国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

RSM法協(xié)同正交試驗(yàn)優(yōu)化棉型化漢麻織物的制備工藝

2023-11-22 22:15:25孔令蘋王大偉孫丹亢福行
現(xiàn)代紡織技術(shù) 2023年6期
關(guān)鍵詞:漢麻

孔令蘋 王大偉 孫丹 亢福行

摘 要:為充分開發(fā)漢麻的應(yīng)用價(jià)值并獲得較柔軟的棉型化漢麻織物,通過進(jìn)一步優(yōu)化選擇性氧化漢麻織物制備工藝方案,在單因素方案和正交試驗(yàn)設(shè)計(jì)的基礎(chǔ)上協(xié)同利用BBD試驗(yàn)和RSM分析法,以活潑率作為響應(yīng)值,回歸分析高碘酸鈉用量、氧化時(shí)間、氧化溫度各自變量因素及其交互作用影響。結(jié)果表明:正交設(shè)計(jì)和RSM法優(yōu)化結(jié)果一致,柔軟棉型化漢麻織物制備的最佳工藝為:高碘酸鈉13 g/L,氧化時(shí)間1.5 h,氧化溫度50 ℃。優(yōu)化結(jié)果合理可行,在此優(yōu)化條件下,棉型化漢麻織物活潑率增大、強(qiáng)力損失小、親水性變好。

關(guān)鍵詞:棉型化;漢麻;RSM法;柔軟性;活潑率

中圖分類號(hào):TS121.9 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-265X(2023)06-0028-08

漢麻是中國(guó)的一種傳統(tǒng)植物,屬于天然纖維素纖維中開發(fā)較早的類別之一,漢麻植物纖維素主要由β-D-六環(huán)葡萄糖組成。由糖苷鍵形成的微晶的分子結(jié)構(gòu)將使?jié)h麻纖維具有更高的楊氏模量和聚合度[1-3],所以漢麻類纖維織物相對(duì)棉類織物柔軟性欠佳,手感較差,硬度較高[4-7],因此優(yōu)化漢麻織物柔軟性,獲得棉型化產(chǎn)品具有比較重要的意義。近年來,對(duì)環(huán)保和生命健康的關(guān)注與日俱增,隨著國(guó)家“碳中和”口號(hào)的提出,漢麻纖維因具備降噪、不易電荷積聚、防紫外線輻射等特性,有著很廣闊的發(fā)展?jié)摿Γ?-9],因而被冠以 “天然纖維之王”的美稱[10-11]。隨著人們對(duì)漢麻纖維的關(guān)注度和研究的逐漸提高,目前的研究主要集中在脫膠、棉型化和漢麻精細(xì)化加工等方面[12-14]。

由于Response surface method(RSM)分析方法集成了實(shí)驗(yàn)設(shè)計(jì)和數(shù)學(xué)建模優(yōu)化,因此可以以較少的實(shí)驗(yàn)和較低的時(shí)間成本對(duì)實(shí)驗(yàn)參數(shù)進(jìn)行全面分析和研究[15],它將非線性函數(shù)或隱函數(shù)擬合為二次多項(xiàng)式函數(shù)[16],其局限性在于設(shè)計(jì)的實(shí)驗(yàn)點(diǎn)應(yīng)包括最佳實(shí)驗(yàn)條件;而正交試驗(yàn)可以從全面試驗(yàn)中挑選出均勻分散具有代表性的特征點(diǎn)來試驗(yàn)[18]。在綜合試驗(yàn)設(shè)計(jì)中RSM法和正交試驗(yàn)設(shè)計(jì)被廣泛使用,但在實(shí)際應(yīng)用中,將兩者結(jié)合起來或采用多種優(yōu)化設(shè)計(jì)方法對(duì)工藝參數(shù)進(jìn)行研究的情況并不多見,本文創(chuàng)新性采用RSM法協(xié)同正交試驗(yàn),通過單因素和正交試驗(yàn)選取包含最佳試驗(yàn)點(diǎn)的參數(shù),再通過RSM法建模來優(yōu)化篩選棉型化漢麻織物工藝方案,提高結(jié)果可信度,此研究對(duì)推動(dòng)漢麻織物進(jìn)一步綜合利用開發(fā)棉型化和柔軟性高價(jià)值化提供工藝參考。

