苗松 李杰 楊玉 李蒙
摘 要:采用傳統(tǒng)化學(xué)方法對(duì)生物質(zhì)的木質(zhì)纖維素成分進(jìn)行分析費(fèi)時(shí)費(fèi)力,且不能提供生物質(zhì)的內(nèi)部結(jié)構(gòu)信息,難以應(yīng)用于實(shí)際的工業(yè)生產(chǎn),近紅外光譜技術(shù)為木質(zhì)纖維素成分分析提供了新途徑。綜述了國(guó)內(nèi)外利用近紅外技術(shù)進(jìn)行木質(zhì)纖維素定性定量分析的研究進(jìn)展及應(yīng)用。比較了主要建模樣品選擇方法的優(yōu)劣,闡述了人工智能算法結(jié)合近紅外光譜技術(shù)的應(yīng)用和發(fā)展,隨著近紅外技術(shù)的不斷發(fā)展,它必然會(huì)帶動(dòng)能源業(yè)、工業(yè)、飼料業(yè)、造紙業(yè)等產(chǎn)業(yè)的發(fā)展。
關(guān)鍵詞:近紅外光譜技術(shù);木質(zhì)纖維素;無損檢測(cè);綜述
中圖分類號(hào):O657.33文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1006-060X(2023)10-0091-06
Application of Near-Infrared Spectroscopy in Qualitative and Quantitative Analysis of Lignocellulose
MIAO Song1, LI Jie2,3, YANG Yu2,3, LI Meng1
(1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PRC; 2. Hunan Institute of Agricultural Information and Engineering, Changsha 410125, PRC; 3. Hunan Branch, National Energy R&D Center for Non-Food Biomass, Changsha 410125, PRC)
Abstract:In the field of compositional analysis of lignocellulosic fibers, traditional chemical methods are time-consuming and labor-intensive, unable to provide information about the internal structure of biomass. Their practical applications in industrial production are limited. The emergence of near-infrared spectroscopy (NIRS) has revolutionized this field by offering a rapid, reliable, green, and cost-effective method. This article provides a comprehensive review of the research progress made in the qualitative and quantitative analysis of lignocellulosic fibers using NIRS technology; furthermore, elaborates the advantages and disadvantages of main modeling sample selection methods; lastly, emphasizes the potential benefits of integrating artificial intelligence algorithms with NIRS technology. It is expected that the continuous advancements in NIRS technology will significantly impact industries such as energy, manufacturing, feed production, and papermaking.
Key words:near-infrared spectrometry; lignocellulose; non-destructive testing; review
收稿日期:2023-08-20
基金項(xiàng)目:國(guó)家自然科學(xué)基金(32000260);博士后科學(xué)基金(2020M682566);創(chuàng)新平臺(tái)與人才計(jì)劃(2022NK4214);湖南省農(nóng)業(yè)科技創(chuàng)新資金項(xiàng)目(2022CX84-19)
