劉夢(mèng),張垚,葛均筑,楊永安,吳錫冬,侯海鵬
不同降雨年型施氮量對(duì)延遲收獲夏玉米產(chǎn)量、強(qiáng)弱勢(shì)粒形態(tài)與粒重的影響
劉夢(mèng)1,4,張垚1,葛均筑1,楊永安2,吳錫冬1,侯海鵬3
1天津市主要農(nóng)作物智能育種重點(diǎn)實(shí)驗(yàn)室/天津農(nóng)學(xué)院農(nóng)學(xué)與資源環(huán)境學(xué)院,天津 300392;2天津市優(yōu)質(zhì)農(nóng)產(chǎn)品開發(fā)示范中心,天津 301500;3天津市農(nóng)業(yè)發(fā)展服務(wù)中心,天津 300061;4西北農(nóng)林科技大學(xué)農(nóng)學(xué)院,陜西楊凌 712100
【目的】華北平原熱量資源有限,夏播玉米收獲期籽粒含水率高,影響機(jī)械粒收質(zhì)量,限制了該項(xiàng)技術(shù)在該區(qū)域的應(yīng)用。延遲收獲條件下,施氮量差異對(duì)夏玉米籽粒產(chǎn)量、強(qiáng)弱勢(shì)粒形態(tài)、粒重等關(guān)鍵產(chǎn)量性狀的影響尚不明確。通過對(duì)不同施氮水平強(qiáng)弱勢(shì)粒形態(tài)、灌漿及脫水過程的系統(tǒng)觀測(cè),明確氮肥調(diào)控效應(yīng),為區(qū)域機(jī)械粒收夏玉米穩(wěn)產(chǎn)減氮增效栽培提供支持?!痉椒ā?020—2021年選用粒收夏玉米品種京農(nóng)科728為材料,采用收獲時(shí)期和施氮量二因素區(qū)組試驗(yàn)設(shè)計(jì),收獲時(shí)期設(shè)正常果穗收獲(NH)和延遲籽粒收獲(DH),6個(gè)純氮施用水平分別為0(N0)、120(N120,2021)、180(N180)、240(N240)、300(N300)、360(N360)和450 kg hm-2(N450,2020),測(cè)定產(chǎn)量(GY)、籽粒鮮體積(GFV)、鮮重(GFW)、干重(GDW)、含水率(GMC)及其變化速率?!窘Y(jié)果】與干旱年型(2020年)相比,多雨年型(2021年)弱勢(shì)粒的GFV、GFW和GDW的最大變化速率(G)、生長量(W)和起始勢(shì)(R)顯著降低,到達(dá)最大變化速率時(shí)間(T)推遲,活躍期(P)延長,導(dǎo)致弱勢(shì)粒的GFV、GFW和GDW顯著降低15.4%—50.6%、25.4%—62.0%和31.2%—57.3%,而強(qiáng)勢(shì)粒不顯著,GY顯著降低3.03×103—5.44×103kg·hm-2。多雨年型條件下,弱勢(shì)粒的GDW、GDW和GDW比強(qiáng)勢(shì)粒顯著降低55.1%—258.1%、13.4%—143.0%和12.0%—126.6%,GDW推遲4.2—20.7 d,強(qiáng)勢(shì)粒的GFV、GFW和GDW比弱勢(shì)粒顯著提高56.8%—69.6%、67.0%—80.4%和54.1%—92.1%。與NH相比,延遲收獲籽粒的G和R提高,強(qiáng)、弱勢(shì)粒的P顯著延長;在干旱年型和多雨年型下,GFV、GFW顯著降低2.1%—8.1%和12.2%—17.1%、4.0%—5.2%和15.7%—19.5%,GDW自25.1—28.2 g/100 grains提高到28.0—34.4 g/100 grains,GMC降至22.6%—26.0%,降幅達(dá)31.3%—40.4%,產(chǎn)量提高0.02×103—1.67×103kg·hm-2。干旱年型施氮水平間的GFV、GFW、GDW無顯著差異;多雨年型N240-N360處理的GDW、GDW比N180提高,GDW推遲,GDW延長,差異均達(dá)顯著水平,且對(duì)弱勢(shì)粒影響強(qiáng)于強(qiáng)勢(shì)粒。DH處理下,N240-N360弱勢(shì)粒的GFV、GFW和GDW比N180顯著提高25.7%—85.3%、59.4%—83.6%和17.9%—43.9%。