1 試 驗(yàn)

1.1 試驗(yàn)材料及儀器

織物:漢麻織物(市售,1/1平紋,106×72根/10 cm,743.8 g/m2)

試劑:高碘酸鈉(分析純,天津市大茂化學(xué)試劑廠),無水乙醇(分析純,天津科密歐化學(xué)試劑有限公司),去離子水(實(shí)驗(yàn)室自制)。

儀器:BS110S天平(北京多利斯天平有限公司),YG031Q型頂破強(qiáng)力(溫州百恩儀器有限公司),WHL-25A臺(tái)式電熱恒溫干燥箱(天津市態(tài)斯特儀器公司有限公司),YG821風(fēng)格儀(萊州電子儀器有限公司),HHS-4S電子恒溫不銹鋼水浴鍋(紹興市億納儀器制造有限公司),YG(B) 871C型毛細(xì)管效應(yīng)測(cè)定儀(紹興力必信儀器有限公司)。

1.2 試驗(yàn)方法

1.2.1 原料預(yù)處理

參考麻類精煉工藝對(duì)漢麻織物試樣進(jìn)行預(yù)處理,放于低濃度NaOH、Na2SiO3和洗滌劑的混合溶液中進(jìn)行攪拌浸泡一段時(shí)間,該步驟可以通過堿膨脹提高漢麻纖維的反應(yīng)可及性,提高后續(xù)選擇性氧化漢麻織物的醛基含量[19],然后清水洗滌數(shù)次,以去除織物表面殘留的漿料、污漬、化學(xué)試劑等。

1.2.2 棉型化漢麻織物的制備

剪裁一定規(guī)格大小的漢麻織物試樣,稱取所需質(zhì)量的高碘酸鈉,并將其放入棕色錐形瓶中,加入裁剪好的漢麻織物試樣,按照試驗(yàn)所需的不同溫度不同時(shí)間條件下進(jìn)行持續(xù)氧化反應(yīng),制得棉型化漢麻織物。

1.2.3 單因素試驗(yàn)

1.2.3.1 高碘酸鈉用量的考察

氧化時(shí)間0.5 h,氧化溫度40 ℃,其他條件固定的前提下,考察高碘酸鈉用量0、6、13、20、27 g/L分別對(duì)漢麻織物柔軟性的影響。

1.2.3.2 氧化時(shí)間的考察

高碘酸鈉13 g/L,氧化溫度40 ℃,其他條件固定的前提下,考察氧化時(shí)間0.5、1.5、2.5、3.5、4.5 h分別對(duì)漢麻織物柔軟性的影響。

1.2.3.3 氧化溫度的考察

高碘酸鈉13 g/L,氧化時(shí)間0.5 h,其他條件固定的前提下,考察氧化溫度20、30、40、50、60 ℃分別對(duì)漢麻織物柔軟性的影響。

1.2.4 正交試驗(yàn)

選擇性氧化漢麻織物柔軟性的因素主要取決于NaIO4用量,氧化時(shí)間t,氧化溫度T,在單因素試驗(yàn)基礎(chǔ)上采用L9(34)正交表進(jìn)行試驗(yàn)。

1.2.5 RSM試驗(yàn)

在單因素試驗(yàn)的基礎(chǔ)上,以高碘酸鈉用量、氧化時(shí)間和氧化溫度作為考察因素,以表征柔軟性的活潑率作為響應(yīng)指標(biāo),采用Box-Behnken設(shè)計(jì)(BBD)響應(yīng)面試驗(yàn)設(shè)計(jì)法來篩選考察因素的最優(yōu)組合條件。

