陳春 祁大慶 潘靖文
摘要:采用生物信息學(xué)方法分析基質(zhì)細(xì)胞與胃癌的臨床特征關(guān)聯(lián),預(yù)測(cè)胃復(fù)春膠囊的干預(yù)機(jī)制。從TCGA數(shù)據(jù)庫(kù)下載胃癌活檢數(shù)據(jù),基于ESTIMATE計(jì)算基質(zhì)細(xì)胞評(píng)分(stromal score,STRS)并以中位數(shù)為分組依據(jù),分析STRS與患者臨床信息關(guān)聯(lián)并篩選DEGs(differentially expressed genes)作為潛在干預(yù)靶點(diǎn)?;谖笍?fù)春膠囊入血成分預(yù)測(cè)藥物靶點(diǎn),DEGs與藥物靶點(diǎn)取交集并通過(guò)PPI網(wǎng)絡(luò)及MCODE篩選核心子網(wǎng)絡(luò)及基因,分析生存預(yù)后及不同分期表達(dá)。構(gòu)建藥味-入血成分-靶點(diǎn)網(wǎng)絡(luò)篩選核心成分并進(jìn)行ADMET預(yù)測(cè)及分子對(duì)接驗(yàn)證。交集靶點(diǎn)進(jìn)行GO(gene ontology)、KEGG(Kyoto encyclopedia of genes and genomes)富集。結(jié)果表明:STRS與生存時(shí)間顯著相關(guān)且隨Stage及T分期顯著升高,分析得DEGs 1 975個(gè);胃復(fù)春膠囊入血成分75個(gè),對(duì)應(yīng)靶點(diǎn)663個(gè),交集靶點(diǎn)107個(gè);核心子網(wǎng)絡(luò)4個(gè),其中VCAM1、SERPINE1、TLR4、FGF1為核心靶點(diǎn),SERPINE1、PDGFRB表達(dá)與生存時(shí)間相關(guān)極顯著(P<0.01),VCAM1、NOX4、PDGFRB、ITGAL等在不同Stage分期表達(dá)差異極顯著(P<0.01);異金雀花素B、香茶菜素O、藍(lán)萼甲素等為核心成分,ADMET特性及核心靶點(diǎn)蛋白結(jié)合活性良好;GO富集于鈣離子濃度調(diào)節(jié)、鈣離子穩(wěn)態(tài)等條目,KEGG富集于鈣信號(hào)通路、神經(jīng)活性配體-受體相互作用等通路。基質(zhì)細(xì)胞與生存時(shí)間、分期密切相關(guān),胃復(fù)春膠囊可能通過(guò)調(diào)控基質(zhì)細(xì)胞發(fā)揮抑制腫瘤生長(zhǎng)、轉(zhuǎn)移及延緩耐藥性等作用。
關(guān)鍵詞:基質(zhì)細(xì)胞評(píng)分;胃癌;臨床特征;胃復(fù)春膠囊;網(wǎng)絡(luò)藥理學(xué)
中圖分類號(hào):R285?? 文獻(xiàn)標(biāo)志碼:A?? 文章編號(hào):1002-4026(2023)06-0038-10
Clinical significance of stromal cell score in gastric cancer
and intervention with Weifuchun capsules
CHEN Chun1, QI Daqing2, PAN Jingwen1*
(1. Department of Pharmacy, The Eighth People′s Hospital of Qingdao, Qingdao 266000, China;
2. Hangzhou Huqingyutang Pharmaceutical Co., Ltd., Hangzhou 311100, China)
Abstract∶Bioinformatics methods were used to analyse the association between stromal cells and clinical characteristics of gastric cancer, and to predict the intervention mechanism of Weifuchun capsule. Gastric cancer biopsy data were downloaded from TCGA database, the stromal score (STRS) was calculated based on ESTIMATE, and the median was used as the basis for grouping, and the association between STRS and patients′ clinical information was analysed, and the DEGs were screened as the potential intervention targets. Based on the blood components of Weifuchun capsule, we predicted the drug targets, intersected DEGs with drug targets, and screened the core sub-networks and genes through PPI network and MCODE, and analysed the expression of differentially expressed genes in terms of survival prognosis and different stages of the disease. The drug-taste-intake component-target network was constructed to screen the core components, and ADMET prediction and molecular docking validation were performed. The intersecting targets were enriched by GO and KEGG. The results showed that STRS was significantly correlated with survival time and increased significantly with Stage and T stage, and 1 975 DEGs were analysed; 75 components of Weifuchun capsule into the blood, corresponding to 663 targets, and 107 intersecting targets; and 4 core sub-networks, of which VCAM1, SERPINE1, TLR4, FGF1 were the core target, and SERPINE1, PDGFRB expression correlated with survival time was highly significant (P<0.01), and the differences in the expression of VCAM1, NOX4, PDGFRB, ITGAL, etc. in different Stage phases were highly significant (P<0.01); isocryptoxanthin B, geranylgeranyl O, and bluocalyx methylin were the core components, with good ADMET properties and core target protein binding activity. GO was enriched in calcium ion concentration regulation, calcium ion homeostasis and other entries. KEGG is enriched in calcium signalling pathway, neuroactive ligand-receptor interaction and other pathways. Stromal cells are closely related to survival time and stage, and Weifuchun capsule may inhibit tumour growth, metastasis and delay drug resistance by regulating stromal cells.
