盧艷清,林燕金,王賢達(dá),盧新坤
基于轉(zhuǎn)錄組測序篩選與柚裂果相關(guān)的基因
盧艷清,林燕金,王賢達(dá),盧新坤
福建省農(nóng)業(yè)科學(xué)院果樹研究所,福州 350013
【目的】柑橘類果實(shí)生長季節(jié)內(nèi)出現(xiàn)的裂果現(xiàn)象是一類生理失調(diào)病害,然而目前尚未完全揭示柑橘類果實(shí)裂果的分子機(jī)理。本研究通過對文旦柚抗裂和易裂品種果皮轉(zhuǎn)錄組的比較分析,篩選果實(shí)抗裂相關(guān)基因?!痉椒ā恳钥沽哑贩N(‘度新1號文旦柚’)的正常果(此品種無裂果),以及易裂品種(‘度尾文旦柚’)的正常果和裂果為材料,果實(shí)均取自兩個(gè)時(shí)期(時(shí)期A:2021年8月3日;時(shí)期B:2021年8月20日,裂果敏感期)。取果實(shí)果頂部位的果皮(以果頂為中心,30 mm半徑范圍內(nèi)的果皮)用于轉(zhuǎn)錄組測序?!窘Y(jié)果】將易裂品種裂果果皮與兩品種正常果果皮轉(zhuǎn)錄組進(jìn)行比較分析,在時(shí)期A共篩選到1 660個(gè)差異基因,易裂品種裂果果皮與兩品種正常果果皮間相同的差異基因104個(gè);在時(shí)期B共篩選到1 972個(gè)差異基因,易裂品種裂果果皮與兩品種正常果果皮間相同的差異基因82個(gè)。對易裂品種裂果果皮與兩品種正常果果皮間所有差異基因的GO富集分析結(jié)果顯示:在生物學(xué)過程分類中,兩個(gè)時(shí)期均富集到差異基因的主要亞類包括代謝過程、細(xì)胞過程、單生物過程、生物調(diào)控、刺激響應(yīng)和信號。對易裂品種裂果果皮與兩品種正常果果皮間所有差異基因的代謝通路分析結(jié)果顯示:兩個(gè)時(shí)期均富集到差異基因的主要代謝途徑包括碳代謝、植物MAPK信號途徑、植物激素信號轉(zhuǎn)導(dǎo)和內(nèi)質(zhì)網(wǎng)蛋白過程,這些代謝途徑富集的差異基因也最多。發(fā)現(xiàn)了一些與果實(shí)抗裂能力相關(guān)的重要基因:兩品種正常果果皮擴(kuò)張蛋白-A1基因表達(dá)量均顯著高于易裂品種裂果果皮,兩個(gè)時(shí)期結(jié)果一致;在時(shí)期A,兩品種正常果果皮類鈣調(diào)磷酸酶蛋白B亞基基因表達(dá)量顯著高于易裂品種裂果果皮,但在時(shí)期B無顯著差異;易裂品種裂果果皮熱激轉(zhuǎn)錄因子、絲氨酸/蘇氨酸蛋白激酶、生長素響應(yīng)蛋白和脫水響應(yīng)元件結(jié)合蛋白基因表達(dá)量顯著高于兩品種正常果果皮,兩個(gè)時(shí)期結(jié)果一致。【結(jié)論】與果皮彈性、水分運(yùn)動、高溫和水分虧缺逆境響應(yīng)相關(guān)的基因是調(diào)控文旦柚果實(shí)抗裂能力的關(guān)鍵基因。
柚(L. Osbeck);裂果;果皮;轉(zhuǎn)錄組;抗裂基因
【研究意義】裂果是很多類果實(shí)(例如:櫻桃、番茄、荔枝、柑橘、棗、蘋果)一個(gè)普遍的生理失調(diào)病害。開裂果實(shí)易腐爛,商品價(jià)值明顯降低。研究表明,裂果不僅與植物品種相關(guān)[1],而且也與自然環(huán)境(例如:高溫、高濕)相關(guān)[2]。因此,綜合分析果實(shí)的生長特性及其對自然環(huán)境的響應(yīng)機(jī)制,有助于尋找到有效的防治裂果的方法?!厩叭搜芯窟M(jìn)展】在果實(shí)生長季節(jié)內(nèi),果實(shí)快速生長期是多類果實(shí)的裂果敏感時(shí)期。例如,橫徑快速生長期內(nèi)的荔枝果實(shí)易裂果[3];柑橘果實(shí)快速生長期伴隨著果實(shí)開裂[4-5]。這些研究促使人們?nèi)ふ夜麑?shí)生長季節(jié)內(nèi)果肉與果皮間生長應(yīng)力存在差異的原因,所以大量的研究集中在果肉的生長勢和果皮的機(jī)械力度,以尋找抑制裂果的方法。通過對抗裂品種和易裂品種果實(shí)[6-7],以及裂果和正常果果實(shí)[8]的比較,發(fā)現(xiàn)果實(shí)可溶性固形物和糖含量與裂果敏感度呈正相關(guān)。糖與果實(shí)吸水能力相關(guān)[9],所以果肉部位的滲透吸水是果實(shí)水分吸收的重要途徑之一。另外,氣孔和果面微小裂隙也是果實(shí)吸水的重要途徑。櫻桃(L.)果實(shí)氣孔密度與果實(shí)水分導(dǎo)度呈正相關(guān)[10]。棗果實(shí)氣孔大小與裂果率呈正相關(guān)[11]。研究發(fā)現(xiàn)棗果面微小裂隙的形成源自氣孔[12]。離體櫻桃外果皮的滲透吸水量與角質(zhì)層微小裂隙數(shù)量呈正相關(guān)[13]。果皮機(jī)械力度高,果實(shí)抗裂能力高[14]。果實(shí)細(xì)胞壁組分影響果皮機(jī)械力度。與易裂荔枝品種‘糯米糍’相比,抗裂的荔枝品種‘淮枝’果皮纖維素、半纖維素、不溶性果膠含量高,可能有助于果皮機(jī)械力度和果實(shí)抗裂能力的提高[15]。易裂品種‘壺瓶棗’果實(shí)纖維素含量和裂果率的偏相關(guān)系數(shù)為-0.971[16]。番茄抗裂資源果實(shí)半纖維素含量高于番茄易裂資源果實(shí)[17]。水溶性果膠含量低或者原果膠含量高與果實(shí)抗裂能力呈正相關(guān)[17-19]。擴(kuò)張蛋白是一類細(xì)胞壁蛋白[20]。擴(kuò)張蛋白通過調(diào)控細(xì)胞壁聚合物成分的變化影響細(xì)胞壁的延展性,例如,纖維素糖化[21]和半纖維素結(jié)構(gòu)修飾[22]。‘富士’(Borkh.)蘋果中果皮表達(dá)量高于外果皮,引起外果皮生長速率低于中果皮,從而導(dǎo)致果實(shí)環(huán)裂[23]。擴(kuò)張蛋白基因表達(dá)量也與荔枝和棗果實(shí)的抗裂能力呈正相關(guān)[24-25]。【本研究切入點(diǎn)】盡管果肉部位糖積累會引起滲透吸水,但不能通過抑制果肉糖積累的方法防止裂果。而通過調(diào)控果皮裂隙的形成、細(xì)胞壁物質(zhì)的積累和果皮彈性防治裂果是一條可行的途徑?!緮M解決的關(guān)鍵問題】‘度尾文旦柚’(L. Osbeck)在中國福建省廣泛栽培,該品種裂果嚴(yán)重,尚無有效的防治裂果的方法?!刃?號文旦柚’是‘度尾文旦柚’的一個(gè)抗裂果突變株(果實(shí)生長季節(jié)內(nèi)無裂果出現(xiàn))。因此,本研究以‘度尾文旦柚’裂果和正常果及‘度新1號文旦柚’正常果為材料,通過比較兩品種果頂部位果皮轉(zhuǎn)錄組的差異,揭示與果實(shí)抗裂能力相關(guān)的果皮轉(zhuǎn)錄組特征。