1.3 測(cè)試方法

1.3.1 活潑率測(cè)試

采用YG821風(fēng)格儀,將漢麻織物試樣蓋上實(shí)驗(yàn)印泥,按照印泥縫線對(duì)折彎成弓狀,夾入下夾鉗中,帶有傳感器的壓頭從弓頂下壓傳導(dǎo)入電腦數(shù)據(jù),得到活潑率數(shù)值,每個(gè)樣品測(cè)量3次取平均值[20]。

1.3.2 頂破強(qiáng)力測(cè)試

根據(jù)GB/T19976-2005《紡織品 頂破強(qiáng)力測(cè)試 鋼球法》使用YG031Q型頂破強(qiáng)力儀試驗(yàn),按照式(1)計(jì)算紡織品強(qiáng)力保留率。

R/%=F1/F0×100(1)

式中:R為強(qiáng)力保留率;F0為初始樣品的頂破強(qiáng)力;F1為整理后試樣的頂破強(qiáng)力。

1.3.3 芯吸測(cè)試

用YG(B) 871C型毛細(xì)管效應(yīng)測(cè)定儀測(cè)定漢麻織物處理前后的芯吸高度,樣品尺寸為25 mm×200 mm,測(cè)試液溫度為25 ℃,測(cè)試時(shí)間為30 min。

2 結(jié)果與分析

2.1 單因素試驗(yàn)結(jié)果

2.1.1 高碘酸鈉用量對(duì)漢麻織物柔軟性影響分析

高碘酸鈉用量對(duì)漢麻織物活潑率的影響見表1,由表1數(shù)據(jù)可知,活潑率隨高碘酸鈉用量先升高再下降,在13 g/L時(shí)達(dá)到最大,因此選擇6、13、20 g/L3個(gè)水平進(jìn)行正交試驗(yàn)和響應(yīng)面優(yōu)化設(shè)計(jì)分析。

2.1.2 氧化時(shí)間對(duì)漢麻織物柔軟性影響分析

表2為氧化時(shí)間對(duì)漢麻織物活潑率的影響,可知活潑率受氧化時(shí)間影響不明顯,綜合考量,選擇0.5、1.5、2.5 h 3個(gè)水平進(jìn)行正交試驗(yàn)和響應(yīng)面優(yōu)化設(shè)計(jì)分析。

2.1.3 氧化溫度對(duì)漢麻柔軟性影響分析

表3為氧化溫度對(duì)漢麻織物活潑率的影響,可知活潑率隨氧化溫度的升高先增大再下降,在50 ℃時(shí)活潑率達(dá)到較高水平,綜合各種因素,選擇40、50、60 ℃ 3個(gè)水平進(jìn)行正交試驗(yàn)和響應(yīng)面優(yōu)化設(shè)計(jì)分析。

2.2 正交試驗(yàn)分析

表4為選擇性氧化漢麻制備因素水平表,本試驗(yàn)在單因素考查的基礎(chǔ)上采用L9(34)正交表,按表5進(jìn)行9次試驗(yàn),以活潑率作為響應(yīng)指標(biāo),測(cè)定結(jié)果見表5。由表5可知各因素的影響順序C>B>A,最優(yōu)水平為NaIO4用量13 g/L,氧化溫度50 ℃,氧化時(shí)間1.5 h。

2.3 響應(yīng)面分析法優(yōu)化制備工藝

2.3.1 響應(yīng)面設(shè)計(jì)試驗(yàn)(BBD)及結(jié)果

采用BBD試驗(yàn)設(shè)計(jì)法,以高碘酸鈉用量、氧化時(shí)間、氧化溫度作為自變量,以選擇性氧化后漢麻織物試樣的活潑率為響應(yīng)值,BBD實(shí)驗(yàn)設(shè)計(jì)因子和水平見表6,BBD試驗(yàn)設(shè)計(jì)方案及其響應(yīng)值結(jié)果見表7,由表7可知試驗(yàn)運(yùn)行了17次方案。