作者簡(jiǎn)介:苗 松(1986—),男,河北石家莊市人,碩士研究生,主要從事近紅外研究。
通信作者:楊 玉,李 蒙
能源在現(xiàn)代工業(yè)中不可或缺。木質(zhì)纖維素生物質(zhì)是地球上最豐富的可持續(xù)碳源,具有巨大的經(jīng)濟(jì)價(jià)值。它可以通過化學(xué)、物理、微生物或酶處理直接或間接地用于生產(chǎn)生物制品,并廣泛應(yīng)用于食品、健康、醫(yī)藥、能源、材料和化學(xué)工業(yè)等領(lǐng)域[1]。木質(zhì)纖維素生物質(zhì)主要由纖維素、半纖維素和木質(zhì)素組成。已有許多研究報(bào)道了使用木質(zhì)纖維素生產(chǎn)生物燃料和新型材料的方法,這表明木質(zhì)纖維素生物質(zhì)具有廣闊的發(fā)展前景[2-4]。然而,植物中的木質(zhì)纖維素含量常常因材料類型、生長(zhǎng)地點(diǎn)、收獲部位和加工方式的不同而產(chǎn)生差異[5,6],而生物質(zhì)結(jié)構(gòu)成分(纖維素、半纖維素和木質(zhì)素)的差異導(dǎo)致其化學(xué)反應(yīng)性不同,進(jìn)而影響工業(yè)生產(chǎn)的工藝條件,如溫度、反應(yīng)時(shí)間、粒徑大小、催化劑種類和比例等[7-9]。因此,快速準(zhǔn)確地測(cè)定生物質(zhì)結(jié)構(gòu)成分的含量是加速生物質(zhì)資源利用的前提[10]。
傳統(tǒng)的化學(xué)方法如范式洗滌法(Van Soest)等可以得到相關(guān)木質(zhì)纖維素的含量信息,而且已經(jīng)在實(shí)踐中得到了證明[11],但是傳統(tǒng)的化學(xué)方法需要進(jìn)行繁瑣的操作,費(fèi)時(shí)費(fèi)力,并且結(jié)果的精確度不高,而近幾年興起的高效液相色譜法因成本太高難以得到普及。因此急切的需要一種能夠快速的、綠色的、低成本的、準(zhǔn)確的木質(zhì)纖維素分析方法[10]。
近紅外光譜(NIRS)被廣泛應(yīng)用于農(nóng)業(yè)、食品、醫(yī)學(xué)和中藥等領(lǐng)域的定性和定量分析。此外,近紅外光譜還被證實(shí)可用于木質(zhì)纖維素的定性和定量分析。近紅外光譜技術(shù)的優(yōu)勢(shì)之一是樣品處理簡(jiǎn)便,能夠在短時(shí)間內(nèi)高效處理大量樣品,從而降低了分析成本。此外,該技術(shù)對(duì)樣品無損傷,使得樣品可以在分析后繼續(xù)進(jìn)行其他測(cè)試,提高了實(shí)驗(yàn)的準(zhǔn)確性。與傳統(tǒng)的化學(xué)方法相比,近紅外光譜還能檢測(cè)和分析生物質(zhì)樣品中的官能團(tuán)和物理結(jié)構(gòu),這是傳統(tǒng)方法所無法實(shí)現(xiàn)的。
主要綜述了近紅外光譜技術(shù)在木質(zhì)纖維素生物質(zhì)的定量和定性方面的研究進(jìn)展以及近紅外光譜技術(shù)的基本原理,并對(duì)其在生物質(zhì)原料方面上的應(yīng)用進(jìn)行了討論和展望。
1 近紅外光譜技術(shù)的原理
根據(jù)朗伯比爾定律可知,近紅外光譜分析中的吸光度與物質(zhì)在特定波長(zhǎng)處的濃度呈線性關(guān)系。近紅外光譜屬于振動(dòng)光譜,主要是由于組成物質(zhì)的分子在不停的振動(dòng),當(dāng)近紅外光照射時(shí),頻率相同的光線和基團(tuán)就會(huì)發(fā)生共振現(xiàn)象,光的能量傳遞給分子。不同的基團(tuán)擁有不同的能級(jí),因此近紅外光譜可以用來進(jìn)行定性及定量分析。近紅外光譜的信息主要由含氫基團(tuán)的倍頻與合頻組成,這增加了分析的難度,但隨著化學(xué)計(jì)量學(xué)的發(fā)展,通過近紅外光譜分析物質(zhì)組成及結(jié)構(gòu)信息已經(jīng)成為現(xiàn)實(shí)[12]。
2 與木質(zhì)纖維素相關(guān)的近紅外光譜吸收帶
近期研究已經(jīng)表明,生物質(zhì)中不同基團(tuán)之間的近紅外吸收帶存在高度相關(guān)性并且有可能互相重疊,增加了近紅外光譜分析的挑戰(zhàn)。為了提高模型的準(zhǔn)確性,研究人員通常會(huì)對(duì)光譜進(jìn)行預(yù)處理,并選擇其中的特定波長(zhǎng)作為構(gòu)建模型的特征。例如,針對(duì)芒草木質(zhì)纖維素的預(yù)測(cè)模型,在選擇了特定波長(zhǎng)后,其預(yù)測(cè)能力顯著提升,相關(guān)系數(shù)超過0.9,可用于測(cè)量纖維素和半纖維素的含量[7]。