多雨年型下氮肥的增產(chǎn)效應(yīng)(74.4%—169.5%)顯著高于干旱年型(51.5%—99.1%),N240GY比N120-N180顯著提高12.6%—54.5%?!窘Y(jié)論】華北平原熱量資源限制區(qū)小麥-玉米種植制度,將冬小麥變?yōu)榇盒←湥挠衩籽舆t收獲23—33 d,顯著提高弱勢(shì)粒庫容與粒重,籽粒含水率降低至籽粒機(jī)收含水率標(biāo)準(zhǔn),實(shí)現(xiàn)周年機(jī)械化粒收。優(yōu)化施氮247.2—248.6 kg·hm-2,實(shí)現(xiàn)不同降雨年型下產(chǎn)量穩(wěn)定在7.0×103—12.0×103kg·hm-2的穩(wěn)產(chǎn)減氮增效的生產(chǎn)目標(biāo)。
夏玉米;降雨年型;延遲收獲;施氮量;強(qiáng)弱勢(shì)粒;籽粒灌漿
【研究意義】華北平原是中國夏玉米主產(chǎn)區(qū),在保障國家糧食安全中具有重要作用[1]。近年來,夏玉米生長季極端降水如大暴雨日數(shù)和平均日降水強(qiáng)度有增加趨勢(shì)[2],淹水脅迫導(dǎo)致籽粒發(fā)育受阻、粒重降低而顯著減產(chǎn)[3-6]。華北平原周年兩熟制熱量資源分配不均衡,致使夏玉米成熟和脫水時(shí)間較短,收獲期籽粒含水率較高[7],難以達(dá)25%—28%機(jī)械粒收含水率標(biāo)準(zhǔn)[8],通過延遲收獲降低籽粒含水率[9-10],可為籽粒機(jī)械粒收技術(shù)提供支撐[11]。施氮等栽培措施調(diào)控玉米強(qiáng)、弱勢(shì)粒庫容潛力及粒重[12-14],但對(duì)籽粒脫水速率影響不顯著[15],且為提高集約化種植制度農(nóng)作物生產(chǎn)力,生產(chǎn)中過量施氮現(xiàn)象十分普遍[16-18]。明確華北平原不同降雨年型下延遲收獲和施氮量調(diào)控夏玉米產(chǎn)量、籽粒形態(tài)與粒重的效應(yīng),對(duì)區(qū)域夏玉米實(shí)現(xiàn)機(jī)械粒收的適期收獲與逆境脅迫下穩(wěn)產(chǎn)減氮具有重要指導(dǎo)意義。【前人研究進(jìn)展】近年來,全球氣候變化導(dǎo)致華北平原傳統(tǒng)穗收夏玉米-冬小麥種植制度播期和生育期與光溫水等氣候資源匹配度下降[19-21],夏季極端降雨時(shí)有發(fā)生[2],強(qiáng)降雨引起夏玉米淹水脅迫,根系生理性危害加劇,葉片光合器官破壞,速率顯著降低,果穗發(fā)育受限,灌漿速率顯著降低,灌漿時(shí)間縮短,粒重降低而減產(chǎn)[3-6]。“雙晚技術(shù)”可在不增加成本的前提下,延長夏玉米灌漿與脫水時(shí)間,促進(jìn)生育后期物質(zhì)向籽粒轉(zhuǎn)運(yùn)[22];夏玉米生理成熟后田間站稈晾曬百粒重自23.3—37.4 g提高至22.9—38.4 g[9],延遲收獲45 d含水率降低至14.4%—17.3%[10]。研究表明,夏玉米粒重受籽粒庫容大小和灌漿充實(shí)程度影響[23-24],玉米果穗上部籽粒結(jié)實(shí)率低、灌漿充實(shí)度差、粒重偏低,為弱勢(shì)粒,中下部籽粒為強(qiáng)勢(shì)粒[25-26]。施氮等栽培措施調(diào)控籽粒內(nèi)激素含量與酶活性,影響灌漿速率及灌漿持續(xù)期[15, 27-29],強(qiáng)、弱勢(shì)粒體積和庫容潛力及粒重顯著提高[12-14],但對(duì)籽粒脫水速率影響不顯著[15]。近年來,隨著氮肥施用量增加,土壤氮素淋溶與殘留量增加,氮肥當(dāng)季利用率下降,增產(chǎn)效應(yīng)下降,過量施氮負(fù)效應(yīng)凸顯[30-32]。華北平原穗收夏玉米-冬小麥輪作制度周年施氮量平均為545—600 kg·hm-2,最佳氮素調(diào)控模式為玉米季施氮300 kg·hm-2以下,遠(yuǎn)超作物對(duì)氮素的最佳需求[16-18]。