合理規(guī)劃,保障課時引導學生厘清知識之間的脈絡(luò),充分理解知識的來龍去脈,在知識的分解與重組中促進結(jié)構(gòu)化思維的發(fā)展,更好地幫助學生形成完整的知識結(jié)構(gòu),在知識結(jié)構(gòu)相同、道理相通的架構(gòu)下促進知識的類比遷移,促進學生深度理解,有利于高階思維的發(fā)展。
二、小學數(shù)學大單元教學模式的特點
(一)大單元教學具有整體性
現(xiàn)行的小學數(shù)學教材中,每一個單元的知識都相對獨立,教師按照課本順序傳授知識,有些相同和相通的知識分散在不同的章節(jié)和不同的年級,導致知識的習得缺少內(nèi)在聯(lián)系,學生知其然不知其所以然的現(xiàn)象使數(shù)學這門最該講道理的學科在有些教師的教學里陷入“背數(shù)學”的怪圈,教學效果自然不理想。大單元教學模式則是跳出課時,立足于整個小學數(shù)學知識體系,將課本相關(guān)聯(lián)的內(nèi)容進行有效整合,組合成不同主題的學習模塊,以結(jié)構(gòu)化的方式存儲在學生的知識體系中,有效提升學生對知識的理解與運用能力。
(二)數(shù)學大單元教學具有選擇性
大單元教學模式需要教師對課程內(nèi)容進行結(jié)構(gòu)化設(shè)計,這就要求教師能夠跳出教材看教材,根據(jù)整體的教材內(nèi)容進行內(nèi)容的解構(gòu)與重構(gòu),合理選擇教學方法,避免重復設(shè)計,讓課堂因為“新”而充滿數(shù)學思考的理性精神。教師在單元設(shè)計過程中,要對每一個課時的重點了然于胸,選擇適切的教法,相同的結(jié)構(gòu)通過遷移類推,學生可以輕松掌握,不必在導入上大費周折,而應(yīng)將重點放在每一課的“不同”上,通過有機的知識銜接實現(xiàn)教學目標。
三、數(shù)學大單元深度學習
(一)“深”在理解——強調(diào)透過現(xiàn)象看本質(zhì)
機械地對教材中的文字和例題進行解讀是常說的淺層學習,而深度學習要求學生通過自主思考喚醒知識儲備,建立知識間的聯(lián)系,舉一反三,觸類旁通。例如,某學校六年級一班有男生25人,女生22人,根據(jù)條件提出除法計算的數(shù)學問題:男生是女生的幾倍?女生是男生的幾分之幾?女生是全班的幾分之幾?全班人數(shù)是女生的幾倍?男生是全班的幾分之幾?全班人數(shù)是男生的幾倍?在學生提問的過程中會發(fā)現(xiàn)這些問題只是比較的標準不同,得到的結(jié)果不同,本質(zhì)都是兩個量之間的倍比關(guān)系。
(二)“深”在整合——強調(diào)聯(lián)通新舊知識之間的關(guān)系
數(shù)學大單元深度學習是將教材中零散的知識點進行整合,找到它們之間的關(guān)聯(lián)性。在進行整合的過程中,學生能夠自主進行思考并解決問題。例如,在求不規(guī)則圖形教學中,學生自主將不規(guī)則圖形的面積通過割補轉(zhuǎn)化為規(guī)則的圖形進行計算,利用新舊知識之間的聯(lián)系解決問題。
(三)“深”在應(yīng)用——強調(diào)學以致用解決實際問題
有句話說“教材不是學生的全部世界,世界才是學生的全部教材”,揭示了數(shù)學與生活千絲萬縷的聯(lián)系,數(shù)學學習唯有放置在廣闊的生活場景中解決問題,才能體現(xiàn)價值?,F(xiàn)實中的情境是多樣的,在多樣的情境中能夠透過現(xiàn)象抽取出數(shù)學的本質(zhì)才是學習的王道。
(四)“深”在探究——強調(diào)學生的自主學習與協(xié)同能力
深度學習更加凸顯學生學習的主動性和協(xié)同能力。在“假分數(shù)”的學習中,學生提出:“為什么叫假分數(shù)呢?”教師順勢而為改變原來的授課思路,圍繞學生提出的問題,以小組合作學習的形式進行探究,教師在整個過程中推波助瀾、穿針引線,整堂課學生興趣盎然,在探究假分數(shù)命名的過程中揭開了真分數(shù)與假分數(shù)之間的本質(zhì)聯(lián)系。
四、小學數(shù)學教學現(xiàn)狀
(一)重“數(shù)量”輕“變式”