3 基于近紅外光譜的模型構(gòu)建及化學(xué)計(jì)量學(xué)應(yīng)用
近紅外光譜分析的關(guān)鍵是建模樣品的選擇,因?yàn)橐粋€(gè)具有代表性的樣品集應(yīng)具有足夠的方差,在樣品選擇過程中,應(yīng)當(dāng)考慮樣品的每個(gè)屬性以及屬性之間的聯(lián)系。如表1所示,目前常用的代表樣品選擇方法包括KS方法、SPXY方法、GN距離法及MLIS方法[13]。
近紅外光譜分析技術(shù)長(zhǎng)期以來面臨的挑戰(zhàn)是近紅外光譜區(qū)的吸收強(qiáng)度較弱,并且不同基團(tuán)的倍頻和合頻吸收帶會(huì)產(chǎn)生譜帶重疊,導(dǎo)致分析困難。然而,近年來,隨著近紅外光譜儀和化學(xué)計(jì)量學(xué)的快速發(fā)展,近紅外光譜在各個(gè)領(lǐng)域得到了廣泛應(yīng)用。近紅外光譜的化學(xué)計(jì)量學(xué)方法研究主要涵蓋光譜預(yù)處理、特征波長(zhǎng)選擇和建模方法。光譜預(yù)處理包括基線校正、平滑處理和散射校正。特征波長(zhǎng)選擇則包括波長(zhǎng)選擇方法(Wavelength Selection, WS)和波段選擇方法(Wavelength Interval Selection, WIS)。光譜預(yù)處理主要用來消除在光譜測(cè)量過程中產(chǎn)生的噪音、雜散光的干擾,和修正基線漂移等。特征波長(zhǎng)的選擇用于消除光譜中的無關(guān)變量,提高模型的準(zhǔn)確性,降低模型的復(fù)雜度。表2和表3總結(jié)了常見的光譜處理方法和主要特征波長(zhǎng)選取方法及特點(diǎn)。
4 近紅外光譜技術(shù)在木質(zhì)纖維素中的應(yīng)用
目前關(guān)于近紅外光譜應(yīng)用的報(bào)道中,絕大部分都是與木質(zhì)纖維素有關(guān)的。在造紙業(yè)和化工產(chǎn)業(yè)中,近紅外光譜除了用來研究莖稈的化學(xué)性質(zhì)之外,為了提升它們的利用效率,還經(jīng)常用近紅外光譜研究其物理性質(zhì)如結(jié)晶度,聚合度等。此外,近紅外光譜還常用于預(yù)測(cè)生物質(zhì)中的水分、灰分和蛋白質(zhì)含量。為其更好的加工利用提供了強(qiáng)有力的手段。由于生物質(zhì)的成分可能因收獲時(shí)間、地點(diǎn)和品種的不同而異,因此對(duì)生物質(zhì)成分進(jìn)行實(shí)時(shí)監(jiān)控對(duì)于工業(yè)應(yīng)用非常重要。近紅外光譜與微機(jī)電系統(tǒng)(MEMS)的結(jié)合已成功實(shí)現(xiàn)對(duì)單糖含量的在線監(jiān)測(cè)。近紅外光譜技術(shù)還被用于分析多種藻類原材料,如羊棲菜,并使用支持向量機(jī)(SVM)構(gòu)建了預(yù)測(cè)甘露醇、多糖、巖藻甾醇和巖藻黃素含量的模型[37]。驗(yàn)證集的R2值最低達(dá)到了0.81,最高達(dá)到了0.99,說明近紅外光譜能夠快速準(zhǔn)確地表征這些成分。此外,研究還表明近紅外光譜對(duì)玉米秸稈和芒草秸稈的主要成分具有良好的預(yù)測(cè)結(jié)果。
4.1 近紅外在生物質(zhì)原料定性中的應(yīng)用
Xiaoli Jin[38]通過結(jié)合近紅外光譜和化學(xué)計(jì)量學(xué)對(duì)3種芒屬植物進(jìn)行了分類預(yù)測(cè)。基于Line-LSSVR的分類模型在測(cè)試集上達(dá)到了99.42%的正確率。研究結(jié)果表明,近紅外光譜結(jié)合初步形態(tài)分類是一種有效可靠的芒屬植物分類方法。類似地,Haiyan Zhao[39]使用類似的方法對(duì)中國(guó)4個(gè)小麥主產(chǎn)區(qū)的240個(gè)小麥樣品進(jìn)行了分析,并成功實(shí)現(xiàn)了對(duì)小麥地理位置的溯源,總體正確率達(dá)到了85%。此外,皂莢刺作為一種傳統(tǒng)中藥材,具有高度的藥用和經(jīng)濟(jì)價(jià)值。然而,一些不法商販經(jīng)常通過摻雜其他相似枝條的方式冒充皂莢刺以獲取利益。為此,Wang等[40]利用近紅外光譜提供了一種簡(jiǎn)單、快速、可靠的辨別方法,其正確率高達(dá)99.72%。
4.2 近紅外在生物質(zhì)原料定量中的應(yīng)用