Key words∶stromal cell score; gastric cancer; clinical features; Weifuchun capsules; network pharmacology
胃癌為國(guó)內(nèi)第二大好發(fā)癌癥及致死性癌癥[1],是全球癌癥致死的主因之一。早期癥狀不明顯、保守手術(shù)切除后易復(fù)發(fā)等原因?qū)е挛赴?年生存率較低,因此尋找預(yù)測(cè)、診斷、治療胃癌的標(biāo)志物,干預(yù)靶點(diǎn)及抑制惡化的藥物有重要意義。胃惡性實(shí)體瘤組織由腫瘤細(xì)胞、正常上皮細(xì)胞、基質(zhì)細(xì)胞、免疫細(xì)胞等細(xì)胞以及細(xì)胞因子和胞外基質(zhì)蛋白共同組成,浸潤(rùn)性基質(zhì)細(xì)胞和免疫細(xì)胞作為腫瘤組織中正常細(xì)胞的主要部分,在干擾腫瘤信號(hào)方面有重要作用。研究顯示基質(zhì)細(xì)胞與腫瘤生長(zhǎng)抑制劑逃避、維持增殖信號(hào)、細(xì)胞死亡耐受、細(xì)胞能量代謝重編程、血管生成啟動(dòng)、免疫監(jiān)管逃避、侵襲和轉(zhuǎn)移等特征相關(guān)[2]。 ESTIMATE(estimation of stromal and immune cells in malignant tumor tissues using expression data)[3]利用癌癥樣本轉(zhuǎn)錄譜的獨(dú)特性質(zhì)來(lái)推斷腫瘤細(xì)胞的內(nèi)容以及不同的浸潤(rùn)正常細(xì)胞。通過(guò)單樣本基因集富集分析(ssGSEA),計(jì)算基質(zhì)和免疫評(píng)分來(lái)預(yù)測(cè)基質(zhì)細(xì)胞和免疫細(xì)胞的水平,推斷腫瘤組織中的腫瘤純度,分析與腫瘤組織中基質(zhì)和免疫細(xì)胞浸潤(rùn)相關(guān)的特異性基因特征。研究顯示,基質(zhì)細(xì)胞與患者生存惡化和治療耐藥性相關(guān),并通過(guò)激活基質(zhì)重塑、代謝效應(yīng)和可溶性分泌因子促進(jìn)腫瘤侵襲[4]。腫瘤相關(guān)成纖維細(xì)胞(cancer-associated fibroblasts,CAFs)占基質(zhì)細(xì)胞50%以上,通過(guò)分泌各種細(xì)胞因子來(lái)調(diào)節(jié)腫瘤生長(zhǎng)和炎癥反應(yīng),促進(jìn)腫瘤生長(zhǎng)。因此,在未分化胃癌活檢中通常表現(xiàn)出過(guò)度纖維化和大量CAFs浸潤(rùn)[5]。基質(zhì)細(xì)胞作為構(gòu)成腫瘤微環(huán)境的重要成分[6],探究其相關(guān)特征基因并尋找干預(yù)方法對(duì)腫瘤微環(huán)境調(diào)節(jié)具有現(xiàn)實(shí)意義。
天然藥物具有多成分、多靶點(diǎn)的作用特點(diǎn),在腫瘤微環(huán)境的調(diào)節(jié)方面有巨大潛力。胃復(fù)春膠囊主要成分包括紅參細(xì)粉及香茶菜、枳殼提取物等,具有健脾益氣、活血解毒的功效,臨床上用于胃癌前期病變及胃癌術(shù)后的輔助治療[7]。胃復(fù)春膠囊療效確切,但對(duì)其作用機(jī)制及其對(duì)應(yīng)物質(zhì)基礎(chǔ)的研究尚不多見。目前基于腫瘤基質(zhì)細(xì)胞組成探究復(fù)方作用機(jī)制的研究鮮有報(bào)道,因此,本文采用生物信息學(xué)技術(shù)探究腫瘤基質(zhì)細(xì)胞與胃癌臨床特征的關(guān)聯(lián)及胃復(fù)春膠囊的干預(yù)作用機(jī)制。
1 材料與方法
1.1 數(shù)據(jù)庫(kù)及分析軟件
TCGA數(shù)據(jù)庫(kù)(https://portal.gdc.cancer.gov/)、中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(traditional Chinese medicine systems pharmacology database and analysis platform,TCMSP)(http://tcmspw.com/tcmsp.php);SwissTargetPrediction(http://www.swisstargetprediction.ch/);STRING數(shù)據(jù)庫(kù)(https://string-db.org)、R 3.6.3、ClusterProfiler 3.14.3、ggplot 2.3.3.0、DOSE 3.12.0、Enrichplot 1.6.1、Cytoscape 3.7.2、Discovery studio 2019等。
1.2 表達(dá)及臨床數(shù)據(jù)下載及分析
從TCGA數(shù)據(jù)庫(kù)中下載胃癌RNA FPKM(fragments per kilobase per million)表達(dá)數(shù)據(jù)及患者的臨床信息。數(shù)據(jù)包含407例胃癌活檢數(shù)據(jù),其中32例患者樣本包含正常胃組織和癌組織,剔除正常組織剩余343例樣本備用。采用ESTIMATE計(jì)算基質(zhì)細(xì)胞得分并以中位數(shù)為標(biāo)準(zhǔn)將患者分為高基質(zhì)細(xì)胞組和低基質(zhì)細(xì)胞組。分析基質(zhì)細(xì)胞得分與生存時(shí)間、年齡、Stage分期、T(原發(fā)性腫瘤)、N(區(qū)域淋巴結(jié)轉(zhuǎn)移)、M(遠(yuǎn)處轉(zhuǎn)移)關(guān)系。2組數(shù)據(jù)采用wilcox.test函數(shù)進(jìn)行秩和檢驗(yàn),分組大于2組的數(shù)據(jù)則采用kruskal.test函數(shù)進(jìn)行檢驗(yàn)。采用Limma包對(duì)高、低基質(zhì)細(xì)胞組進(jìn)行差異表達(dá)分析,并以Log FC值>1、FDR值<0.05(FC為fold change,F(xiàn)DR為false discovery rate)為標(biāo)準(zhǔn)篩選差異表達(dá)基因(differentially expressed genes, DEGs)作為潛在干預(yù)靶點(diǎn)。