‘度尾文旦柚’是一個(gè)果實(shí)生長季節(jié)內(nèi)裂果率高的品種。8月初開始出現(xiàn)裂果。該品種果實(shí)僅果頂部位果皮開裂?!刃?號文旦柚’(抗裂品種)源自‘度尾文旦柚’的芽變株,果實(shí)生長季節(jié)內(nèi)無裂果出現(xiàn)。兩品種的正常果和裂果見圖1。兩個(gè)柚資源栽植在同一個(gè)商品果園(地理坐標(biāo):118°59,25°44N,位于中國福建省莆田市仙游縣),栽培管理制度相同。本試驗(yàn)以6年生抗裂品種的正常果(圖1-1)、6年生易裂品種的正常果(圖1-2)和裂果(圖1-3)為材料。果實(shí)樣品取自兩個(gè)時(shí)期(時(shí)期A:2021年8月3日和時(shí)期B:2021年8月20日)和3個(gè)生物學(xué)重復(fù)(單株為一個(gè)生物學(xué)重復(fù))。以果頂為中心,切取3 cm半徑范圍內(nèi)的果皮,-80 ℃條件下保存,用于轉(zhuǎn)錄組測序和實(shí)時(shí)熒光定量分析。
A:‘度新1號文旦柚’正常果;B:‘度尾文旦柚’正常果;C:‘度尾文旦柚’裂果;1:A圖中矩形框標(biāo)注部位的放大圖;2:B圖中矩形框標(biāo)注部位的放大圖;3:C圖中矩形框標(biāo)注部位的放大圖
每個(gè)樣品取1 μg RNA用于構(gòu)建cDNA文庫。構(gòu)建文庫的試劑為NEBNext?Ultra? RNA Library Prep Kit,試驗(yàn)方法參考說明書。
去除raw read中的測序接頭和引物序列,過濾低質(zhì)量序列,從而獲得高質(zhì)量的clean read。計(jì)算堿基質(zhì)量值≥Q30(錯(cuò)誤率0.1%)的堿基百分含量和GC堿基含量。序列組裝軟件為Trinity v2.5.1[26](https:// github.com/trinityrnaseq/trinityrnaseq/wiki)。
使用DIAMOND v2.0.4[27](https://github.com/ bbuchfink/diamond)將Unigene序列與NR[28](ftp://ftp. ncbi.nih.gov/blast/db/)、Swiss-Prot[29](http://www.uniprot. org/)、COG[30](http://www.ncbi.nlm.nih.gov/COG/)、KOG[31](http://www.ncbi.nlm.nih.gov/KOG/)、eggNOG[32](http://eggnogdb.embl.de/)和KEGG[33](http://www. genome.jp/kegg/)數(shù)據(jù)庫比對。使用KOBAS v3.0[34](http://kobas.cbi.pku.edu.cn/kobas3)獲得unigene在KEGG中的KEGG Orthology結(jié)果。使用InterProScan[35](https://www.ebi.ac.uk/interpro/download/)獲得unignene的GO Orthology結(jié)果。預(yù)測完unigene的氨基酸序列之后使用HMMER[36]與Pfam[37](http://pfam. xfam.org/)數(shù)據(jù)庫比對。以BLAST-value不大于1e-5和HMMER E-value不大于1e-10為標(biāo)準(zhǔn),獲得unigene注釋信息。
FPKM(fragments per kilobase of transcript per million mapped reads)是每百萬reads中來自比對到某一基因每千堿基長度的reads數(shù)目,據(jù)此計(jì)算基因表達(dá)量。
DESeq2 v1.6.3[38](http://www.bioconductor.org/ packages/release/bioc/html/DESeq.html)用于樣品間基因差異表達(dá)分析。依據(jù)Benjamini-Hochberg方法對原有假設(shè)檢驗(yàn)得到的顯著性值進(jìn)行校正,以校正后的值(FDR)作為篩選差異表達(dá)基因的關(guān)鍵指標(biāo)。將FDR小于0.01且差異倍數(shù)大于等于1.5作為差異表達(dá)基因的篩選標(biāo)準(zhǔn)。
使用topGO v2.28.0(http://www.bioconductor.org/ packages/release/bioc/html/topGO.html)軟件對注釋到GO數(shù)據(jù)庫的差異基因進(jìn)行富集分析。利用富集因子分析差異基因在KEGG代謝通路中的富集程度。
實(shí)時(shí)熒光定量分析用于檢測基因表達(dá)量。應(yīng)用CTAB法[39]提取果皮總RNA。第一鏈cDNA合成試劑為script all-in-one RT mix with dsDNase kit(P710)(Jinbaite, Beijing, China)。以(genne ID:GQ389668.1)為內(nèi)參基因。應(yīng)用primer3(http://bioinfo. ut.ee/primer3-0.4.0/primer3/)在線設(shè)計(jì)正、反向引物(表1)。熒光定量儀為Mastercycler ep realplex (Eppendorf, Hamburg, Germany),定量試劑為2×SYBR green qRT-PCR mix kit(p519)(Jinbaite, Beijing, China)。25 μL反應(yīng)體系:1 μL cDNA模板,0.5 μL正向引物(10 μmol·L-1),0.5 μL反向引物(10 μmol·L-1),12.5 μL 2×SYBR green qRT-PCR mix,10.5 μL去DNase/ RNase水。實(shí)時(shí)熒光定量PCR程序:94 ℃ 3 min,45個(gè)循環(huán)(94 ℃10 s,60 ℃ 34 s)。2-ΔΔCT[40]計(jì)算基因相對表達(dá)量。