近紅外光譜已被廣泛應(yīng)用于預(yù)測(cè)生物質(zhì)的主要成分,并對(duì)木質(zhì)纖維素的組成進(jìn)行了深入研究。由表4可知,除了大須芒草的PCR模型和橄欖樹,其他校正模型的相關(guān)系數(shù)(R2)均大于0.9,大多數(shù)預(yù)測(cè)模型的相關(guān)系數(shù)超過0.7。表中的木質(zhì)素部分總結(jié)了近紅外光譜在木質(zhì)素研究中的應(yīng)用。研究結(jié)果顯示,盡管使用了不同區(qū)間的波長(zhǎng)和建模方法,但化學(xué)數(shù)據(jù)與近紅外光譜數(shù)據(jù)之間存在高度相關(guān)性,并且具有較高的校正模型預(yù)測(cè)精度(R2>0.86),預(yù)測(cè)模型的相關(guān)系數(shù)存在一定差異。目前,近紅外光譜主要應(yīng)用于監(jiān)測(cè)生物質(zhì)加工過程中的化學(xué)變化,例如木質(zhì)生物質(zhì)的酶消化率和植物細(xì)胞壁水解效率[41]。
5 問題及展望
近紅外光譜技術(shù)為生物質(zhì)分析提供了一種高通量、快速、簡(jiǎn)便和準(zhǔn)確的方法,但在使用時(shí)需要注意以下幾點(diǎn)。第一,需要精準(zhǔn)的化學(xué)參考值和高質(zhì)量的光譜數(shù)據(jù);第二,需要一個(gè)盡可能大的樣品集來構(gòu)建校正模型;第三,為了適應(yīng)不同類型的樣品,需要提高模型的泛化能力;第四,由于主要含氫基團(tuán)各種振動(dòng)的非諧性常數(shù)較低(為1.9×10-2),近紅外光譜的靈敏度有所限制,通常要求檢測(cè)的成分含量大于1%;第五,模型需要定期更新,因?yàn)樗鼤?huì)隨著儀器狀態(tài)或樣品的改變而變化。最后,根據(jù)朗伯-比爾定律,樣品的近紅外光吸收值與其化學(xué)成分之前存在一定的線性關(guān)系,然而,在實(shí)際應(yīng)用中,人們發(fā)現(xiàn)非線性回歸通常比線性回歸獲得更好的結(jié)果[42,44-45],但非線性模型也面臨過度擬合的風(fēng)險(xiǎn)。
前人研究表明,深度學(xué)習(xí)方法在食品和農(nóng)產(chǎn)品質(zhì)量評(píng)價(jià)中得到了廣泛應(yīng)用,但在木質(zhì)纖維素領(lǐng)域的應(yīng)用還相對(duì)較少。未來期望將近紅外光譜與深度學(xué)習(xí)相結(jié)合,以在木質(zhì)纖維素的定性和定量分析中取得更深入的應(yīng)用。這種整合有望提高分析的準(zhǔn)確性和效率,進(jìn)一步推動(dòng)木質(zhì)纖維素研究的發(fā)展。
參考文獻(xiàn):
[1] ALEJANDRO R,EDUARDO E. Special Issue “Lignocellulosic Biomass”[J]. Molecules, 2021,26(5):1483.
[2] ROUZITALAB Z,MAKLAVANY D M,JAFARINEJAD S,et al. Lignocellulose-based adsorbents:a spotlight review of the effective parameters on carbon dioxide capture process[M]. 2019.
[3] DAI L,HUANG T,JIANG K,et al. A novel recyclable furoic acid-assisted pretreatment for sugarcane bagasse biorefinery in co-production of xylooligosaccharides and glucose[J]. Biotechnology for Biofuels,2020,14(1):35.
[4] CHEN S,XIA Y,ZHANG B,et al. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances[J]. Journal of Hazardous Materials, 2020, 408:124956.
[5] LABDELLI A,REBIAI A,TAHIRINE M,et al. Nutritional content and antioxidant capacity of the seed and the epicarp in different ecotypes of pistacia atlantica Desf. Subsp. atlantica[J]. Plants,2020, 9(9):1065.
[6] YU HM,ZHANG Z,LI Z,et al. Characteristics of tar formation during cellulose, hemicellulose and lignin gasification[J]. Fuel, 2014, 118:250-256.