1.3 胃復(fù)春膠囊入血成分及靶點(diǎn)信息
檢索文獻(xiàn)整理得胃復(fù)春膠囊入血成分,于TCMSP、SwissTargetPrediction檢索及預(yù)測(cè)靶點(diǎn),基于UniProt數(shù)據(jù)庫(kù)(https://www.uniprot.org/)標(biāo)準(zhǔn)化靶點(diǎn)名稱,得到胃復(fù)春膠囊作用靶點(diǎn)。
1.4 蛋白質(zhì)-蛋白質(zhì)相互作用及拓?fù)渚W(wǎng)絡(luò)分析
將藥物作用靶點(diǎn)與潛在干預(yù)靶點(diǎn)交集得干預(yù)靶點(diǎn),導(dǎo)入STRING數(shù)據(jù)庫(kù),設(shè)置物種為“Homo sapiens”進(jìn)行檢索,設(shè)定置信度為“high confidence >0.7”,刪除游離節(jié)點(diǎn),得蛋白質(zhì)-蛋白質(zhì)相互作用(protein-protein interaction,PPI)網(wǎng)絡(luò),保存為TSV格式文件并導(dǎo)入Cytoscape 3.7.2繪圖,并采用MCODE(molecular complex detection)插件分析核心子網(wǎng)絡(luò)(degree cutoff=2,node cutoff =0.2,kcore=2,max.depth=100),分析子網(wǎng)絡(luò)基因生存預(yù)后及不同Stage中表達(dá)。構(gòu)建藥材-入血成分-靶點(diǎn)關(guān)聯(lián)網(wǎng)絡(luò)圖,根據(jù)節(jié)點(diǎn)獲得每個(gè)靶點(diǎn)與其他靶點(diǎn)互相作用,以degree中位數(shù)為標(biāo)準(zhǔn)篩選核心入血成分并分析ADMET(藥物的吸收、分布、代謝、排泄、毒性)特性。
1.5 生物富集分析
將篩選的潛在作用靶點(diǎn)采用ClusterProfiler包進(jìn)行基因本體(gene ontology,GO)、京都基因與基因組百科全書(Kyoto encyclopedia of gene and genomics,KEGG)富集分析,采用enrichplot、ggplot2包對(duì)富集結(jié)果進(jìn)行可視化,從細(xì)胞組分、分子功能、生物過(guò)程、通路分析胃復(fù)春膠囊干預(yù)胃癌基質(zhì)細(xì)胞的作用機(jī)制。
1.6 分子對(duì)接驗(yàn)證
從PDB(https://www.rcsb.org/)數(shù)據(jù)庫(kù)下載關(guān)鍵靶點(diǎn)蛋白及晶體構(gòu)象,通過(guò)前處理與核心化合物進(jìn)行分子對(duì)接驗(yàn)證。受體前處理為去原配體、去除溶劑、補(bǔ)充氨基酸殘基等。配體前處理為加氫及合適的電荷等。選擇晶體結(jié)構(gòu)中配體所在的位置作為結(jié)合位點(diǎn)(無(wú)原配體的晶體則采用預(yù)測(cè)位點(diǎn)),選擇距離該位點(diǎn)一定半徑內(nèi)的球集為活性結(jié)合位點(diǎn)。采用LibDockScore評(píng)價(jià)小分子化合物與蛋白靶點(diǎn)的結(jié)合活力。
2 結(jié)果
2.1 TCGA數(shù)據(jù)分析
利用ESTIMATE算法評(píng)分,以中位數(shù)(n=132.699 3)將其分為低、高基質(zhì)細(xì)胞組,關(guān)聯(lián)臨床數(shù)據(jù)分析結(jié)果如圖1、OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖1 所示。圖1顯示基質(zhì)細(xì)胞評(píng)分與胃癌患者生存時(shí)間顯著相關(guān),表明基質(zhì)細(xì)胞為潛在的有效干預(yù)機(jī)制。不同性別,年齡,N、M分期與基質(zhì)細(xì)胞評(píng)分無(wú)顯著差異。不同Stage分期及T分期基質(zhì)細(xì)胞評(píng)分存在顯著差異(P=7.80×10-4,P=8.44×10-7),基質(zhì)細(xì)胞評(píng)分在Stage Ⅰ到Ⅱ階段及T Ⅰ到Ⅱ階段中迅速增加,在后續(xù)階段中增長(zhǎng)不明顯(OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖2),表明早期干預(yù)腫瘤微環(huán)境中的基質(zhì)細(xì)胞增長(zhǎng)有一定價(jià)值。采用Limma包進(jìn)行差異分析得1 975個(gè) DEGs作為潛在干預(yù)靶點(diǎn),熱圖及火山圖詳見OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖3(a)~3(b)所示。
2.2 常用復(fù)方入血成分
胃復(fù)春膠囊臨床上用于胃癌前病變及胃癌輔助治療,療效確切?;谝压_文獻(xiàn)整理得胃復(fù)春膠囊入血成分75個(gè)[8],其中香茶菜入血成分38個(gè),分析結(jié)構(gòu)以二萜類化合物為主,其次為歸屬于紅參及枳殼的黃酮和皂苷,基于TCMSP、SwissTargetPrediction數(shù)據(jù)庫(kù)檢索、去重、標(biāo)準(zhǔn)化得胃復(fù)春膠囊入血成分作用靶點(diǎn)663個(gè)。主要入血成分見表1,全表見OSID科學(xué)數(shù)據(jù)與內(nèi)容附表1。