表1 用于qRT-PCR試驗(yàn)的引物
每個(gè)樣品GC堿基含量約為44%,Q30均超過91%。共組裝獲得305 757個(gè)轉(zhuǎn)錄本和53 075個(gè)unigene,序列的平均長度和N50分別為1 024 bp和2 329 bp(表2)。
在8個(gè)數(shù)據(jù)庫中注釋到功能的unigene 33 334個(gè),每個(gè)數(shù)據(jù)庫注釋到的基因數(shù)量見表3。
通過對兩品種裂果和正常果果皮轉(zhuǎn)錄組的比較篩選到的差異基因數(shù)量見表4。通過對易裂品種裂果果皮與兩品種正常果果皮間轉(zhuǎn)錄組的差異分析,在時(shí)期A,共篩選到1 660個(gè)差異基因,從A1 vs A3和A2 vs A3兩組轉(zhuǎn)錄組的比較中,發(fā)現(xiàn)相同的差異基因104個(gè),其中30個(gè)基因的表達(dá)量在A1與A2果皮樣品間也存在顯著差異;在時(shí)期B,共篩選到1 972個(gè)差異基因,從B1 vs B3和B2 vs B3兩組轉(zhuǎn)錄組的比較中,發(fā)現(xiàn)相同的差異基因82個(gè),其中17個(gè)基因表達(dá)量在B1與B2果皮樣品間也存在顯著差異。
對易裂品種裂果果皮與兩品種正常果果皮間所有差異基因(兩個(gè)時(shí)期)的GO富集分析結(jié)果見圖2—4。在生物學(xué)過程分類中,兩個(gè)時(shí)期均富集到差異基因的主要亞類包括代謝過程、細(xì)胞過程、單生物過程、生物調(diào)控、刺激響應(yīng)和信號(圖2)。在分子功能分類中,兩個(gè)時(shí)期均富集到差異基因的主要亞類包括催化活性、結(jié)合、轉(zhuǎn)運(yùn)體活性及與核酸結(jié)合的轉(zhuǎn)錄因子活性(圖3)。在細(xì)胞組分分類中,兩個(gè)時(shí)期均富集到差異基因的主要亞類包括細(xì)胞、細(xì)胞膜和細(xì)胞器(圖4)。從差異基因富集到的主要亞類可以發(fā)現(xiàn),果皮對自然環(huán)境或者細(xì)胞內(nèi)信號的響應(yīng)和代謝調(diào)控與果實(shí)的抗裂能力相關(guān)。
表2 轉(zhuǎn)錄本和unigene序列長度分布
表3 在數(shù)據(jù)庫中得到功能注釋的unigene數(shù)量
表4 基于兩個(gè)時(shí)期6組果皮樣品間的比較篩選到的差異表達(dá)基因
A表示果實(shí)取樣時(shí)間(2021年8月3日);B表示果實(shí)取樣時(shí)間(2021年8月20日);1為‘度新1號文旦柚’(抗裂品種)正常果果皮;2為‘度尾文旦柚’(易裂品種)正常果果皮;3為‘度尾文旦柚’(易裂品種)裂果果皮。下同
A, fruit sampling time (August 3, 2021); B, fruit sampling time (August 20, 2021); 1, pericarp of normal fruits from Duxin 1 pomelo (cracking-resistant cultivar); 2, pericarp of normal fruits from Duwei pomelo (cracking-sensitive cultivar); 3, pericarp of cracked fruits from Duwei pomelo (cracking-sensitive cultivar). The same as below
圖2 生物學(xué)過程中基于轉(zhuǎn)錄組比較篩選到的所有差異基因注釋到的主要功能亞類
圖3 分子功能類別中基于轉(zhuǎn)錄組的比較篩選到的所有差異基因注釋到的主要功能亞類
圖4 細(xì)胞組分類別中基于轉(zhuǎn)錄組比較篩選到的所有差異基因注釋到的主要功能亞類
基于A1 vs A3、B1 vs B3、A2 vs A3和B2 vs B3 4組轉(zhuǎn)錄組的比較篩選到的差異基因分別富集到101、123、89和37個(gè)代謝途徑。易裂品種裂果果皮與兩品種正常果果皮間所有差異基因富集到相同的代謝途徑共30個(gè)(表5)。這30個(gè)代謝途徑中碳代謝、植物激素信號轉(zhuǎn)導(dǎo)、植物MAPK信號途徑、內(nèi)質(zhì)網(wǎng)蛋白過程和植物病原菌互作富集的差異基因較多。從這幾個(gè)重要的相同代謝途徑中也可以發(fā)現(xiàn),裂果與正常果間的差異基因涉及信號轉(zhuǎn)導(dǎo)途徑和生物調(diào)控。與植物病原菌互作相關(guān)的差異基因表達(dá)量的變化可能與果皮裂口的形成相關(guān),而不是調(diào)控果實(shí)抗裂能力的基因。
以A1 vs A3和A2 vs A3兩組樣品中104個(gè)相同的差異基因,以及B1 vs B3和B2 vs B3兩組樣品的82個(gè)相同差異基因?yàn)楹诵模ㄟ@些基因的表達(dá)量在易裂品種裂果果皮與兩品種正常果果皮間均存在顯著差異),綜合分析這些基因表達(dá)量在時(shí)期內(nèi)和時(shí)期間的變化趨勢,以及GO功能和KEGG代謝通路顯著富集分析的結(jié)果,篩選與果實(shí)抗裂能力相關(guān)的基因。在與細(xì)胞壁代謝相關(guān)的差異基因中,發(fā)現(xiàn)2個(gè)編碼擴(kuò)張蛋白-A1的基因(c35353.graph_c0、c19677.graph_c0)表達(dá)量在兩個(gè)時(shí)期呈現(xiàn)顯著差異。時(shí)期A,c35353.graph_c0基因在易裂品種裂果果皮的表達(dá)量顯著低于正常果果皮,也顯著低于抗裂品種正常果果皮,而在兩品種正常果果皮中的表達(dá)量無顯著差異。時(shí)期B,c19677.graph_c0基因表達(dá)量的變化規(guī)律與c35353.graph_c0基因完全相同(表6)。