因此,在傳統(tǒng)氮肥管理的基礎(chǔ)上開展減量施氮技術(shù)研究十分必要,研究表明適量減氮能增加土壤硝態(tài)氮累積并減少N2O的排放,協(xié)調(diào)土壤與作物間氮素積累與轉(zhuǎn)運(yùn),促進(jìn)植株對(duì)氮素吸收和利用,提高氮素利用效率,緩解過量施氮對(duì)生態(tài)環(huán)境的危害[33-35]?!颈狙芯壳腥朦c(diǎn)】華北平原北部熱量資源限制區(qū),將穗收夏玉米-冬小麥變革為粒收夏玉米-春小麥,可解決周年兩熟制為保障冬小麥安全越冬難以實(shí)現(xiàn)夏玉米機(jī)械粒收、夏玉米延遲收獲難以播種冬小麥的難題,實(shí)現(xiàn)夏玉米機(jī)械粒收與周年產(chǎn)量及氣候資源協(xié)同提高[36-37]。目前,相關(guān)研究證實(shí),延遲收獲顯著降低收獲時(shí)籽粒含水率[10],對(duì)華北平原夏玉米粒重有提高作用[9],但針對(duì)延遲收獲夏玉米強(qiáng)弱勢(shì)粒灌漿過程的調(diào)控機(jī)理研究較少。近年來,全球氣候變化導(dǎo)致夏季極端降雨時(shí)有發(fā)生[2],2021年華北平原6—10月降雨量近1 000 mm,是平常年份的2倍以上,淹水脅迫導(dǎo)致夏玉米強(qiáng)、弱勢(shì)粒形態(tài)發(fā)育受阻,粒重顯著降低而減產(chǎn)[3-6]。夏玉米授粉結(jié)實(shí)期遭遇陰雨寡照的逆境下,延遲收獲能否弱化淹水脅迫影響而保證夏玉米穩(wěn)產(chǎn)增產(chǎn)亟須明確。同時(shí),華北平原延遲收獲和水分脅迫下,夏玉米最佳施氮量的范圍尚無定論?!緮M解決的關(guān)鍵問題】本研究在華北平原北部熱量資源限制區(qū),針對(duì)2020年和2021年2個(gè)代表性降雨年型,明確延遲收獲與施氮量調(diào)控夏玉米產(chǎn)量、強(qiáng)弱勢(shì)籽粒形態(tài)與粒重、含水率和脫水速率的效應(yīng),以期為華北平原延遲收獲夏玉米逆境脅迫下的穩(wěn)產(chǎn)減氮增效與機(jī)械粒收技術(shù)發(fā)展提供理論支撐。
試驗(yàn)于2020年和2021年6—11月在天津市優(yōu)質(zhì)農(nóng)產(chǎn)品開發(fā)示范中心(117°49′E,39°42′N)進(jìn)行,0—20 cm土壤養(yǎng)分含量為有機(jī)質(zhì)18.6 g·kg-1、全氮1.09 g·kg-1、水解性氮77.68 mg·kg-1、速效磷64.8 mg·kg-1、速效鉀296 mg·kg-1。試驗(yàn)期間夏玉米生育期內(nèi)氣象數(shù)據(jù)如圖1,2020年生長季降雨量為287.6 mm,2021年為973.5 mm。據(jù)天津市1991—2020年統(tǒng)計(jì)年鑒6—10月平均降水量為451.6 mm,參考陸桂榮等[38]降水量距平百分率的劃分標(biāo)準(zhǔn),將2020年認(rèn)定為干旱年型,2021年為多雨年型。
試驗(yàn)品種選用京農(nóng)科728,采用二因素隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),收獲時(shí)期為正常收獲(normal harvest,NH,10月5(13)日)和延遲收獲(delayed harvest,DH,11月8(6)日),6個(gè)純氮施用水平為0(N0)、120(N120,2021)、180(N180)、240(N240)、300(N300)、360(N360)和450 kg·hm-2(N450,2020),2021年施氮水平根據(jù)2020年試驗(yàn)結(jié)果進(jìn)行優(yōu)化,增加N120而去掉N450。種植密度75 000株/hm2,行距60 cm、株距22.2 cm,小區(qū)長7.0 m,寬4.2 m,種植7行,重復(fù)3次,各小區(qū)間設(shè)置1 m隔離帶。N肥按照50%-30%- 20%分別于播種前-拔節(jié)期-大喇叭口期施用,P2O5120 kg·hm-2和K2O 150 kg·hm-2全部作種肥。及時(shí)防治病蟲草害,2020年灌溉2次,每次灌水量均為75 mm,2021年排水。