2.3.2 以BBD試驗(yàn)為基礎(chǔ)的響應(yīng)面方差分析

利用Design Expert11軟件,輸入各組試驗(yàn)的各個(gè)因素水平和相應(yīng)的響應(yīng)值結(jié)果,對(duì)試驗(yàn)結(jié)果進(jìn)行響應(yīng)面分析,并對(duì)各影響因素水平進(jìn)行方差分析,結(jié)果見表8。

表8為模型方差分析見,可知模型中的F值為8.39,P值為0.0052<0.05,表明該模型是顯著的。從F值的大小可以判斷出各因素對(duì)活潑率影響的顯著性,C為顯著影響因素,對(duì)活潑率的影響程度為C>A>B,即高碘酸鈉用量是重要變量,其次是氧化溫度,再次是氧化時(shí)間,這與正交試驗(yàn)的結(jié)果相一致。失擬檢驗(yàn)的概率值P為0.0537,0.05<P<0.1,雖然失擬檢驗(yàn)結(jié)果不顯著,但相對(duì)不是很理想。由于失擬分析結(jié)果顯示為不顯著,因此該二次方模型可以準(zhǔn)確地描述實(shí)際活潑率。通過隨機(jī)分布預(yù)測(cè)活潑率和實(shí)際活潑率的點(diǎn)結(jié)果見圖1。

二次方模型預(yù)測(cè)活潑率和試驗(yàn)活潑率點(diǎn)陣如圖1所示,所有的點(diǎn)都散落在直線附近,這表明預(yù)測(cè)活潑率和實(shí)際活潑率值吻合度較高。所建立的模型能很好反映試驗(yàn)數(shù)據(jù),回歸方程擬合度良好,試驗(yàn)誤差?。?7],利用統(tǒng)計(jì)分析程序?qū)?7個(gè)試驗(yàn)點(diǎn)進(jìn)行二次回歸擬合,得到響應(yīng)面回歸模型方程如下:

LP=66.84+1.34A+0.01B-4.6C+0.455AB-0.9625AC+2.89BC-5.3A2-1.08B2-0.222C2

2.4 因素等高線圖和響應(yīng)曲面圖分析

用Design Experts11對(duì)響應(yīng)值活潑率模型進(jìn)行分析,繪制產(chǎn)生交互作用兩因素間的等高線圖和響應(yīng)曲面圖。已知等高線形狀反映了兩個(gè)因素間的交互作用,等高線為橢圓形或馬鞍形表明因素間的交互作用越明顯,登高線為圓形,表明因素間的交互作用不顯著;響應(yīng)曲面坡度代表著因素水平變化對(duì)響應(yīng)值影響的敏感程度,越陡表示變化影響越敏感[14]。

2.4.1 高點(diǎn)酸鈉用量和氧化時(shí)間的交互作用

由圖2(a)可以看出為橢圓形等高線,表明高碘酸鈉用量和氧化時(shí)間對(duì)響應(yīng)值活潑率有較強(qiáng)的交互作用。當(dāng)高碘酸鈉用量11~15 g/L,氧化時(shí)間在0.5~2.5 h時(shí),漢麻織物能夠獲得較高的活潑率。當(dāng)高碘酸鈉用量在13 g/L時(shí),最接近最佳點(diǎn)。圖2(b)的響應(yīng)曲面圖可以看出,隨著高碘酸鈉用量的增加和氧化時(shí)間延長(zhǎng),活潑率先變大再變小。

從曲面弧度可以看出,高碘酸鈉用量要比氧化時(shí)間對(duì)活潑率影響大。當(dāng)高點(diǎn)酸鈉用量固定時(shí),隨著時(shí)間的延長(zhǎng),漢麻織物的活潑率變化不顯著,從充分反應(yīng)角度考慮,氧化時(shí)間選擇1.5 h。