傳統(tǒng)的教學模式是重“量”輕“變”。教師講完教材例題后,要求學生完成課本上的練習題,達到鞏固知識的目的。教師的處理方式通常是學生完成練習后,機械地一道題目接一道題目地訂正,直到將整個章節(jié)相關(guān)的課本練習題、教輔材料中的練習題全部做完才心安,缺少對練習題目的篩選、整合與創(chuàng)新設(shè)計。題目因缺少變式、缺少關(guān)聯(lián)、缺少內(nèi)在的聯(lián)系性,對提升學生的思維能力大打折扣,因此會出現(xiàn)相同類型的題目因為換了情境而頻繁出錯的情況。有經(jīng)驗的教師則不會在題目的練習數(shù)量上大費周折,而是圍繞核心知識將課本上的練習題進行解構(gòu),變成相互關(guān)聯(lián)的題組,前邊的問題答案是解決下一道題目的基礎(chǔ),解決了前邊的問題,后邊的問題也就迎刃而解,讓學生邊解題邊縱向比較,尋找知識間的內(nèi)在規(guī)律,從而以整體的視角理解數(shù)理,提升數(shù)學素養(yǎng)。
(二)重“記憶”輕“聯(lián)系”
在小學階段,數(shù)學知識并不難,難的是掌握知識點之間的關(guān)聯(lián)。打牢基礎(chǔ)才能融會貫通,解決實際問題。而部分學生因為基礎(chǔ)知識掌握不牢固,對知識一知半解,遇到新的情境就無從下手,從而將數(shù)學列入最難學科行列。例如,在學習了三角形的面積計算方法后,學生只是死記硬背三角形的面積公式,求三角形的面積要知道三角形的底和高,當面對“已知平行四邊形的面積是80平方厘米,求與它同底等高的三角形面積是多少?”的問題時,學生束手無策,甚至認為是教師疏忽,丟掉了三角形底和高的條件,顯然這是忽略了三角形與平行四邊形之間的關(guān)系而導致的錯誤。
(三)重“講授”輕“方法”
小學數(shù)學是有邏輯性的,難度呈螺旋上升,許多學生沒有知識遷移能力,在做題的時候就會頻頻出錯。舉例來說,學習“小數(shù)乘、除法”計算時,計算方法與整數(shù)乘除法的本質(zhì)是相同的,為什么還有很多學生學習小數(shù)乘除法有畏難情緒呢?根本原因是教師只是在按部就班地完成教學進度,通過大量的重復性作業(yè)使學生掌握知識,忽視了學生心中零散的知識點不能以結(jié)構(gòu)化的框架存貯記憶,當遇到新的情境變化時就會顧此失彼,頻頻出錯,失去學習信心。
五、小學數(shù)學大單元教學中促進深度學習的策略
(一)學會建構(gòu)知識體系,觸類旁通
數(shù)學大單元教學是將相關(guān)聯(lián)的知識整合在一起,追根溯源,幫助學生建立完整的知識框架。例如,在江蘇省特級教師強震球老師執(zhí)教的《分數(shù)的意義》一課中,強老師重組教材,在探討“比較的標準”中,通過引導學生“數(shù)數(shù)”,感悟整數(shù)和分數(shù)都是數(shù)出來的結(jié)果,當數(shù)的結(jié)果無法用整數(shù)表示時就有了分數(shù)。數(shù)理通了,零散的知識就以“比較的標準——單位‘1”在整數(shù)與分數(shù)之間架構(gòu)起了橋梁。
(二)學會思維遷移,疏通數(shù)理
“物有本末,事有始終,知所先后,則近道矣?!边@段話揭示了只有摸清事物前車后轍的“序列”發(fā)展,才能抓住前后聯(lián)系中的共性規(guī)律。遷移到數(shù)學學習中,就是要用聯(lián)系的觀點引導學生知曉知識的來龍去脈,“建構(gòu)方法間的聯(lián)系,在聯(lián)通中提升素養(yǎng)”。例如,在“數(shù)的運算”大單元中,盡管自然數(shù)和小數(shù)的計數(shù)單位都是十進制且存在位值制的,而分數(shù)單位既不是十進制,也沒有位值制,但三者本質(zhì)上都是相同單位的累加和減少,三者之間這一天然“血緣”聯(lián)通了運算的內(nèi)部聯(lián)系,學生很容易理解遷移。
(三)學會規(guī)劃單元備課,整合課時內(nèi)容
通過重組教材內(nèi)容,搭建起不同知識模塊框架,這一框架的搭建需要通過小學數(shù)學課程綱要的編寫來合理規(guī)劃相關(guān)內(nèi)容的課時,為后續(xù)學習提供思維基礎(chǔ)的關(guān)鍵課要有充足的課時保障,延展課則要給足學生自主解決問題的合理課時,同時預留出綜合練習課的課時,針對每個單元的備課內(nèi)容逐步優(yōu)化整體教學流程。
(四)學會制定評價量規(guī),為大單元教學安上“引擎”