2.3 PPI網(wǎng)絡(luò)構(gòu)建及核心靶點(diǎn)預(yù)測(cè)
將藥物作用靶點(diǎn)與潛在干預(yù)靶點(diǎn)取交集,得到107個(gè)潛在藥物作用靶點(diǎn)(OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖4)導(dǎo)入STRING數(shù)據(jù)庫(kù)中分析,共獲得107個(gè)節(jié)點(diǎn),141條邊,平均節(jié)點(diǎn)度為 2.64,PPI富集P<1×10-16,結(jié)果導(dǎo)出至Cytoscape中可視化,并采用MCODE插件分析核心子網(wǎng)絡(luò)及靶點(diǎn),結(jié)果見OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖5。分析得核心子網(wǎng)絡(luò)4個(gè),其中血管細(xì)胞黏附因子1(VCAM1)、人纖溶酶原激活物抑制劑1(SERPINE1)、toll樣受體4(TLR4),成纖維生長(zhǎng)因子(FGF1)為核心子網(wǎng)絡(luò)的seed靶點(diǎn),18個(gè)靶點(diǎn)為聚集靶點(diǎn),分別對(duì)這18個(gè)靶點(diǎn)進(jìn)行生存分析及不同階段的表達(dá)量分析,結(jié)果見OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖6~7。SERPINE1、PDGFRB表達(dá)與患者生存時(shí)間相關(guān)極顯著(P<0.01),TGFB1、FGF1、MPO表達(dá)與胃癌患者生存時(shí)間顯著相關(guān)(P<0.05),VCAM1、NOX4、PDGFRB、ITGAL、TGFB1、ITGA4、CCR5在Stage分期差異表達(dá)極顯著(P<0.01),CCR2、PDGFRA、ITGB2、MMP2、SELL差異表達(dá)顯著(P<0.05)。
2.4 核心入血成分分析
采用Cytoscape 3.7.2軟件構(gòu)建藥材-入血成分-靶點(diǎn)調(diào)控網(wǎng)絡(luò)(OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖8),節(jié)點(diǎn)為靶點(diǎn)或化合物,連線表示成分與靶點(diǎn)之間互作關(guān)系。由附圖8可知胃復(fù)春膠囊通過(guò)多成分、多靶點(diǎn)干預(yù)胃腫瘤基質(zhì)細(xì)胞組成。異金雀花素B、香茶菜素O、香茶菜素U、藍(lán)萼甲素、橙桑黃酮F、去甲基川陳皮素、熊果酸、橙皮素、Sudachinoid A、異橙黃酮、槲皮素等為潛在核心入血成分(degree值大于4倍中位數(shù)),ADMET預(yù)測(cè)分析結(jié)果如表2所示,核心成分水溶性均介于良好和低,表現(xiàn)出良好的腸道吸收性以及良好的血漿蛋白結(jié)合率。
2.5 生物功能注釋分析
采用“ClusterProfiler”軟件包對(duì)交集靶點(diǎn)進(jìn)行生物功能注釋。分別選取GO富集結(jié)果BP/CC/MF前10 GO term繪圖(OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖9(a)),交集靶點(diǎn)富集于胞漿鈣離子濃度調(diào)節(jié)、鈣離子穩(wěn)態(tài)、細(xì)胞鈣離子穩(wěn)態(tài)、胞漿鈣離子濃度的正調(diào)控、細(xì)胞二價(jià)陽(yáng)離子穩(wěn)態(tài)、磷脂酶活性的調(diào)節(jié)等生物過(guò)程,以及質(zhì)膜膜筏、神經(jīng)元細(xì)胞體、膜小凹、軸突末梢等細(xì)胞組成以及前列腺素受體活性、G蛋白偶聯(lián)肽受體活性、肽受體活性、類二十烷酸受體活性、跨膜受體蛋白激酶活性、跨膜受體蛋白酪氨酸激酶活性、細(xì)胞因子結(jié)合等分子功能。
KEGG前20富集結(jié)果繪圖(OSID科學(xué)數(shù)據(jù)與內(nèi)容附圖9(b)),交集靶點(diǎn)通過(guò)作用于鈣信號(hào)通路、神經(jīng)活性配體-受體相互作用、糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、磷脂酰肌醇3-激酶/蛋白激酶B信號(hào)通路、人類表皮生長(zhǎng)因子受體酪氨酸激酶抑制劑耐藥、Ras信號(hào)通路、Rap1信號(hào)通路、磷脂酶 D 信號(hào)通路等通路發(fā)揮平滑肌收縮調(diào)節(jié)、晚期糖基化終末產(chǎn)物代謝調(diào)節(jié)、炎癥信號(hào)傳導(dǎo)調(diào)節(jié)、細(xì)胞存活生長(zhǎng)、免疫細(xì)胞轉(zhuǎn)移和聚集、機(jī)體低氧濃度或缺氧應(yīng)答等作用。
2.6 分子對(duì)接驗(yàn)證
將潛在核心入血起效成分作為分子對(duì)接配體,將子網(wǎng)絡(luò)核心靶點(diǎn)蛋白作為分子對(duì)接受體,采用Libdock對(duì)其進(jìn)行分子對(duì)接,對(duì)接得分值如表3所示,圖2為各核心靶點(diǎn)與入血成分對(duì)接結(jié)果2D呈現(xiàn)(Libdock Score>70為對(duì)接活性良好)。
3 討論與結(jié)論