在兩個(gè)時(shí)期均發(fā)現(xiàn)生長素信號途徑的基因表達(dá)量呈現(xiàn)顯著變化。時(shí)期A,生長素響應(yīng)蛋白30基因(c17406.graph_c1)表達(dá)量在易裂品種裂果果皮中顯著高于正常果果皮,也顯著高于抗裂品種正常果果皮,但在兩品種正常果果皮間無顯著差異。時(shí)期B,編碼生長素響應(yīng)蛋白26的基因(c37618.graph_c0)表達(dá)量變化規(guī)律與時(shí)期A完全一致(表7)。
在兩個(gè)時(shí)期均篩選到涉及信號轉(zhuǎn)導(dǎo)途徑的差異基因。兩時(shí)期易裂品種裂果果皮絲氨酸/蘇氨酸蛋白激酶基因表達(dá)量顯著高于兩品種的正常果果皮,特別是時(shí)期B,易裂品種正常果果皮此類基因表達(dá)量也顯著高于抗裂品種正常果果皮。表明絲氨酸/蘇氨酸蛋白激酶基因表達(dá)量的提高易引發(fā)裂果。盡管受體蛋白激酶基因的表達(dá)量在易裂品種裂果果皮與兩品種正常果果皮間存在顯著差異,但兩個(gè)時(shí)期的變化規(guī)律相反。另外,在時(shí)期A篩選到鈣結(jié)合蛋白、鈣轉(zhuǎn)運(yùn)ATP酶、小磷酸化酶樣蛋白和類鈣調(diào)磷酸酶B亞基基因,在時(shí)期B篩選到細(xì)胞壁受體激酶基因,除類鈣調(diào)磷酸酶B亞基基因在易裂品種裂果果皮中表達(dá)量顯著低于兩品種正常果果皮外,其余基因在易裂品種裂果果皮中的表達(dá)量顯著高于兩品種正常果果皮,但均僅在一個(gè)時(shí)期呈現(xiàn)顯著差異(表8)。
與兩品種正常果果皮相比,易裂品種裂果果皮表達(dá)量呈現(xiàn)顯著變化的轉(zhuǎn)錄因子主要包括熱激轉(zhuǎn)錄因子、脫水響應(yīng)元件結(jié)合蛋白和其他類轉(zhuǎn)錄因子(bHLH、MYC、SRM、BOA、BIM),僅熱激轉(zhuǎn)錄因子和脫水響應(yīng)元件結(jié)合蛋白基因表達(dá)量在兩個(gè)時(shí)期均呈現(xiàn)顯著變化。易裂品種裂果果皮熱激轉(zhuǎn)錄因子和脫水響應(yīng)元件結(jié)合蛋白基因表達(dá)量顯著高于兩品種正常果果皮(表9)。
表5 基于轉(zhuǎn)錄組比較篩選到的所有差異基因富集到相同的KEGG代謝途徑
表6 ‘度尾文旦柚’與‘度新1號文旦柚’果皮細(xì)胞壁代謝途徑的差異基因
“-”表示兩樣品間基因表達(dá)量無顯著差異。下同
“-” indicate no significant difference in levels of gene transcripts between the two samples. The same as below
表7 ‘度尾文旦柚’與‘度新1號文旦柚’果皮植物激素信號轉(zhuǎn)導(dǎo)途徑差異基因
表8 ‘度尾文旦柚’與‘度新1號文旦柚’果皮植物信號途徑差異基因
qRT-PCR方法用于驗(yàn)證8個(gè)差異基因的表達(dá)量。RNA-seq和qRT-PCR兩類方法測得的基因表達(dá)量皮爾遜相關(guān)系數(shù)為0.8193。qRT-PCR結(jié)果顯示,果皮樣品間差異基因表達(dá)量的變化趨勢與RNA-seq結(jié)果較為一致(圖5)。
擴(kuò)張蛋白是一類細(xì)胞壁蛋白超家族,分為4個(gè)亞家族:擴(kuò)張蛋白A、擴(kuò)張蛋白B、類擴(kuò)張蛋白A和類擴(kuò)張蛋白B;該類蛋白主要分布在伸展的細(xì)胞壁[20]。擴(kuò)張蛋白通過提高纖維素酶和果膠酶活性促進(jìn)纖維素和果膠降解[41],由此引起細(xì)胞壁松弛[42]。研究發(fā)現(xiàn)番茄擴(kuò)張蛋白(SlExp1)功能缺失引起番茄果實(shí)硬度提高[22]。另外,擴(kuò)張蛋白表達(dá)的變化也與裂果相關(guān)。在荔枝(Sonn.)果皮中鑒定到兩個(gè)擴(kuò)張蛋白基因(、),在果實(shí)快速生長初期檢測到抗裂品種‘淮枝’mRNA,之后其表達(dá)量提高,在果實(shí)快速生長末期達(dá)到最高值,盡管在果實(shí)快速生長期的易裂品種‘糯米糍’果皮中也檢測到,但其表達(dá)量保持穩(wěn)定;另外,僅在‘淮枝’果皮中檢測到mRNA[24]。與棗(Mill.)易裂品種果實(shí)相比,棗抗裂品種果皮擴(kuò)張蛋白基因(、、、)的表達(dá)量高[25]。本研究也顯示擴(kuò)張蛋白基因表達(dá)量與果實(shí)抗裂能力呈正相關(guān)。由于‘度尾文旦柚’(易裂品種)正常果和裂果果皮間擴(kuò)張蛋白基因表達(dá)量也存在顯著差異,推測環(huán)境因素能夠調(diào)控該基因的表達(dá)。
*表示4組比較(A3 vs A1、A3 vs A2 B3 vs B1 B3 vs B2)中兩個(gè)樣品間基因表達(dá)量(qRT-PCR)差異顯著(P<0.05)
表9 ‘度尾文旦柚’與‘度新1號文旦柚’果皮差異轉(zhuǎn)錄因子
本試驗(yàn)發(fā)現(xiàn)在每個(gè)取樣時(shí)期,樣品間熱逆境轉(zhuǎn)錄因子的表達(dá)量均呈現(xiàn)顯著差異。易裂品種裂果果皮熱激轉(zhuǎn)錄因子表達(dá)量顯著高于兩品種正常果果皮,而兩品種正常果果皮間該基因表達(dá)量無顯著差異。熱激轉(zhuǎn)錄因子轉(zhuǎn)錄水平與植物對高溫的適應(yīng)力呈正相關(guān)[43-44]。由于柚果實(shí)快速生長期(8—9月)果實(shí)易裂果,此期是高溫時(shí)節(jié),熱激轉(zhuǎn)錄因子表達(dá)量的提高可能是果實(shí)對高溫逆境的響應(yīng)。生長素響應(yīng)蛋白(IAA26)[45]也參與植物對高溫逆境的響應(yīng)。本研究發(fā)現(xiàn),與兩品種正常果果皮相比,易裂品種裂果果皮中生長素響應(yīng)蛋白基因(、)表達(dá)量顯著提高。這也表明高溫可能是引起柚裂果的重要環(huán)境因素。