大單元教學模式更加注重“教師教”與“學生學”兩個維度的相互作用。教學實踐中,教研組從教與學兩個維度研制了大單元教學《課堂教學評價量規(guī)》,通過觀課議課、教學沙龍、主題研討等形式推進大單元教學的開展。同時,在師生共同討論、修改的基礎(chǔ)上形成了“學生課堂合作學習量規(guī)”,包括課前準備(組長評價)、課中學習(組長評價)、課后作業(yè)(教師評價),以“量規(guī)”為依據(jù),開展合作學習,組際間通過積分量化,充分調(diào)動了小組內(nèi)每一名學生參與學習的積極性,也改變了教師一言堂的現(xiàn)狀,為大單元教學的順利開展提供了保障。
(五)學會完善評價反饋方式,為大單元教學助力
在小學數(shù)學大單元教學中,評價反饋環(huán)節(jié)非常重要,良好的評價反饋機制是整體教學能否順利開展的引擎。良好的教學評價機制是基于尊重、基于差異、基于學生可持續(xù)發(fā)展的一種有效的教學手段,恰當?shù)脑u價方法可以引發(fā)學生主動在自檢、自查、自悟中,在同伴互動對話的辨析中,在人機互動的過程中,積極主動整合多種資源,解決問題。
1.延遲評價,給學生辨析的機會。
例如,在“探究五邊形內(nèi)角和”的教學中,學生探究后,有的學生得到的是540°,有的學生得到的是720°,還有的學生得出900°的結(jié)果,面對這種情況,教師沒有急于評價,而是話鋒一轉(zhuǎn):“來,我們停下來,一起研究一下a同學的720°和b同學的900°都是怎么得到的呢?請兩位同學先說說自己的想法?!?/p>
a同學:180°×2=360°,360°×2=720°
b同學:我把五邊形分割成了5個三角形(如圖1所示),每個三角形的內(nèi)角和是180°,180°×5=900°
師:你們有什么話對他們說嗎?我們先來討論 a同學的觀點。
c同學:我不同意a同學的想法。180°×2=360°計算的是四邊形的內(nèi)角和,360°×2=720°,計算的就是2個四邊形的內(nèi)角和,但是五邊形的內(nèi)角和并不等于2個四邊形的內(nèi)角和,五邊形可以分割成3個三角形,每個三角形內(nèi)角和是180°,180°×3=540°,3個三角形的內(nèi)角和才是五邊形的內(nèi)角和。
d同學:我來說說b同學的900°,首先你分割的這些三角形的面積加在一起的確是這個五邊形的面積,但現(xiàn)在我們討論的不是面積的大小,而是五邊形的內(nèi)角和,也就是5個內(nèi)角的和。分割5個內(nèi)角時,要頂點和頂點連在一起分割(學生邊講解邊利用西沃白板畫出圖示,如圖2所示),你那樣分割就多出了幾個新角,這幾個新角沒有在5個內(nèi)角之中。
在上述教學片段中,當學生的答案“出圈”后,教師沒有急于進行對或錯的評價,而是給予學生搭建對話和辨析的機會,讓學生在自辯中暴露思維,在生生間的對話中自悟,而教師以“掌聲”表揚參與辨析的學生表達清晰,同時表揚出現(xiàn)問題的學生帶給大家有思維價值的問題。這樣的延遲評價則是促進學生可持續(xù)發(fā)展的評價。
2.基于尊重進行評價,促進學生積極思考。
在一堂小數(shù)乘法練習課上,練習的內(nèi)容是運用積的小數(shù)位數(shù)等于因數(shù)小數(shù)位之和的規(guī)律進行變式練習。6道題目,有個學生答對了5道,甲教師評價道:“要認真啊,錯了一道,哪個小朋友能找出來?”課堂上,這名學生像犯了錯誤一樣等待著大家挑錯。而相似的情形發(fā)生在乙教師的課堂上時,其巧妙的評價讓望而卻步的學生煥發(fā)出學習熱情。一組題目學生答錯一道后,教師沒有立馬點評糾正,也沒有讓其他學生糾錯,而是說:“這么多題,大部分都做對了,你有什么竅門嗎?”學生想了想,復盤了解題規(guī)律。教師評價道:“這就是會思考、會學習,不僅能解題還能講清楚道理,根據(jù)你自己總結(jié)的規(guī)律,你能發(fā)現(xiàn)哪個題目出了問題嗎?”學生很快找出了答錯的題目。對比兩位教師的做法,讓學生總結(jié)、自糾、自悟顯然比直接讓其他學生挑錯更顯溫度與智慧。
六、結(jié)語
綜上所述,小學數(shù)學大單元教學已經(jīng)成為新課改風向標,需要更多的一線教師俯身課堂、躬身實踐,助推小學數(shù)學課改的有效落地,不斷更新思想、迭代方法、與時俱進,為學生的數(shù)學可持續(xù)學習打下基礎(chǔ),為基礎(chǔ)教育不斷思謀,提高學生的整體數(shù)學素養(yǎng)。
(宋行軍)