腫瘤細(xì)胞行為受腫瘤微環(huán)境中基質(zhì)細(xì)胞相互作用影響[9],腫瘤基質(zhì)中CAF、MSCs等細(xì)胞分泌HGF、FGF、ISF-1、IGF-2等因子可促進(jìn)血管的形成及腫瘤細(xì)胞的浸潤(rùn);周圍基質(zhì)細(xì)胞分泌TGF-β誘導(dǎo)內(nèi)皮細(xì)胞向瘤性間質(zhì)細(xì)胞轉(zhuǎn)化從而利于腫瘤細(xì)胞浸潤(rùn);基質(zhì)細(xì)胞可調(diào)節(jié)組織間隙液壓影響藥物跨越毛細(xì)管以及能直接降低腫瘤細(xì)胞對(duì)化學(xué)藥物、酪氨酸激酶抑制劑的敏感性,從而降低了藥物療效?;|(zhì)細(xì)胞隨著癌癥周期進(jìn)展含量顯著升高,尤以Ⅰ/Ⅱ期變化明顯,生存分析顯示基質(zhì)細(xì)胞含量低組患者生存時(shí)間顯著延長(zhǎng),表明基質(zhì)細(xì)胞增長(zhǎng)可加快胃癌進(jìn)展,縮短患者生存時(shí)間,因而早期針對(duì)基質(zhì)細(xì)胞進(jìn)行干預(yù)有重大意義。此外,低、高基質(zhì)細(xì)胞含量組存在大量基因表達(dá)顯著失調(diào),而化療藥物由于成分單一、對(duì)應(yīng)靶點(diǎn)少難以覆蓋,故中藥復(fù)方的多成分、多靶點(diǎn)干預(yù)策略合理。
潛在藥物作用靶點(diǎn)的PPI網(wǎng)絡(luò)分析得到以VCAM1、SERPINE1、TLR4、FGF1為核心的4個(gè)子網(wǎng)絡(luò),核心靶點(diǎn)及子網(wǎng)絡(luò)靶點(diǎn)表達(dá)與患者生存時(shí)間顯著相關(guān)。VCAM1為免疫球蛋白超家族成員之一,廣泛存在于活化內(nèi)皮細(xì)胞、平緩肌細(xì)胞、骨髓基質(zhì)細(xì)胞、巨噬細(xì)胞、樹突狀細(xì)胞集成纖維細(xì)胞等表面,入血成分干預(yù)其表達(dá)進(jìn)而調(diào)節(jié)炎癥反應(yīng)、細(xì)胞和組織的分化及腫瘤的擴(kuò)散、轉(zhuǎn)移等生物過(guò)程[10]。SERPINE1為絲氨酸蛋白酶抑制劑(SERPIN)家族的重要成員,是尿激酶和組織蛋白酶原激活劑(uPA和tPA)的主要抑制劑,在細(xì)胞外基質(zhì)重塑中起關(guān)鍵作用,研究顯示其可促進(jìn)血管生成、抗凋亡、誘導(dǎo)腫瘤血管化、激活炎癥反應(yīng)等,與腫瘤進(jìn)展及轉(zhuǎn)移緊密相關(guān)[11-12]。TLR4為toll樣受體家族重要成員,通過(guò)識(shí)別病原相關(guān)分子模式而激活相應(yīng)的信號(hào)傳導(dǎo)通路,進(jìn)一步促進(jìn)NF-κB的激活,TLR4在多種惡性腫瘤組織中呈高表達(dá)狀態(tài),可促進(jìn)惡性腫瘤的增殖、抑制腫瘤細(xì)胞凋亡及誘導(dǎo)免疫逃逸等[13]。FGF1為成纖維細(xì)胞生長(zhǎng)因子家族的成員,通過(guò)與種內(nèi)皮細(xì)胞表面受體相互作用促進(jìn)血管生成,而且能夠促進(jìn)多種類型細(xì)胞的有絲分裂增殖,促進(jìn)血管生成以及腫瘤細(xì)胞的增殖、侵襲和遷移等,研究顯示多種惡性癌癥中FGF1均存在異常高表達(dá)[14-15]。結(jié)合生存時(shí)間及不同分期表達(dá)量統(tǒng)計(jì)分析,核心靶點(diǎn)及其子網(wǎng)絡(luò)靶點(diǎn)表達(dá)與臨床預(yù)后密切相關(guān),可能為胃復(fù)春膠囊發(fā)揮調(diào)節(jié)基質(zhì)細(xì)胞、抑制癌癥進(jìn)展的作用靶點(diǎn)。
胃癌在中醫(yī)學(xué)并無(wú)具體對(duì)應(yīng)名稱,根據(jù)患者癥狀可將其歸入“積聚”“胃脘痛”“噎膈”等范疇[16],醫(yī)家以為“正氣虧損、邪毒侵襲”與之相關(guān),屬于本虛標(biāo)實(shí)之證,基本病機(jī)是正虛、血瘀、痰阻、癌毒蘊(yùn)結(jié)于胃,導(dǎo)致胃失和降,病因?yàn)榍橹疽蛩?、飲食因素、濕熱蟲毒感染等[17-18]。胃復(fù)春膠囊方中紅參可補(bǔ)元?dú)?、益氣攝血、復(fù)脈固脫,香茶菜可清熱利濕、活血散淤、解毒消腫,枳殼可健脾開胃、理氣寬中、行滯消脹,共奏健脾益氣、活血解毒之功,減輕幽門螺桿菌及致癌物質(zhì)對(duì)胃黏膜的損害,抑制癌細(xì)胞增生,促進(jìn)癌細(xì)胞凋亡等[19-20]。
藥味-靶點(diǎn)-入血成分網(wǎng)絡(luò)分析得異金雀花素、香茶菜素O、香茶菜素U、藍(lán)萼甲素、橙桑黃酮F、去甲基川陳皮素等為核心起效物質(zhì)。歸屬于香茶菜中的活性成分如異金雀花素、香茶菜素O、香茶菜素U、藍(lán)萼甲素等有抗菌消炎、促進(jìn)組織修復(fù)、抑制血小板聚集、血管內(nèi)皮細(xì)胞保護(hù)作用,能夠減輕微血管內(nèi)皮功能障礙及損傷,促進(jìn)受損的胃組織黏膜修復(fù)與再生,抑制腫瘤細(xì)胞增生及轉(zhuǎn)移等[21-22]。歸屬于枳殼、紅參的成分如橙皮素、Sudachinoid A、異橙黃酮、去甲基川陳皮素等可促進(jìn)胃腸道運(yùn)動(dòng)、抑制胃癌細(xì)胞增殖,具有抗炎、抑菌等作用[23-24]。采用藥代動(dòng)力學(xué)特性分析顯示核心入血成分生物藥劑學(xué)效應(yīng)良好,分子對(duì)接顯示核心入血成分與核心靶點(diǎn)蛋白結(jié)合活性良好,篩選所得入血成分可能為發(fā)揮基質(zhì)細(xì)胞調(diào)節(jié)的物質(zhì)基礎(chǔ)來(lái)源。