在時(shí)期A,兩品種正常果果皮類鈣調(diào)磷酸酶B亞基、受體蛋白激酶和脫水響應(yīng)元件結(jié)合蛋白基因表達(dá)量顯著高于易裂品種裂果果皮。據(jù)報(bào)道,類鈣調(diào)磷酸酶B亞基和受體蛋白激酶基因的表達(dá)量與植物對干旱或者滲透脅迫的適應(yīng)力呈正相關(guān)[46-48]。本試驗(yàn)樣品間這3個(gè)基因(編碼類鈣調(diào)磷酸酶B亞基、受體蛋白激酶和脫水響應(yīng)元件結(jié)合蛋白)表達(dá)量的差異表明柚果實(shí)生長發(fā)育過程中果皮可能存在水分虧缺現(xiàn)象。另外,兩品種正常果果皮信號轉(zhuǎn)導(dǎo)途徑基因(鈣結(jié)合蛋白、鈣轉(zhuǎn)運(yùn)ATP酶、絲氨酸/蘇氨酸蛋白激酶、小磷酸化酶樣蛋白)和脫水響應(yīng)元件結(jié)合蛋白(DREB,一類轉(zhuǎn)錄因子)基因表達(dá)量顯著低于易裂品種裂果果皮。盡管這些基因的轉(zhuǎn)錄水平均與植物對水分虧缺的適應(yīng)力呈正相關(guān)[49-52],但因無法排除這些基因(絲氨酸/蘇氨酸蛋白激酶基因除外)是否由果皮開裂后細(xì)胞水分散失所引起,尚難斷定其與裂果間的關(guān)系。
在時(shí)期B,與兩品種正常果果皮相比,易裂品種裂果果皮中編碼絲氨酸/蘇氨酸蛋白激酶、酪氨酸和絲氨酸/蘇氨酸激酶、受體蛋白激酶、受體蛋白、細(xì)胞壁受體激酶和DREB的基因表達(dá)量均顯著提高。此期不僅易裂品種裂果果皮絲氨酸/蘇氨酸蛋白激酶基因表達(dá)量顯著高于兩品種正常果果皮;而且,易裂品種正常果果皮此基因表達(dá)量也顯著高于抗裂品種正常果果皮,表明此基因表達(dá)量與果實(shí)抗裂能力呈負(fù)相關(guān)。在水稻()植株對金屬和機(jī)械損傷的響應(yīng)中,細(xì)胞壁受體激酶基因表達(dá)量提高[53]。據(jù)此推測柚裂果果皮中細(xì)胞壁受體激酶的基因表達(dá)量提高可能是由果皮開裂引起。此期盡管裂果果皮水通道蛋白TIP2-1基因表達(dá)量是兩品種正常果果皮的5—10倍,但此基因表達(dá)量的變化可能是對果皮裂隙形成后的響應(yīng),而不是引起裂果的上游調(diào)控基因。
綜合分析兩個(gè)時(shí)期樣品間果皮信號轉(zhuǎn)導(dǎo)途徑和水分運(yùn)動相關(guān)基因表達(dá)量的差異,發(fā)現(xiàn)在果實(shí)快速生長初期(時(shí)期A),果皮類鈣調(diào)磷酸酶B亞基轉(zhuǎn)錄水平與柚果實(shí)抗裂果能力呈正相關(guān);而脫水響應(yīng)元件結(jié)合蛋白、果皮絲氨酸/蘇氨酸蛋白激酶基因表達(dá)量與柚果實(shí)抗裂能力呈負(fù)相關(guān)(兩個(gè)取樣時(shí)期規(guī)律一致)??紤]到高溫逆境引起柑橘植株蒸騰量提高[54],所以柚果實(shí)生長季節(jié)內(nèi)的高溫可能與果皮水分虧缺相關(guān)。高溫逆境和水分虧缺均能引起植物氧化逆境的形成,主要表現(xiàn)為丙二醛和過氧化氫含量、相對電導(dǎo)率提高,葉綠素和相對含水量降低[52,55-56]。而活性氧的積累易引起細(xì)胞凋亡[57]。因此,推測柚果實(shí)生長季節(jié)內(nèi)高溫引起果皮水分虧缺,繼而導(dǎo)致細(xì)胞凋亡及微小裂隙的形成。
本研究對果實(shí)快速生長初期和果實(shí)快速生長期的易裂品種(‘度尾文旦柚’)裂果和正常果果皮,以及抗裂品種(‘度新1號文旦柚’)正常果果皮進(jìn)行轉(zhuǎn)錄組測序。綜合分析果皮樣品間轉(zhuǎn)錄組的差異,發(fā)現(xiàn)品種間抗裂能力的差異主要與擴(kuò)張蛋白、高溫和水分虧缺逆境響應(yīng)基因和生長素響應(yīng)蛋白基因的表達(dá)水平相關(guān)。擴(kuò)張蛋白-A1、類鈣調(diào)磷酸酶B亞基(干旱逆境響應(yīng)蛋白)基因表達(dá)量與柚果實(shí)抗裂能力呈正相關(guān)。脫水響應(yīng)元件結(jié)合蛋白、熱逆境轉(zhuǎn)錄因子A-4b、熱逆境轉(zhuǎn)錄因子A-8、絲氨酸/蘇氨酸蛋白激酶(干旱逆境響應(yīng)蛋白)和生長素響應(yīng)蛋白(IAA26、IAA30,高溫逆境響應(yīng)蛋白)基因轉(zhuǎn)錄水平與柚果實(shí)抗裂能力呈負(fù)相關(guān)。
[1] 芮文婧, 王曉敏, 張倩男, 胡學(xué)義, 胡新華, 付金軍, 高艷明, 李建設(shè). 番茄353份種質(zhì)資源表型性狀遺傳多樣性分析. 園藝學(xué)報(bào), 2018, 45(3): 561-570.
RUI W J, WANG X M, ZHANG Q N, HU X Y, HU X H, FU J J, GAO Y M, LI J S. Genetic diversity analysis of 353 tomato germplasm resources by phenotypic traits. Acta Horticulturae Sinica, 2018, 45(3): 561-570. (in Chinese)
[2] MITRA S K, PATHAK P K, DEBNATH S, SARKAR A, MONDAL D. Elucidation of the factors responsible for cracking and sunburn in litchi and integrated management to minimize the disorders. Acta Horticulturae, 2010, 863: 225-234.