1.3.1 產(chǎn)量 在收獲期,每小區(qū)連續(xù)收獲20穗,帶回室內(nèi)立即考種,數(shù)取穗行數(shù)、行粒數(shù),計(jì)算穗粒數(shù),脫粒后稱千粒重和全部粒重,用PM8188-A谷物水分儀測(cè)定含水率,按14%安全含水率計(jì)算千粒重和產(chǎn)量(grain yield,GY,kg·hm-2)。
1.3.2 籽粒鮮體積、鮮重、干重變化過程及變化速率 在吐絲期,每小區(qū)選取吐絲一致樣株30株掛牌標(biāo)記,吐絲(days after silking,DAS)后,每10 d取2個(gè)果穗,按長度平均分為上中下3部分,各部分剝?nèi)?0粒,2穗共100粒,稱取籽粒鮮重(grain fresh weight,GFW,g/100grains),排水法測(cè)定籽粒鮮體積(grain fresh volume,GFV,cm3/100grains),105 ℃殺青,85 ℃烘干至恒重后,稱取干重(grain dry weight,GDW,g/100grains)。
按湯永祿等[39]、曹玉軍等[40]方法,用Logistic方程對(duì)籽粒GFV、GFW和GDW生長過程進(jìn)行擬合,并計(jì)算導(dǎo)出相應(yīng)變化特征參數(shù),對(duì)籽粒形態(tài)及灌漿進(jìn)行生長分析。Logistic方程=a/(1+be-cx)中,自變量為吐絲后天數(shù),因變量為吐絲后GFW、GFV和GDW,a為GFW、GFV和GDW理論最大值,b、c為性狀參數(shù)。特征參數(shù)有:最大灌漿速率(maximum grain filling rate,G,g·d-1/100 grains) G=c×W× (1-W/a)、到達(dá)最大灌漿速率時(shí)間(time reaching the G,T,d)T=lnb/c、灌漿活躍期(the active grain filling stage,P,d)P=6/c、灌漿速率最大時(shí)的生長量(weight increment of G,W,g/100 grains)W=a/2、積累起始勢(shì)(the initial grain filling power,R,g)R=c。
1.3.3 籽粒含水率和脫水速率 籽粒含水率(grain moisture content,GMC,%)= (GFW-GDW)/GFW× 100%,指數(shù)方程=a×ebx模擬籽粒含水率變化過程,方程求導(dǎo)得到’=ab×ebx模擬籽粒脫水速率(grain dehydration rate,GDR,%·d-1)變化過程。
采用Microsoft Office 2021、SPSS 26.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)處理與統(tǒng)計(jì)分析,SigmaPlot 12.0作圖。
與干旱年型夏玉米GY(5.63×103—12.42×103kg·hm-2)相比,同等施氮水平條件下,多雨年型夏玉米GY極顯著降低3.03×103—5.44×103kg·hm-2(圖2);同等施氮水平條件下,干旱年型DH處理比NH增產(chǎn)0.02×103—1.67×103kg·hm-2(<0.05),N0及N240以上差異顯著,多雨年型條件下增幅為0.18×103—0.74×103kg·hm-2,僅在N180處理顯著增產(chǎn)。與N0相比,干旱年型條件下施氮增產(chǎn)3.43×103—5.76×103kg·hm-2,顯著高于多雨年型增幅2.05×103—4.71×103kg·hm-2,但增產(chǎn)效應(yīng)(51.5%—99.1%)顯著低于多雨年型(74.4%— 169.5%),同一施氮量對(duì)DH處理的增產(chǎn)效應(yīng)顯著高于NH處理。干旱年型條件下,NH處理不同施氮水平間GY無顯著差異,DH處理N240—N450間無顯著差異,比N180顯著增產(chǎn)11.8%—23.0%;多雨年型條件下,NH和DH處理在N240—N360間GY無顯著差異,分別比N120—N180顯著增產(chǎn)21.7%— 50.2%和12.6%—54.5%。線性加平臺(tái)模型模擬可知,在干旱和多雨年型條件下,DH處理最高GY分別為12.00×103和7.02×103kg·hm-2,比NH處理(10.66×103和6.31×103kg·hm-2)顯著提高12.6%和11.3%,最優(yōu)施氮量(247.2—248.6 kg·hm-2)比NH(201.1—218.3 kg·hm-2)增加30.3— 36.1 kg·hm-2。