KEGG通路分析顯示潛在藥物作用靶點(diǎn)與多條通路相關(guān)。鈣離子信號(hào)是細(xì)胞遷移和侵襲的重要調(diào)節(jié)因子,與幽門螺桿菌誘導(dǎo)的胃癌細(xì)胞遷移和侵襲有關(guān),作用于該通路可抑制幽門螺桿菌通過(guò)Wnt/β-catenin/TRPC6/Ca2+信號(hào)通路誘導(dǎo)的胃癌細(xì)胞遷移和侵襲[25-26]。神經(jīng)活性配體-受體相互作用是質(zhì)膜上所有與細(xì)胞內(nèi)外信號(hào)通路相關(guān)的受體和配體的集合,作用于該通路可調(diào)節(jié)多種神經(jīng)遞質(zhì)及其受體結(jié)合[27]。晚期糖基化終產(chǎn)物 (AGEs) 是由蛋白質(zhì)、脂質(zhì)和核酸的非酶糖基化和氧化產(chǎn)生,AGE/RAGE信號(hào)傳導(dǎo)引發(fā)涉及還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶、蛋白激酶 C 和絲裂原活化蛋白激酶的多個(gè)細(xì)胞內(nèi)信號(hào)通路的激活,進(jìn)而導(dǎo)致核轉(zhuǎn)錄因子-κB活化[28]。研究顯示RAGE可促進(jìn)幽門螺桿菌對(duì)細(xì)胞的黏附性,同時(shí)幽門螺桿菌可促進(jìn)胃癌細(xì)胞RAGE的表達(dá),兩者通過(guò)協(xié)同增加炎性反應(yīng)因子的釋放促進(jìn)胃癌進(jìn)展[29]。PI3K-AKT信號(hào)通路的激活與腫瘤的發(fā)生發(fā)展密切相關(guān)[30-31],可促進(jìn)腫瘤細(xì)胞的生長(zhǎng)、增殖和轉(zhuǎn)移,抑制凋亡,促血管生成及誘導(dǎo)化療和放療抗性[32]?;钚晕镔|(zhì)通過(guò)調(diào)節(jié)PI3K和AKT磷酸化水平影響腫瘤細(xì)胞的增殖、凋亡甚至化療和放療抗性,從而在胃癌的輔助性治療中發(fā)揮作用。EGFR與腫瘤細(xì)胞的增殖、遷移和侵襲密切相關(guān),其過(guò)表達(dá)或組成性激活在腫瘤細(xì)胞常見,與配體EGF結(jié)合后活化受體的酪氨酸激酶,再將活化后的信號(hào)向下游傳遞誘導(dǎo)激活下游的VEGF高表達(dá),并與其主要配體VEGFR2結(jié)合,促進(jìn)腫瘤組織的血管生成[33-34],活性物質(zhì)靶向腫瘤細(xì)胞、微環(huán)境細(xì)胞,從而調(diào)節(jié)微環(huán)境的平衡作用,可抑制腫瘤生長(zhǎng)[35]。MAPK信號(hào)通路從細(xì)胞周期、分化、凋亡、自噬、侵襲轉(zhuǎn)移及耐藥等多維度調(diào)控腫瘤的發(fā)生和發(fā)展,活性物質(zhì)可通過(guò)激活MAPK通路,誘導(dǎo)細(xì)胞凋亡,發(fā)揮其抗腫瘤藥理作用[36-37]。磷脂酶D具有促進(jìn)癌細(xì)胞的存活增殖及細(xì)胞遷移、侵襲的作用,活性物質(zhì)通過(guò)作用磷脂酶D下調(diào)Wnt信號(hào)通路的活性抑制癌細(xì)胞增殖和轉(zhuǎn)移,抑制β-catenin蛋白入核進(jìn)轉(zhuǎn)錄而抑制Wnt信號(hào)通路靶基因的表達(dá),抑制癌細(xì)胞增殖和轉(zhuǎn)移過(guò)程[38]。生長(zhǎng)因子如EGF、PDGF、FGF等激活受體酪氨酸激酶后,可活化由原癌基因FaS編碼的Ras蛋白,催化其底物蛋白的酪氨酸磷酸化反應(yīng),引發(fā)蛋白磷酸化的級(jí)聯(lián)反應(yīng),調(diào)節(jié)一系列與細(xì)胞生長(zhǎng)、分化、凋亡有關(guān)的重要功能[39]。Rapl是Ras癌基因家族成員之一,調(diào)節(jié)細(xì)胞黏附和腫瘤發(fā)生[40],活性物質(zhì)作用于Ras、Rap1信號(hào)通路可直接或間接調(diào)節(jié)細(xì)胞分化、增殖和凋亡過(guò)程。胃癌患者約35%~60%伴隨不同程度的幽門螺桿菌感染[41-42],不同類別白細(xì)胞如中性粒細(xì)胞、嗜酸性粒細(xì)胞、巨噬細(xì)胞、單核細(xì)胞、肥大細(xì)胞等可在感染部位激活和募集,分泌炎癥因子、趨化因子、生長(zhǎng)因子等,如IL-6、TNF、PDGF、EGF、FGF、VEGFA等,組成炎癥-腫瘤微環(huán)境,并刺激腫瘤細(xì)胞生長(zhǎng),血管和淋巴管生成以及腫瘤的浸潤(rùn)轉(zhuǎn)移[43-44]。活性物質(zhì)通過(guò)作用于白細(xì)胞跨內(nèi)皮遷移、中性粒細(xì)胞胞外陷阱形成、TRP通道的炎癥介質(zhì)調(diào)節(jié)、趨化因子等通路干預(yù)慢性炎癥過(guò)程,輔助抗癌治療,抑制癌癥復(fù)發(fā)。
綜上所述,本研究通過(guò)生物信息學(xué)分析基質(zhì)細(xì)胞含量與胃癌臨床特征關(guān)聯(lián),發(fā)現(xiàn)基質(zhì)細(xì)胞為潛在的胃癌干預(yù)策略,并闡述了胃復(fù)春膠囊干預(yù)基質(zhì)細(xì)胞的潛在物質(zhì)基礎(chǔ)、作用靶點(diǎn)及信號(hào)通路。由于本研究未能進(jìn)一步進(jìn)行體外、體內(nèi)實(shí)驗(yàn)驗(yàn)證,后續(xù)將進(jìn)一步完善,為胃癌干預(yù)策略及胃復(fù)春作用機(jī)制及物質(zhì)基礎(chǔ)研究提供參考依據(jù)。
參考文獻(xiàn):
[1]JOSHI S S, BADGWELL B D. Current treatment and recent progress in gastric cancer[J]. CA: a Cancer Journal for Clinicians, 2021, 71(3): 264-279. DOI: 10.3322/caac.21657.