[3] MUTHOO A K, RAINA B L, NATHU B L. Fruit cracking studies in some commerical cultivars of litchi (Sonn). Advances in Plant Sciences, 1999, 12(2): 543-547.
[4] 葉正文, 葉蘭香, 張學(xué)英. “朋娜” 等臍橙的裂果規(guī)律及赤霉素防裂效果. 上海農(nóng)業(yè)學(xué)報(bào), 2002, 18(4): 52-57.
YE Z W, YE L X, ZHANG X Y. The fruit cracking rules of navel orange varieties such as “pengna” and the effect of gibberellin (ga) preventing fruits from cracking. Acta Agriculturae Shanghai, 2002, 18(4): 52-57. (in Chinese)
[5] 李娟, 陳杰忠. 柑桔裂果發(fā)生類型、過程及預(yù)防對策. 廣東農(nóng)業(yè)科學(xué), 2011, 38(10): 32-33, 37.
LI J, CHEN J Z. The style, process and control of cracking fruit in citrus. Guangdong Agricultural Sciences, 2011, 38(10): 32-33, 37. (in Chinese)
[6] 郗鑫, 劉晨筱, 陳虹, 白晉華, 郭紅彥. 不同棗品種果實(shí)性狀與裂果的相關(guān)性. 山西農(nóng)業(yè)科學(xué), 2016, 44(10): 1476-1478, 1507.
XI X, LIU C X, CHEN H, BAI J H, GUO H Y. Correlation analysis of fruit characters and cracking in different varieties of jujube. Journal of Shanxi Agricultural Sciences, 2016, 44(10): 1476-1478, 1507. (in Chinese)
[7] 栗現(xiàn)芳, 陳曉龍, 問徐鵬, 趙怡, 馬輝. 棗易裂品種和抗裂品種間各糖組分含量與裂果的相關(guān)性分析. 分子植物育種, 2020, 18(18): 6180-6186.
LI X F, CHEN X L, WEN X P, ZHAO Y, MA H. Correlation analysis between the sugar components and fruit cracking in easily cracked and resistant jujube. Molecular Plant Breeding, 2020, 18(18): 6180-6186. (in Chinese)
[8] 李建國, 黃輝白. 荔枝果實(shí)理化特性及果皮形態(tài)學(xué)與裂果易感性的關(guān)系. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 1995, 16(1): 84-89.
LI J G, HUANG H B. Phybico- chemical properties and peel morphology in relation to fruit-cracking susceptibility in litchi fruit. Journal of South China Agricultural University, 1995, 16(1): 84-89. (in Chinese)
[9] YU J, ZHU M T, WANG M J, TANG W Y, WU S, ZHANG K, YANG G S. Effect of nordihydroguaiaretic acid on grape berry cracking. Scientia Horticulturae, 2020, 261: 108979.
[10] BEYER M, KNOCHE M. Studies on water transport through the sweet cherry fruit surface: V. conductance for water uptake. Journal of the American Society for Horticultural Science, 2002, 127(3): 325-332.
[11] LI N, FU L J, SONG Y Q, LI J, XUE X F, LI S R, LI L L. Water entry in jujube fruit and its relationship with cracking. Acta Physiologiae Plantarum, 2019, 41(9): 162.
[12] SONG Y Q, LI J, FU L J, LI N, LI L L. Change of fruit surface characteristics and its relationship with water absorption and fruit cracking in‘Huping’. Scientia Silvae Sinicae, 2018, 54(12): 52-59.
[13] PESCHEL S, KNOCHE M. Characterization of microcracks in the cuticle of developing sweet cherry fruit. Journal of the American Society for Horticultural Science, 2005, 130(4): 487-495.
[14] HUANG X M, YUAN W Q, WANG H C, LI J G, HUANG H B, SHI L, YIN J H. Linking cracking resistance and fruit desiccation rate to pericarp structure in(Sonn.). The Journal of Horticultural Science and Biotechnology, 2004, 79(6): 897-905.
[15] HUANG X M, WANG H C, GAO F F, HUANG H B. A comparative study of the pericarp of litchi cultivars susceptible and resistant to fruit cracking. The Journal of Horticultural Science and Biotechnology, 1999, 74(3): 351-354.
[16] 張鵬飛, 張燕, 鞏磊, 紀(jì)薇, 高美英, 劉亞令, 郝曉娟. 植物生長調(diào)節(jié)劑對棗果皮細(xì)胞壁多糖的影響研究. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 34(2): 174-178.
ZHANG P F, ZHANG Y, GONG L, JI W, GAO M Y, LIU Y L, HAO X J. Effects of plant growth regulators on pericarp cell wall polysaccharide of Chinese jujube. Journal of Shanxi Agricultural University (Natural Science Edition), 2014, 34(2): 174-178. (in Chinese)
[17] YANG Z E, WU Z, ZHANG C, HU E M, ZHOU R, JIANG F L. The composition of pericarp, cell aging, and changes in water absorption in two tomato genotypes: mechanism, factors, and potential role in fruit cracking.Acta Physiologiae Plantarum, 2016, 38(9): 215.
[18] CHOI J H, LEE B, GU M M, LEE U Y, KIM M S, JUNG S K, CHOI H S. Course of fruit cracking in ‘Whansan’ pears. Horticulture, Environment, and Biotechnology, 2020, 61(1): 51-59.
[19] 楊磊, 馮貝貝, 靳娟, 樊丁宇, 劉晶, 克里木?伊明, 郝慶. 新疆6個(gè)大果紅棗裂果性差異及其內(nèi)在原因分析. 西北植物學(xué)報(bào), 2021, 41(8)1364-1370.
YANG L, FENG B B, JIN J, FAN D Y, LIU J, KELIMU?Yimin, HAO Q. Differences in fruit cracking of six big fruit type jujube cultivars from Xinjiang and its internal causes. Acta Botanica Boreali- Occidentalia Sinica, 2021, 41(8): 1364-1370. (in Chinese)
[20] CHOI D, KIM J H, LEE Y. Expansins in plant development// Advances in Botanical Research. Amsterdam: Elsevier, 2008: 47-97.
[21] SEKI Y, KIKUCHI Y, YOSHIMOTO R, ABURAI K, KANAI Y, RUIKE T, IWABATA K, GOITSUKA R, SUGAWARA F, ABE M, SAKAGUCHI K. Promotion of crystalline cellulose degradation by expansins from. Planta, 2015, 241(1): 83-93.