[7] 陳曉玲. 基于近紅外光譜技術(shù)的芒草木質(zhì)纖維素含量測(cè)定方法研究[D]. 浙江大學(xué), 2017.
[8] SOOMRO A,CHEN S,MA S,et al. Elucidation of syngas composition from catalytic steam gasification of lignin,cellulose,actual and simulated biomasses[J]. Biomass and Bioenergy,2018,115:210-222.
[9] GARCIA M A,SALVACHUA D,MARTINEZ M J,et al. Analysis of the relation between the cellulose,hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees[J]. Waste Management,2013,33(11):2245-2249.
[10] VITELLI M,MEHRTASH H,ASSATORY A,et al. Rapid and non-destructive determination of protein and starch content in agricultural powders using near-infrared and fluorescence spectroscopy,and data fusion[J]. Powder Technology,2020,381:620-631.
[11] SOEST P V,RAFFRENATO E,AMBURGH M V. Effect of lignin type on extent and rate of neutral detergent fibre digestion and potential energy yield[J]. South African Journal of Animal Science, 2009, 39(1):61260.
[12] 嚴(yán)衍祿. 近紅外光譜分析基礎(chǔ)與應(yīng)用[M].北京:中國(guó)輕工業(yè)出版社, 2005.
[13] 郭恒光,朱 默,黃敬沁. 噴氣燃料近紅外光譜建模樣本選擇方法研究[J]. 山東化工, 2020, 49(24):100-101.
[14] SAVITZKY A,GOLAY M. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8):1627-1639.
[15] BARNES R J,DHANOA M S,SUSAN,et al. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Applied Spectroscopy, 1989, 43(5):772-777.
[16] GELADI P,MACDOUGALL D,Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat[J]. Applied Spectroscopy,1985,39(3):491-500.
[17] NORGAARD L,SAUDLAND A,Wagner J,et al. Interval partial least-squares regression (iPLS):a comparative chemometric study with an example from near-infrared spectroscopy[J]. 2000,54(3):413-419.
[18] ZOU X,ZHAO J,LI Y. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of `Fuji' apple based on BiPLS and FiPLS models[J]. VIBRATIONAL SPECTROSCOPY, 2007, 44(2):220-227.
[19] LEARDI R,NORGAARD L. Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions[J]. Journal of Chemometrics,2005, 18(11):486-497.
[20] JIANG J H,BERRY R J,SIESLER H W,et al. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data[J]. Analytical Chemistry, 2002, 74(14):3555-3565.
[21] LIN Y W,DENG B C,WANG L L,et al. Fisher optimal subspace shrinkage for block variable selection with applications to NIR spectroscopic analysis[J]. Chemometrics & Intelligent Laboratory Systems,2016,159:196-204.
[22] DENG B C,YUN Y H,PAN M, et al. A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals[J]. The Analyst,2015,140(6):1876-1885.
[23] WANG L L,LIN Y W,WANG X F,et al. A selective review and comparison for interval variable selection in spectroscopic modeling[J]. Chemometrics and Intelligent Laboratory Systems,2018:229-240.
[24] FAVILLA S,DURANTE C,VIGNI M L,et al. Assessing feature relevance in NPLS models by VIP[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 129:76-86.
[25] RINNAN A,ANDERSSON M,AND C R,et al. Recursive weighted partial least squares (rPLS): an efficient variable selection method using PLS[J]. Journal of Chemometrics, 2014, 28(5):439-447.
[26] XU H,LIU Z,CAI W,et al. A wavelength selection method based on randomization test for near-infrared spectral analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2009, 97(2):189-193.
[27] LI H D,LI Y Z,XU Q S. y wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta,2009,648(1):77-84.
[28] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical,1996,58(1):267-288.
[29] YUN Y H,WANG W T,DENG B C,et al. Using variable combination population analysis for variable selection in multivariate calibration[J]. Analytica Chimica Acta, 2015, 862:14-23.
[30] WANG W T,YUN Y H,DENG B C,et al. Iteratively variable subset optimization for multivariate calibration[J]. Rsc Advances,2015, 5(116):95771-95780.
[31] JOHN H H. Adaption in natural and artificial systems[J]. Ann Arbor,1975,6(2):126-137.
[32] MRTROPOLIS N,ROSENBLUTH A W,ROSENBLUTH M N,et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics,2004,21(6):1087-1092.