[2]黃超. 肺癌腫瘤微環(huán)境的系統(tǒng)解析及靶向中藥發(fā)現(xiàn)[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2021.
[3]YOSHIHARA K, SHAHMORADGOLI M, MARTNEZ E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nature Communications, 2013, 4: 2612. DOI: 10.1038/ncomms3612.
[4]KANG B X, CAMPS J, FAN B, et al. Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment[J]. Genome Biology, 2022, 23(1): 265. DOI: 10.1186/s13059-022-02828-2.
[5]OYA Y, HAYAKAWA Y, KOIKE K. Tumor microenvironment in gastric cancers[J]. Cancer Science, 2020, 111(8): 2696-2707. DOI: 10.1111/cas.14521.
[6]BUSSARD K M, MUTKUS L, STUMPF K, et al. Tumor-associated stromal cells as key contributors to the tumor microenvironment[J]. Breast Cancer Research: BCR, 2016, 18(1): 84. DOI: 10.1186/s13058-016-0740-2.
[7]王錦云, 趙樹珍. 人參香茶片治療胃癌術(shù)后101例的近期療效觀察[J]. 中醫(yī)雜志, 1983, 24(7): 27-29. DOI: 10.13288/j.11-2166/r.1983.07.015.
[8]WANG H J, WU R M, XIE D, et al. A combined phytochemistry and network pharmacology approach to reveal the effective substances and mechanisms of Wei-fu-Chun Tablet in the treatment of precancerous lesions of gastric cancer[J]. Frontiers in Pharmacology, 2020, 11: 558471. DOI: 10.3389/fphar.2020.558471.
[9]de VISSER K E, JOYCE J A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016.
[10]LU X, MU E, WEI Y, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors[J]. Cancer Cell, 2011, 20(6): 701-714. DOI: 10.1016/j.ccr.2011.11.002.
[11]DUFFY M J, MCGOWAN P M, HARBECK N, et al. uPA and PAI-1 as biomarkers in breast cancer: Validated for clinical use in level-of-evidence-1 studies[J]. Breast Cancer Research, 2014, 16(4): 1-10. DOI: 10.1186/s13058-014-0428-4.
[12]KILLEEN S, HENNESSEY A, EL HASSAN Y, et al. The urokinase plasminogen activator system in cancer: a putative therapeutic target?[J]. Drug News & Perspectives, 2008, 21(2): 107. DOI: 10.1358/dnp.2008.21.2.1188197.
[13]RAN S. The role of TLR4 in chemotherapy-driven metastasis[J]. Cancer Research, 2015, 75(12): 2405-2410. DOI: 10.1158/0008-5472.CAN-14-3525.
[14]BILLOTTET C, TUEFFERD M, GENTIEN D, et al. Modulation of several waves of gene expression during FGF-1 induced epithelial-mesenchymal transition of carcinoma cells[J]. Journal of Cellular Biochemistry, 2008, 104(3): 826-839. DOI: 10.1002/jcb.21667
[15]李浩. FGF1異常表達(dá)促進(jìn)結(jié)直腸癌細(xì)胞增殖和遷移的機(jī)制研究[D]. 蘇州: 蘇州大學(xué), 2021.
[16]梁云麒, 沈克平, 胡兵. 中醫(yī)胃癌病機(jī)與治法研究[J]. 中華中醫(yī)藥學(xué)刊, 2014, 32(3): 513-515. DOI: 10.13193/j.issn.1673-7717.2014.03.021.
[17]戈淑超, 王高玉, 劉紅寧, 等. 中醫(yī)藥治療胃癌的研究概況[J]. 江西中醫(yī)藥, 2018, 49(9): 72-75.
[18]馬善美, 陳雅文. 中醫(yī)藥治療胃癌的研究進(jìn)展[J]. 中國(guó)民間療法, 2022, 30(3): 114-117. DOI: 10.19621/j.cnki.11-3555/r.2022.0340.
[19]陳曦, 趙亞紅, 張也青, 等. 胃復(fù)春的臨床應(yīng)用和現(xiàn)代研究進(jìn)展[J]. 江西中醫(yī)藥, 2016, 47(9): 77-80.
[20]祁大慶, 陳琳慧, 潘海春, 等. 胃復(fù)春膠囊通過(guò)NF-κB信號(hào)通路誘導(dǎo)胃癌細(xì)胞凋亡并抑制胃癌細(xì)胞轉(zhuǎn)移作用[J]. 現(xiàn)代藥物與臨床, 2022, 37(6): 1175-1181. DOI: 10.7501/j.issn.1674-5515.2022.06.002.
[21]宿玉, 崔佳, 施務(wù)務(wù), 等. 中藥香茶菜研究進(jìn)展[J]. 亞太傳統(tǒng)醫(yī)藥, 2011, 7(6): 155-158.
[22]費(fèi)洪榮, 王鳳澤, 趙雪梅, 等. 唇形科香茶菜屬植物中主要二萜類成分的抗腫瘤活性研究進(jìn)展[J]. 中國(guó)藥房, 2010, 21(7): 661-663.
[23]WANG Y, CHEN Y Y, ZHANG H, et al. Polymethoxyflavones from citrus inhibited gastric cancer cell proliferation through inducing apoptosis by upregulating RARβ, both in vitro and in vivo[J]. Food and Chemical Toxicology, 2020, 146: 111811. DOI: 10.1016/j.fct.2020.111811.