NH:正常收獲;DH:延遲收獲。不同小寫字母表示同一收獲期不同施氮處理產(chǎn)量差異達(dá)0.05顯著水平。下同
夏玉米GFV隨灌漿進(jìn)程呈S形曲線趨勢(shì)增長(圖3),多雨年型弱勢(shì)粒GFV比干旱年型降低15.4%— 50.6%。干旱年型NH和DH處理收獲期強(qiáng)勢(shì)粒GFV比弱勢(shì)粒顯著提高12.6%—13.0%和20.4%—22.8%,多雨年型分別提高56.8%—62.4%和68.4%—69.6%(<0.01)。干旱年型DH處理GFV比NH處理降低2.1%—8.1%(>0.05),多雨年型顯著降低12.2%— 17.1%。干旱年型條件下,NH處理N240GFV比N180提高9.0%—14.5%,DH處理N300—N360GFV比N180— N240提高18.7%—24.0%;多雨年型條件下,NH和DH處理N240—N360下部GFV比N180分別提高14.6%— 15.4%、16.1%—26.5%,DH處理N240—N360弱勢(shì)粒GFV比N180顯著提高25.7%—85.3%。
圖3 不同降雨年型下施氮量對(duì)延遲收獲夏玉米灌漿期強(qiáng)弱勢(shì)粒鮮體積的影響
由表1可知,與干旱年型相比,多雨年型弱勢(shì)粒體積最大變化速率(GFV)顯著降低32.6%— 68.2%,最大變化速率時(shí)間(GFV)推遲3.6—16.5 d,活躍期(GFV)延長8.9—34.4 d,變化速率最大時(shí)生長量(GFV)和起始勢(shì)(GFV)降低25.1% —43.5%和17.5%—57.9%;強(qiáng)勢(shì)粒GFV和GFV平均提高17.8%和23.3%,GFV縮短5.7 d。干旱年型強(qiáng)勢(shì)粒GFV和GFV比弱勢(shì)粒提高6.9%和14.6%,GFW降低6.4%;多雨年型強(qiáng)勢(shì)粒GFV、GFV和GFV顯著提高90.5%—331.1%、26.4%—104.4%和27.2%—241.1%,GFV提前3.3—16.7 d,GFV縮短8.5—28.8 d。多雨年型DH處理GFV和GFV比NH提高8.2%—15.4%、21.7%—40.3%,GFV降低10.1%—17.3%,GFV延長5.1—10.6 d,干旱年型不顯著。干旱年型N240-N360強(qiáng)勢(shì)粒GFV、GFV比N180降低3.8%—19.9%和9.9%—29.7%,GFV提高1.2%—14.7%,GFV延長3.6—13.9 d;N300強(qiáng)勢(shì)粒GFV比N240提高3.4%—15.2%;N360強(qiáng)勢(shì)粒GFV比N300降低3.8%—17.7%。多雨年型N240強(qiáng)、弱勢(shì)粒GFV比N180延長3.2—3.9 d和6.7—10.5 d,GFV提高3.1%—17.4%和2.3%—11.6%,N240-N300弱勢(shì)粒GFV提高9.3%—44.6%,N300弱勢(shì)粒GFV延長5.4—6.6 d、GFV降低32.1%—46.9%;N300— N360弱勢(shì)粒GFV和GFV比N240降低23.0%— 29.7%和19.5%—42.9%,下部籽粒提高18.8%—30.7%和11.2%—36.4%。
表1 不同降雨年型下施氮量對(duì)延遲收獲夏玉米強(qiáng)弱勢(shì)粒鮮體積變化速率的影響
GFV:籽粒鮮體積最大灌漿速率;GFV:籽粒鮮體積到達(dá)最大灌漿速率時(shí)間;GFV:籽粒鮮體積灌漿活躍期;GFV:籽粒鮮體積灌漿速率最大時(shí)的生長量;GFV:籽粒鮮體積積累起始勢(shì)。下同