[33] DENG B C,YUN H,CAO D S,et al. A bootstrapping soft shrinkage approach for variable selection in chemical modeling[J]. Analytica Chimica Acta, 2016, 908:63-74.
[34] MARIO C U A,TERESA C B S,ROBERTO K H G,et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems,2001,57(2):65-73.
[35] COLORNI A,DORIGO M,MANIEZZO V. Distributed optimization by ant colonies [A]. Proc of the first european conference on artificial life[C]. The MIT press,Paris France,1991.
[36] KENNEDY J,EBERHART R. Particle swarm optimization[C].Proceedings of ICNN'95 - International Conference on Neural Networks. IEEE 1995.
[37] YANG Y,TONG H,YANG L,et al. Application of near-infrared spectroscopy and chemometrics for the rapid quality assessment of Sargassum fusiforme[J]. Postharvest Biology and Technology, 2021, 173:111431.
[38] JIN X,CHEN X,LIANG X,et al. Application of visible and near-infrared spectroscopy to classification of Miscanthus species[J]. PLOS ONE,2017,12(4):e0171360.
[39] ZHAO H,GUO B,WEI Y,et al. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat[J]. Food Chemistry,2013,138(2-3):1902-1907.
[40] WANG L,YIN H,JIANG K,et al. Potential of near infrared spectroscopy and pattern recognition for rapid discrimination and quantification of gleditsia sinensis thorn powder with adulterants[J]. Journal of Pharmaceutical & Biomedical Analysis, 2018, 160:64-72.
[41] SHEN H,LI L. Rapid characterization of woody biomass digestibility and chemical composition using near‐infrared spectroscopy free access[J]. Journal of Integrative Plant Biology,2011,53(2):166-175.
[42] JIN X,CHRN X,SHI C,et al. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in miscanthus sinensis[J]. Bioresource Technology,2017,241:603-609.
[43] YAO S,WU G F,Xing M,et al. Determination of lignin content in acacia spp. using near-infrared reflectance spectroscopy [J]. BIORESOURCES,2010,5(2):556-562.
[44] LI X,SUN C,ZHOU B,et al. Determination of hemicellulose,cellulose and lignin in moso bamboo by near infrared spectroscopy[J]. Scientific Reports,2015,5:17210.
[45] 謝? 歡. 基于近紅外光譜技術(shù)的玉米秸稈主要成分含量檢測(cè)方法研究[D]. 黑龍江八一農(nóng)墾大學(xué), 2020.
[46] ZHANG K,XU Y,JOHNSON L,et al. Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem[J]. Renewable Energy,2017,109:101-109.
[47] FERNANDEZ J L,SAZE F,CASTRO E,et al. Determination of the Lignocellulosic Components of Olive Tree Pruning Biomass by Near Infrared Spectroscopy[J]. Energies, 2019,12(13):1-10.
[48] 姜? 偉,韓光亭,張?jiān)?,? 基于近紅外技術(shù)的苧麻纖維素及膠質(zhì)含量快速測(cè)定[J]. 紡織學(xué)報(bào), 2012, 33(1):6-10.
[49] 段焰青,孔祥勇,李青青,等. 近紅外光譜法預(yù)測(cè)煙草中的纖維素含量[J]. 煙草科技, 2006(8):16-20.
[50] 管麗媛, 王? 鐘, 祁? 寧, 等. 基于近紅外光譜技術(shù)的亞麻纖維化學(xué)成分含量快速測(cè)定[J]. 分析測(cè)試學(xué)報(bào),2020,39(6):795-799.
[51] PAYNE C E,WOLFRUM E J. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy[J]. Biotechnology for Biofuels,2015, 8(1):1-14.
[52] CHEN S F,DANAO M,SINGH V,et al. Determining sucrose and glucose levels in dual-purpose sorghum stalks by Fourier transform near infrared(FT-NIR) spectroscopy[J]. J Sci Food Agric,2014,94(12):2569-2576.
[53] RAMNBO,KD M,ALVES,et al. Multivariate analysis of coconut residues by near infrared spectroscopy[J]. Talanta:The International Journal of Pure and Applied Analytical Chemistry,2015,138:263-272.
[54] MASITHOH R E,AMANAH H Z,YOON W S,et al. Determination of protein and glucose of tuber and root flours using NIR and MIR spectroscopy[J]. Infrared Physics & Technology,2020,113:103577.
(責(zé)任編輯:高國(guó)賦)