2.4.2 高點(diǎn)酸鈉用量和氧化溫度的交互作用

由圖3(a)可以看出,等高線的形狀為彎曲線,表明高碘酸鈉用量和氧化溫度對(duì)響應(yīng)值活潑率有一定的交互作用,當(dāng)氧化溫度小于60 ℃時(shí),等高線線密度較密。由圖3(b)可以看出,當(dāng)高碘酸鈉用量固定時(shí),隨著氧化溫度的增大,活潑率是逐漸減小的。因此,考慮到能耗經(jīng)濟(jì)和充分反應(yīng)等方面的因素,氧化溫度選擇50 ℃。

2.5 以BBD試驗(yàn)為基礎(chǔ)的響應(yīng)面最優(yōu)方案預(yù)測(cè)

用Design Experts11軟件對(duì)響應(yīng)值活潑率模型分析得出最優(yōu)方案預(yù)測(cè),如圖4最優(yōu)方案預(yù)測(cè)圖4所示。

由于氧化時(shí)間和氧化溫度的交互作用不明顯,暫不做分析。通過對(duì)比發(fā)現(xiàn)分析結(jié)果與最優(yōu)預(yù)測(cè)圖相一致。

2.5 整理前后漢麻織物試樣性能對(duì)比

測(cè)定整理前后漢麻織物的活潑率和頂破強(qiáng)力進(jìn)行對(duì)比分析,結(jié)果見表9。

由表9可以看出,經(jīng)RSM法協(xié)同正交試驗(yàn)優(yōu)化的漢麻織物活潑率明顯升高,表明漢麻織物手感上變得更加柔軟活絡(luò),強(qiáng)力保留率略有下降,芯吸性有所提高。

3 結(jié) 論

本試驗(yàn)以活潑率作為評(píng)價(jià)指標(biāo),針對(duì)NaIO4用量、氧化時(shí)間、氧化溫度 3個(gè)因素進(jìn)行單因素考察,正交試驗(yàn)篩選出相關(guān)因素的最佳水平,并在此基礎(chǔ)上基于BBD實(shí)驗(yàn)設(shè)計(jì)原理,建立活潑率為響應(yīng)值的工藝數(shù)學(xué)模型進(jìn)行RSM試驗(yàn)優(yōu)化,通過Design Expert軟件分析3個(gè)因素及交互作用對(duì)活潑率的影響,得到了優(yōu)化工藝方案為:高碘酸鈉13 g/L,氧化時(shí)間1.5 h,氧化溫度50 ℃,優(yōu)化結(jié)果與正交試驗(yàn)結(jié)果一致,兩種試驗(yàn)方法的結(jié)合使優(yōu)化結(jié)果更具代表性和說服力。和未處理原樣對(duì)比,該工藝條件下的活潑率指標(biāo)較好,手感更柔軟活絡(luò),彈性好,成品棉型化較好,并且強(qiáng)力損傷較小,親水性較好,表明該設(shè)計(jì)優(yōu)化分析工藝模型具有一定的指導(dǎo)意義。

參考文獻(xiàn):

[1]葉劍新.長(zhǎng)短亞麻針織物加工及性能研究[D].上海:東華大學(xué),2009.

YE Jianxin. Study on Processing and Properties of Line and Linen Tow Knitted Fabrics[D]. Shanghai: Donghua University, 2009.

[2]魏帥男.納米銀溶膠的制備以及對(duì)亞麻的功能整理[D].上海:東華大學(xué),2017.

WEI Shuainan. Synthesis of Nanometer Solvercolloid and Functional Finishing to Linen[D]. Shanghai: Donghua University, 2017.

[3]蘭紅艷,張延輝.麻類纖維的性能及其應(yīng)用[J].上海毛麻科技,2009(3):1-5.

LAN Hongyan, ZHANG Yanhui. Performance and application of bast fiber[J]. Shanghai Wool & Jute Journal, 2009(3): 1-5.

[4]鞠金星,季英超.大麻紗線的柔軟整理[J].毛紡科技,2012,40(6):44-46.