[24]王慧, 鐘國(guó)躍, 張壽文, 等. 枳殼化學(xué)成分、藥理作用的研究進(jìn)展及其質(zhì)量標(biāo)志物的預(yù)測(cè)分析[J]. 中華中醫(yī)藥學(xué)刊, 2022, 40(9): 184-192. DOI: 10.13193/j.issn.1673-7717.2022.09.041.
[25]樊偉旭, 詹志來(lái), 侯芳潔, 等. 紅參的化學(xué)成分及藥理作用研究進(jìn)展[J]. 天然產(chǎn)物研究與開發(fā), 2021, 33(1): 137-149. DOI: 10.16333/j.1001-6880.2021.1.017.
[26]SONG Y, LIU G, LIU S A, et al. Helicobacter pylori upregulates TRPC6 via Wnt/β-catenin signaling to promote gastric cancer migration and invasion[J]. OncoTargets and Therapy, 2019, 12: 5269-5279. DOI: 10.2147/ott.s201025.
[27]PREVARSKAYA N, SKRYMA R, SHUBA Y. Calcium in tumour metastasis: new roles for known actors[J]. Nature Reviews Cancer, 2011, 11(8): 609-618. DOI: 10.1038/nrc3105.
[28]LAUSS M, KRIEGNER A, VIERLINGER K, et al. Characterization of the drugged human genome[J]. Pharmacogenomics, 2007, 8(8): 1063-1073. DOI: 10.2217/14622416.8.8.1063.
[29]SHEN C Y, LU C H, WU C H, et al. The development of Maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases[J]. Molecules, 2020, 25(23): 5591. DOI: 10.3390/molecules25235591.
[30]許新才, 曹博威, 張銀華, 等. 幽門螺桿菌及RAGE表達(dá)對(duì)胃癌協(xié)同作用的機(jī)制探討[J]. 中華胃腸外科雜志, 2017, 20(9): 1072-1074. DOI: 10.3760/cma.j.issn.1671-0274.2017.09.024.
[31]WANG L Q, WONG K Y, ROSN A, et al. Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways[J]. Oncotarget, 2015, 6(42): 44422-44436. DOI: 10.18632/oncotarget.6251.
[32]HONG S, KIM S, KIM H Y, et al. Targeting the PI3K signaling pathway in KRAS mutant colon cancer[J]. Cancer Medicine, 2016, 5(2): 248-255. DOI: 10.1002/cam4.591.
[33]ANG K L, SHI D L, KEONG W W, et al. Upregulated Akt signaling adjacent to gastric cancers: implications for screening and chemoprevention[J]. Cancer Letters, 2005, 225(1): 53-59. DOI: 10.1016/j.canlet.2004.11.021.
[34]SIGISMUND S, AVANZATO D, LANZETTI L. Emerging functions of theEGFRin cancer[J]. Molecular Oncology, 2018, 12(1): 3-20. DOI: 10.1002/1878-0261.12155.
[35]刁藝, 田新華, 黃延林, 等. 靶向表皮生長(zhǎng)因子受體和血管內(nèi)皮生長(zhǎng)因子受體-2治療多形性膠質(zhì)母細(xì)胞瘤[J]. 中華實(shí)驗(yàn)外科雜志, 2010, 27(3): 358-360. DOI: 10.3760/cma.j.issn.1001-9030.2010.03.032.
[36]CORSO S, PIETRANTONIO F, APICELLA M, et al. Optimized EGFR blockade strategies in EGFR addicted gastroesophageal adenocarcinomas [J]. Clinical Cancer Research, 2021, 27(11): 3126-3140. DOI:10.1158/1078-0432.CCR-20-0121.
[37]張晗, 蘇韞, 龔紅霞, 等. 歸芪白術(shù)方聯(lián)合奧沙利鉑對(duì)胃癌荷瘤小鼠EGFR, VEGFR2表達(dá)和血管生成的影響[J]. 中國(guó)實(shí)驗(yàn)方劑學(xué)雜志, 2022, 28(7): 57-63. DOI: 10.13422/j.cnki.syfjx.20220521.
[38]SUN Y, LIU W Z, LIU T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. Journal of Receptors and Signal Transduction, 2015, 35(6): 600-604. DOI: 10.3109/10799893.2015.1030412.
[39]李紫瑞, 邢瑩, 胡玥, 等. 基于網(wǎng)絡(luò)藥理學(xué)的川楝素調(diào)控MAPK通路誘導(dǎo)人胃癌MKN-28細(xì)胞凋亡[J]. 中醫(yī)藥信息, 2021, 38(11): 6-14. DOI: 10.19656/j.cnki.1002-2406.20211102.
[40]高雅. 磷脂酶D通過(guò)Wnt信號(hào)通路促進(jìn)人結(jié)腸癌細(xì)胞增殖和侵襲[D]. 廈門: 廈門大學(xué), 2014.
[41]ZENONOS K, KYPRIANOU K. RAS signaling pathways, mutations and their role in colorectal cancer[J]. World Journal of Gastrointestinal Oncology, 2013, 5(5): 97-101. DOI: 10.4251/wjgo.v5.i5.97.
[42]ZHANG Y L, ZHANG Y L, WANG R C, et al. Roles of Rap1 signaling in tumor cell migration and invasion[J]. Cancer Biology & Medicine, 2017, 14(1): 90-99. DOI: 10.20892/j.issn.2095-3941.2016.0086.
[43]SANTOS M L C, de BRITO B B, da SILVA F A F, et al. Helicobacter pylori infection: beyond gastric manifestations[J]. World Journal of Gastroenterology, 2020, 26(28): 4076-4093. DOI: 10.3748/wjg.v26.i28.4076.
[44]KUMAR S, METZ D C, ELLENBERG S, et al. Risk factors and incidence of gastric cancer after detection of Helicobacter pylori infection: A large cohort study[J]. Gastroenterology, 2020, 158(3): 527-536.e7. DOI: 10.1053/j.gastro.2019.10.019.