[22] MINOIA S, BOUALEM A, MARCEL F, TROADEC C, QUEMENERB, CELLINI F, PETROZZA A, VIGOUROUX J, LAHAYE M, CARRIERO F, BENDAHMANE A. Induced mutations in tomatoalter cell wall metabolism and delay fruit softening. Plant Science, 2016, 242: 195-202.
[23] KASAI S, HAYAMA H, KASHIMURA Y, KUDO S, OSANAI Y. Relationship between fruit cracking and expression of the expansin geneBorkh.). Scientia Horticulturae, 2008, 116(2): 194-198.
[24] WANG Y, LU W J, LI J G, JIANG Y M. Differential expression of two expansin genes in developing fruit of cracking-susceptible and-resistantcultivars. Journal of the American Society for Horticultural Science, 2006, 131(1): 118-121.
[25] 辛海青, 周軍永, 孫耀星, 穆文磊, 楊健, 馬福利, 孫俊, 薛崢嶸, 陸麗娟, 孫其寶. 棗易裂與抗裂品種灌水后果皮結(jié)構(gòu)和擴(kuò)張蛋白基因表達(dá)差異研究. 園藝學(xué)報(bào), 2021, 48(9): 1785-1793.
XIN H Q, ZHOU J Y, SUN Y X, MU W L, YANG J, MA F L, SUN J, XUE Z R, LU L J, SUN Q B. Differences in the pericarp structure and the expression of expansin genes after irrigation between easily cracked and resistant jujube. Acta Horticulturae Sinica, 2021, 48(9): 1785-1793. (in Chinese)
[26] GRABHERR M G, HAAS B J, YASSOUR M, LEVIN J Z, THOMPSON D A, AMIT I, ADICONIS X, FAN L, RAYCHOWDHURY R, ZENG Q D, CHEN Z H, MAUCELI E, HACOHEN N, GNIRKE A, RHIND N, DI PALMA F, BIRREN B W, NUSBAUM C, LINDBLAD-TOH K, FRIEDMAN N, REGEV A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652.
[27] BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 2015, 12(1): 59-60.
[28] 鄧泱泱, 荔建琦, 吳松鋒, 朱云平, 陳耀文, 賀福初. nr數(shù)據(jù)庫分析及其本地化. 計(jì)算機(jī)工程, 2006, 32(5): 71-73, 76.
DENG Y Y, LI J Q, WU S F, ZHU Y P, CHEN Y W, HE F C. Integrated nr database in protein annotation system and its localization. Computer Engineering, 2006, 32(5): 71-73, 76. (in Chinese)
[29] APWEILER R, BAIROCH A, WU C H, BARKER W C, BOECKMANN B, FERRO S, GASTEIGER E, HUANG H Z, LOPEZ R, MAGRANE M, MARTIN M J, NATALE D A, O'DONOVAN C, REDASCHI N, YEH L S L. UniProt: The universal protein knowledgebase. Nucleic Acids Research, 2004, 32: D115-D119.
[30] TATUSOV R L, GALPERIN M Y, NATALE D A, KOONIN E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28(1): 33-36.
[31] KOONIN E V, FEDOROVA N D, JACKSON J D, JACOBS A R, KRYLOV D M, MAKAROVA K S, MAZUMDER R, MEKHEDOV S L, NIKOLSKAYA A N, RAO B S, ROGOZIN I B, SMIRNOV S, SOROKIN A V, SVERDLOV A V, VASUDEVAN S, WOLF Y I, YIN J J, NATALE D A. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 2004, 5(2): R7.
[32] HUERTA-CEPAS J, SZKLARCZYK D, FORSLUND K, COOK H, HELLER D, WALTER M C, RATTEI T, MENDE D R, SUNAGAWA S, KUHN M, JENSEN L J, VON MERING C, BORK P. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research, 2016, 44: D286-D293.
[33] KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004, 32(suppl_1): D277-D280.
[34] XIE C, MAO X Z, HUANG J J, DING Y, WU J M, DONG S, KONG L, GAO G, LI C Y, WEI L P. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39(suppl_2): W316-W322.
[35] JONES P, BINNS D, CHANG H Y, FRASER M, LI W Z, MCANULLA C, MCWILLIAM H, MASLEN J, MITCHELL A, NUKA G, PESSEAT S, QUINN A F, SANGRADOR-VEGAS A, SCHEREMETJEW M, YONG S Y, LOPEZ R, HUNTER S. InterProScan 5: Genome-scale protein function classification. Bioinformatics, 2014, 30(9): 1236-1240.
[36] EDDY S R. Profile hidden Markov models. Bioinformatics, 1998, 14(9): 755-763.
[37] FINN R D, TATE J, MISTRY J, COGGILL P C, SAMMUT S J, HOTZ H R, CERIC G, FORSLUND K, EDDY S R, SONNHAMMER E L L, BATEMAN A. The Pfam protein families database. Nucleic Acids Research, 2008, 36: D281-D288.
[38] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550.
[39] 張銳, 周開兵. 荔枝果實(shí)膨大期果皮總RNA提取方法的篩選. 中國南方果樹, 2013, 42(5): 11-14.
ZHANG R, ZHOU K B. Screening of the methods for extraction of total RNA frompericarp at the swollen stage. South China Fruits, 2013, 42(5): 11-14. (in Chinese)
[40] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative CTmethod. Nature Protocols, 2008, 3(6): 1101-1108.
[41] WEI W, YANG C, LUO J, LU C M, WU Y J, YUAN S. Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase. Journal of Plant Physiology, 2010, 167(14): 1204-1210.
[42] COSGROVE D J. Loosening of plant cell walls by expansins. Nature, 2000, 407(6802): 321-326.
[43] WANG X Y, HUANG B R. Lipid- and calcium-signaling regulation of-mediated heat tolerance in tall fescue. Environmental and Experimental Botany, 2017, 136: 59-67.
[44] GAI W X, MA X, LI Y, XIAO J J, KHAN A, LI Q H, GONG Z H. CaHsfA1d improves plant thermotolerance via regulating the expression of stress- and antioxidant-related genes. International Journal of Molecular Sciences, 2020, 21(21): 8374.
[45] ZHAO Y, YU W G, HU X Y, SHI Y H, LIU Y, ZHONG Y F, WANG P, DENG S Y, NIU J, YU X D. Physiological and transcriptomic analysis revealed the involvement of crucial factors in heat stress response of. Gene, 2018, 660: 109-119.