JU Jinxing, JI Yingchao. Softness finishing of hemp yarn[J]. Wool Textile Journal, 2012, 40(6): 44-46.

[5]鞠金星,王寶權(quán),呂站逵,等.大麻紗線的堿改性柔軟整理[J].大連工業(yè)大學(xué)學(xué)報(bào),2012,31(3):211-214.

JU Jinxing, WANG Baoquan, LU Zhankui, et al. Alkali modification and softening finish of hemp yarn[J]. Journal of Dalian Polytechnic University, 2012,31(3):211-214.

[6]黃翠蓉,鐘安華,王寶根.大麻織物的堿改性柔軟整理[J].印染,2004(8):18-20.

HUANG Cuirong, ZHONG Anhua, WANG Baogen. Alkali modification and softing finish of hemp cloth[J]. China Dyeing & Finishing, 2004(8): 18-20.

[7]姚穆.紡織材料學(xué)[M].3版.北京:中國(guó)紡織出版社,2009.

YAO Mu. Textile Materials[M]. Third Edition. Beijing: China Textile & Apparel Press, 2009.

[8]賈麗華,陳朝暉,高潔.亞麻纖維及應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2007.

JIA Lihua, CHEN Zhaohui, GAO Jie. Flax Fiber and Its Application[M]. Beijing: Chemical Industry Press, 2007.

[9]N.P.Ingle,張子濤,紀(jì)晉敏.大麻:未來最有前途的纖維素纖維[J].國(guó)外紡織技術(shù),2001(1):7.

N.P. Ingle,ZHANG Zitao, JI Jinmin. Cannabis: The most promising cellulose fiber in the future[J]. Textile Technology Overseas, 2001(1): 7.

[10]張建春,張華.漢麻纖維的結(jié)構(gòu)性能與加工技術(shù)[J].高分子通報(bào),2008(12):44-51.

ZHANG Jianchun, ZHANG Hua. Structure and performance of China-hemp fiber and process technology[J]. Polymer Bulletin, 2008(12): 44-51.

[11]張毅,張瑞成,卓桂容,等.漆酶/超柔軟油精復(fù)合處理純大麻織物的性能[J].印染助劑,2019,36(6):53-56.

ZHANG Yi, ZHANG Ruicheng, ZHUO Guirong, et al. Properties of pure hemp fabric treated with laccase/super softner[J]. Textile Auxiliaries, 2019, 36 (6): 53-56.

[12]張金秋,張華,郝新敏,等.大麻纖維高溫煮練時(shí)間與脫

膠質(zhì)量的關(guān)系[J].紡織學(xué)報(bào),2006(2):81-83.

ZHANG Jinqiu, ZHANG Hua, HAO Xinmin, et al. Relationship between high temperature scouring time and degumming quality of hemp fiber[J]. Journal of Textile Research, 2006(2): 81-83.

[13]張金秋,張建春.精細(xì)化加工對(duì)大麻纖維理化性能的影響[J].紡織學(xué)報(bào),2009,30(11):81-87.

ZHANG Jinqiu, ZHANG Jianchun. Effect of refined processing on physicochemical properties of hemp fibers[J]. Journal of Textile Research, 2009,30(11):81-87.

[14]高俊,王雪燕.響應(yīng)面分析法優(yōu)化棉針織物金屬配合物低溫漂白工藝[J].染整技術(shù),2016,38(7):25-30.

GAOJun, WANG Xueyan. Optimization of cotton knitted bleaching process with low tempetature metal complexes by response surface analysis[J]. Textile Dyeing and Finishing Journal, 2016, 38(7): 25-30.

[15]胡成旭,侯欣彤,馮永寧,等.響應(yīng)面法優(yōu)化云芝多糖提取條件的研究[J].食品工業(yè)科技,2007,28(7):124-126.

HU Chengxu, HOU Xintong, FENG Yongning, et al. Optimization of extraction conditions of polysaccharide from Coriolus versicolor by response surface methodology[J]. Science and Technology of Food Industry, 2007, 28(7): 124-126.