GFV: maximum grain filling rate of grain fresh volume; GFV: time reaching the Gof grain fresh volume; GFV: the active grain filling stage of grain fresh volume; GFV: weight increment of Gof grain fresh volume; GFV: the initial grain filling power of grain fresh volume. The same as below
相關(guān)性分析表明(表2),GFV和GFV、GFV、GFV與產(chǎn)量呈正相關(guān)關(guān)系,GFV和GFV與產(chǎn)量呈負(fù)相關(guān),干旱年型灌漿參數(shù)除GFV外均顯著,多雨年型下GFV與產(chǎn)量相關(guān)性顯著,且強(qiáng)勢(shì)粒GFV、GFV和GFV與產(chǎn)量相關(guān)性高于弱勢(shì)粒。
表2 不同降雨年型下夏玉米產(chǎn)量與收獲期強(qiáng)弱勢(shì)粒鮮體積及其變化參數(shù)的相關(guān)性
**:<0.01;*:<0.05;ns:不顯著 **:<0.01; *:<0.05; ns: not significantly different
多雨年型強(qiáng)、弱勢(shì)粒GFW比干旱年型分別降低2.8%—38.6%和25.4%—62.0%(圖4)。干旱年型NH和DH處理收獲期強(qiáng)勢(shì)粒GFW比弱勢(shì)粒顯著提高11.1%—13.2%和14.6%—20.4%,多雨年型提高73.9%—80.4%和67.0%—71.3%(<0.01)。干旱年型DH處理比NH處理GFW降低4.0%—5.2%,多雨年型顯著降低15.7%—19.5%。干旱年型DH處理N300-N360強(qiáng)、弱勢(shì)粒GFW比N240提高7.7%—13.6%、19.3%—19.8%;多雨年型條件下,NH處理N360弱勢(shì)粒GFW比N180—N240提高21.0%—34.4%(<0.05),DH處理N240—N360強(qiáng)、弱勢(shì)粒GFW比N180顯著提高9.9%—30.9%、59.4%—83.6%。
不同降雨年型對(duì)弱勢(shì)粒GFW變化參數(shù)影響顯著(表3),與干旱年型相比,多雨年型弱勢(shì)粒鮮重最大變化速率(GFW)顯著降低31.9%—65.5%,到達(dá)最大變化速率時(shí)間(GFW)推遲6.9—9.5 d,活躍期(GFW)延長3.4—7.5 d,變化速率最大時(shí)生長量(GFW)和起始勢(shì)(GFW)降低29.6%—55.3%和8.9%—59.2%。干旱年型強(qiáng)勢(shì)粒GFW和GFW比弱勢(shì)粒提高8.5%和14.2%,多雨年型強(qiáng)勢(shì)粒GFW、GFW和GFW顯著提高71.9%—281.2%、49.6%—116.1%和26.1%—151.6%,GFW提前1.1—16.1 d,GFW縮短2.5—27.7 d。多雨年型DH處理GFW和GFW比NH提高11.0%—12.5%和27.4%—38.2%,GFW降低11.8%—12.2%,GFW延長6.5—16.7 d,干旱年型無顯著差異。干旱年型下,N300—N360強(qiáng)、弱勢(shì)粒GFW比N180延長3.1—9.7 d和0.3—6.3 d,GFW提高5.7%—13.3%和5.1%— 12.3%,GFW降低9.0%—22.1%和1.1%—18.1%。多雨年型條件下,N240—N360強(qiáng)勢(shì)粒GFW比N180提高1.4%—14.6%,GFW降低3.5%—33.0%,N300—N360弱勢(shì)粒GFW比N240提高4.0%—19.5%,GFW降低16.3%—31.8%,N300—N360弱勢(shì)粒GFW比N180—N240推遲5.4—7.7 d,而GFW縮短1.7—14.8 d。