[46] CHO J H, CHOI M N, YOON K H, KIM K N. Ectopic expression of SjCBL1, calcineurin B-like 1 gene from, rescues the salt and osmotic stress hypersensitivity incbl1 mutant. Frontiers in Plant Science, 2018, 9: 1188.
[47] XU G Y, LI M J, ZHANG H, CHEN Q S, JIN L F, ZHENG Q X, LIU P P, CAO P J, CHEN X, ZHAI N, ZHOU H N., a novel RLK-like protein kinase from, positively regulates drought tolerance in transgenic. Biochemical and Biophysical Research Communications, 2018, 503(3): 1235-1240.
[48] XU M, LI H, LIU Z N, WANG X H, XU P, DAI S J, CAO X, CUI X Y. The soybean CBL-interacting protein kinase, GmCIPK2, positively regulates drought tolerance and ABA signaling. Plant Physiology and Biochemistry, 2021, 167: 980-989.
[49] LI C X, ZHANG W L, YUAN M, JIANG L N, SUN B, ZHANG D J, SHAO Y, LIU A Q, LIU X Q, MA J H. Transcriptome analysis of osmotic-responsive genes in ABA-dependent and-independent pathways in wheat (L.) roots. PeerJ, 2019, 7: e6519.
[50] REDILLAS M C F R, JEONG J S, KIM Y S, JUNG H, BANG S W, CHOI Y D, HA S H, REUZEAU C, KIM J K. The overexpression ofalters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal, 2012, 10(7): 792-805.
[51] SUN X L, SUN M Z, LUO X, DING X D, JI W, CAI H, BAI X, LIU X F, ZHU Y M. AABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses.Planta, 2013, 237(6): 1527-1545.
[52] DAS A, BASU P, KUMAR M, ANSARI J, SHUKLA A, THAKUR S, SINGH P, DATTA S, CHATURVEDI S, SHESHSHAYEE M, BANSAL K, SINGH N. Transgenic chickpea (L.) harbouring AtDREB1a are physiologically better adapted to water deficit. BMC Plant Biology, 2021, 21: 39.
[53] HU W, LV Y Y, LEI W R, LI X, CHEN Y H, ZHENG L Q, XIA Y, SHEN Z G. Cloning and characterization of thewall-associated kinase gene OsWAK11 and its transcriptional response to abiotic stresses. Plant and Soil, 2014, 384(1/2): 335-346.
[54] ZANDALINAS S I, RIVERO R M, MARTíNEZ V, GóMEZ- CADENAS A, ARBONA V. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels.BMC Plant Biology, 2016, 16: 105.
[55] HASANUZZAMAN M, NAHAR K, ALAM M M, FUJITA M. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplementedseedlings confers tolerance to high temperature stress. Biological Trace Element Research, 2014, 161(3): 297-307.
[56] BATCHO A A, SARWAR M B, RASHID B, HASSAN S, HUSNAIN T. Heat shock protein gene identified from(AsHSP70) confers heat stress tolerance in transgenic cotton (). Theoretical and Experimental Plant Physiology, 2021, 33(2): 141-156.
[57] CONTRAN N, TONELLI M, CROSTI P, CERANA R, MALERBA M. Antioxidant system in programmed cell death of sycamore (L.) cultured cells. Acta Physiologiae Plantarum, 2012, 34(2): 617-629.
A Transcriptome Analysis Identifies Candidate Genes Related to Fruit Cracking in Pomelo Fruits
LU YanQing, LIN YanJin, WANG XianDa, LU XinKun
Institute of Pomology, Fujian Academy of Agricultural Sciences, Fuzhou 350013
【Objective】Fruit cracking is a universal physiological disorder that occurs during growth in citrus fruits. However, the molecular mechanisms that regulate cracking in citrus fruits remain unclear. The aim of this study was to screen genes that were related to resistance to fruit cracking. 【Method】 Normal fruits from a pomelo ((L). Osbeck) cultivar (Duxin 1) resistant to cracking, as well as normal and cracked fruits from Duwei, a cultivar sensitive to cracking, were collected on August 3, 2021 andAugust 20, 2021, respectively. The pericarp surrounding blossom ends of the fruits (the blossom end was considered the center, approximate 30 millimeters radius) were sampled for RNA-seq. 【Result】 The differentially expressed genes (DEGs) in each stage were screened based on the comparisons of a transcriptome between cracked fruits from the cracking-sensitive cultivar and normal fruits from both cultivars. In the stage A, 1 660 DEGs were obtained, and 104 DEGs were common between the comparison. A total of 1 972 DEGs were screened in stage B, and 82 were common in the comparison. All the DEGs screened at both stages were used for a Gene Ontology enrichment analysis. In the classification of biological process, the major common sub-classifications, including ‘metabolic process’ , ‘cellular process’ , ‘single-organism process’ , ‘biological regulation’ , ‘response to stimulus’ , and ‘signaling’ were identified in both stages. All the screened DEGs were also analyzed using Kyoto Encyclopedia of Genes and Genomes enrichment. Many genes were enriched in several metabolic pathways, including ‘carbon metabolism’, ‘MAPK signaling pathway-plant’, ‘plant hormone signal transduction’ and ‘protein processing in endoplasmic reticulum’. In addition, these pathways were identified in both stages. Several genes related to resistance to fruit cracking were identified in this study. The levels of transcription ofwere significantly higher in the pericarp of normal fruits from the two cultivars than that in the pericarp of cracked fruits from the sensitive cultivar.gene was highly expressed in the pericarp of normal fruits from both cultivars when compared with the pericarp of cracked fruits from the sensitive cultivar. However, this difference disappeared at the stage B. The genes for,,, andwere upregulated in the pericarp of cracked fruits from the sensitive cultivar compared with the pericarp of normal fruits from the two cultivars in both stages. 【Conclusion】These findings suggested that the genes related to strength of pericarp, water movement, and responsing to high temperature and water deficiency stresses were critical to regulating resistance to fruit cracking.
pummelo (L. Osbeck); fruit cracking; pericarp; transcriptome; cracking-resistant gene
10.3864/j.issn.0578-1752.2023.20.013
2023-04-18;
2023-08-15
福建省屬公益類科研院所基本科研專項(xiàng)(2021R1028001,2020R10280014,2022R1028006)、福建省自然科學(xué)基金(2022J01472)、科技部、財(cái)政部國家科技資源共享服務(wù)平臺項(xiàng)目(NHGRC2023-NH18-2)、福建省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新聯(lián)盟專項(xiàng)(CXLM2021003)
盧艷清,E-mail:lluyqing2006@126.com。通信作者盧新坤,E-mail:gsskg@126.com
(責(zé)任編輯 趙伶俐)