[16]解艷彩.基于響應(yīng)面法的機(jī)械結(jié)構(gòu)可靠性靈敏度分析[D].長(zhǎng)春:吉林大學(xué),2008.

XIE Yancai. Base on Response Surface Methodology Mechanical and Structure Reliability Sensitivity Analysis[D]. Changchun: Jilin University, 2008.

[17]任天寶,馬孝琴,徐桂轉(zhuǎn),等.響應(yīng)面法優(yōu)化玉米秸稈蒸汽爆破預(yù)處理?xiàng)l件[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(9):282-286.

REN Tianbao, MA Xiaoqin, XU Guizhuan, et al. Optimizing steam explosion pretreatment conditions of corn stalk by response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(9):282-286.

[18]羅云云,杜偉鋒,應(yīng)澤茜,等.響應(yīng)面法協(xié)同正交試驗(yàn)設(shè)計(jì)優(yōu)化薏苡仁多糖提取工藝研究[J].中華中醫(yī)藥雜志,2019,34(10):4847-4851.

LUO Yunyun, DU Weifeng, YING Zexi, et al. Optimi-zation of extraction process conditions of coix seed polysaccharide by response surface method and orthogonal design of experiment[J]. Chinese Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(10): 4847-4851.

[19]王浩,林紅,陳宇岳.堿預(yù)處理對(duì)棉纖維選擇性氧化的影響[J].紡織學(xué)報(bào),2008,29(8):18-22.

WANG Hao, LIN Hong, CHEN Yuyue. Effect of alkali pretreatment on selective oxidation of cotton fibers[J]. Journal of Textile Research, 2008, 29(8): 18-22.

[20]余序芬.紡織材料實(shí)驗(yàn)技術(shù)[M].北京:中國(guó)紡織出版社,2017.

YU Xufen. Experimental Technology for Textile Materials[M]. Beijing: China Textile & Apparel Press, 2017.

To optimize the preparation process of cotton-shaped hemp fabrics with the RSM method and orthogonal tests

KONG Lingping WANG Dawei SUN Dan KANG Fuhang

Abstract: The single fiber length of hemp is short, and the content of hemicellulose and lignin is higher than that of other hemp fibers. There are problems such as difficulty in degumming and poor fiber quality after degumming. The produced hemp yarn has a low count, and the hemp fabric has a rough and hard feel. Due to the rich resources of hemp in Northeast China, the single fiber length and fineness of hemp are similar to those of cotton, and there is no itching sensation compared to other hemp types. In order to make full use of hemp, improve the softness of hemp fabrics, and increase product added value, we conducted optimization research on the processing conditions of cotton shaped hemp fabric.

Firstly, single factor experiment was conducted to investigate the effects of the sodium periodate dosage, oxidation time, and oxidation temperature on fabric softness. Based on this investigation, representative sodium periodate dosage, oxidation time, and oxidation temperature experimental conditions were selected from comprehensive experiments according to orthogonality (evenly dispersed, and comparable in integrity) for orthogonal test analysis at three factors and one level. Because response surface methodology is an optimization method that integrates experimental design and mathematical modeling, it can provide intuitive contour maps and three-dimensional stereograms, and can examine the interaction between influencing factors. This method not only establishes a prediction model, but also tests the adaptability of the model, the significance of the model and coefficients, and the mismatched terms. We further performed analysis of variance and model diagnosis. However, the premise of response surface optimization requires that the experimental points designed should contain the optimal experimental conditions. In order to obtain the optimal results and compensate for this limitation of response surface optimization, we adopted the experimental analysis method of response surface design and orthogonal experimental design using the activity rate as the response value, verifing that the selected experimental conditions are the parameters containing the optimal experimental points orthogonal experimental optimization. Additionally, we used response surface optimization to screen the optimal process parameters for sodium periodate dosage, oxidation time, and oxidation temperature, improving the reliability of the experimental optimization results.

Through comprehensive consideration of the results of single factor tests on fabric softness at three factors: sodium periodate dosage, oxidation time, and oxidation temperature, and three levels of optimal design for orthogonal tests: a sodium periodate dosage of 6, 13 g/L, and 20 g/L were selected; oxidation time: 0.5, 1.5, 2.5 h; oxidation temperature: 40, 50, 60 ℃. With the L9 (34) orthogonal table and the activity rate as the response index, it can be seen that the order of influence of various factors is sodium periodate dosage>oxidation temperature>oxidation time. The optimal level requires a sodium periodate dosage of 13 g/L, oxidation temperature of 50 ℃, and a oxidation time of 1.5 h. A response surface design experiment was conducted on the basis of orthogonal experiments. With Design Expert 11 software, response surface analysis was conducted on the experimental results and variance analysis was conducted on the levels of various influencing factors. It can be seen that the model is significant; the significant degree of influence of various factors on the activity rate is sodium periodate dosage>oxidation temperature>oxidation time, which is consistent with the results of orthogonal experiments. The probability value P of the mismatch test is between 0.05~0.10, being 0.0537, and the mismatch analysis result is not significant. Therefore, the quadratic model can accurately describe the actual activity rate. Analysis of factor contour plots and response surface plots showes that the amount of sodium periodate and oxidation time has a strong interaction on the reactivity of response values; there is a certain interaction between the amount of sodium periodate and oxidation temperature on the response value activity, but the interaction between oxidation time and temperature is not obvious. Through comparison, it is found that the analysis results are consistent with the optimal prediction chart. On this basis, it is found by comparing the reactivity, strength retention, and wicking height of hemp fabrics before and after process optimization that except for slightly lower strength, both the feel and water absorption of the fabrics are improved. The design optimization model has certain significance for improving the added value of hemp fabrics.

Keywords: cotton type; hemp; RSM method; softness; lively rate

收稿日期:20220000 網(wǎng)絡(luò)出版日期:20230403

基金項(xiàng)目:黑龍江省省屬高等學(xué)?;究蒲袠I(yè)務(wù)費(fèi)科研項(xiàng)目工業(yè)大麻專項(xiàng)(145109509)

作者簡(jiǎn)介:孔令蘋(1989—),山東濟(jì)寧人,講師,主要從事生態(tài)紡織品方面的研究。

猜你喜歡
漢麻
基于相變儲(chǔ)能整理技術(shù)的漢麻織物性能分析
黑龍江省漢麻產(chǎn)業(yè)現(xiàn)狀與發(fā)展對(duì)策*
綠色生態(tài)環(huán)境背景下漢麻紡織品的網(wǎng)絡(luò)營(yíng)銷策略
黑龍江省漢麻產(chǎn)業(yè)發(fā)展分析
我國(guó)漢麻高附加值產(chǎn)品受青睞
漢麻亟待全產(chǎn)業(yè)鏈協(xié)同發(fā)展
雅戈?duì)柸姘l(fā)力漢麻應(yīng)用市場(chǎng)
黑龍江省漢麻產(chǎn)業(yè)發(fā)展建議
高品質(zhì)漢麻產(chǎn)業(yè)化的實(shí)現(xiàn)
雨露漢麻在孫吳
婦女之友(2016年10期)2016-12-27 12:21:25
蒙山县| 永福县| 泰州市| 德安县| 凉山| 怀集县| 顺昌县| 宕昌县| 神农架林区| 新乡县| 久治县| 宣城市| 富顺县| 汉沽区| 山东省| 应城市| 邛崃市| 名山县| 富顺县| 澎湖县| 册亨县| 醴陵市| 广德县| 兴安盟| 恭城| 十堰市| 岢岚县| 嘉黎县| 和政县| 安庆市| 米林县| 鹰潭市| 两当县| 花垣县| 东乌| 衡阳市| 昭通市| 德保县| 菏泽市| 昆山市| 万荣县|