表3 不同降雨年型下施氮量對(duì)延遲收獲夏玉米強(qiáng)弱勢(shì)粒鮮重變化速率的影響
GFW:籽粒鮮重最大灌漿速率;GFW:籽粒鮮重到達(dá)最大灌漿速率時(shí)間;GFW:籽粒鮮重灌漿活躍期;GFW:籽粒鮮重灌漿速率最大時(shí)的生長量;GFW:籽粒鮮重積累起始勢(shì)。下同
GFW: maximum grain filling rate of grain fresh weight; GFW: time reaching the Gof grain fresh weight; GFW: the active grain filling stage of grain fresh weight; GFW: weight increment of Gof grain fresh weight; GFW: the initial grain filling power of grain fresh weight. The same as below
圖4 不同降雨年型下施氮量對(duì)延遲收獲夏玉米灌漿期強(qiáng)弱勢(shì)粒鮮重的影響
從表4可知,GFW和GFW、GFW、GFW與產(chǎn)量呈正相關(guān)關(guān)系,GFW和GFW與產(chǎn)量呈負(fù)相關(guān),與多雨年型相比,干旱年型灌漿參數(shù)與產(chǎn)量相關(guān)性更顯著,多雨年型下僅GFW與產(chǎn)量相關(guān)性較高,且強(qiáng)勢(shì)粒比弱勢(shì)粒提高。
由圖5可知,多雨年型強(qiáng)、弱勢(shì)粒GDW比干旱年型降低3.1%—23.6%、31.2%—57.3%(<0.01)。干旱和多雨年型下,NH處理強(qiáng)勢(shì)粒GDW分別達(dá)26.9—28.2和25.1—26.4 g/100 grains,比弱勢(shì)粒提高5.3%—10.3%和83.3%—92.1%;DH處理強(qiáng)勢(shì)粒GDW達(dá)33.3—34.4 和28.3—28.0 g/100 grains,比弱勢(shì)粒顯著提高10.1%—13.9%和54.1%—57.1%。不同年型條件下,DH處理強(qiáng)、弱勢(shì)粒GDW比NH處理顯著提高11.2%—22.8%、18.1%—34.1%(<0.05)。干旱年型條件下,與N180相比,NH處理N240—N300弱勢(shì)粒GDW顯著提高13.3%—18.2%,DH處理N300—N360提高11.6%—13.7%(<0.05);多雨年型條件下,NH和DH處理N240—N360弱勢(shì)粒GDW比N180顯著提高57.4%—65.3%、17.9%—43.9%。
表4 不同降雨年型下夏玉米產(chǎn)量與收獲期強(qiáng)弱勢(shì)粒鮮重及其變化參數(shù)的相關(guān)性
與干旱年型相比,多雨年型弱勢(shì)粒干重最大灌漿速率(GDW)顯著降低33.0%—59.5%(表5),到達(dá)最大灌漿速率時(shí)間(GDW)推遲4.1—19.0 d,灌漿活躍期(GDW)延長4.4—19.6 d,灌漿速率最大時(shí)生長量(GDW)和積累起始勢(shì)(GDW)降低13.8%—53.3%和10.5%—30.7%。干旱年型強(qiáng)勢(shì)粒GDW和GDW比弱勢(shì)粒提高11.3%和9.6%,多雨年型強(qiáng)勢(shì)粒GDW、GDW和GDW顯著提高55.1%—258.1%、13.4%—143.0%和12.0%—126.6%,GDW提前4.2—20.7 d,GDW縮短1.6—16.1 d。干旱年型DH處理強(qiáng)勢(shì)粒GDW比NH提高12.6%,GDW降低18.5%,強(qiáng)弱勢(shì)粒GDW延長6.6—12.5 d,多雨年型差異不顯著。干旱年型條件下,與N180相比,N240—N360強(qiáng)勢(shì)粒GDW提高2.5%—13.0%(<0.05),弱勢(shì)粒GDW和GDW提高1.2%—9.8%和1.8%—23.7%;多雨年型N240—N360強(qiáng)勢(shì)粒GDW比N180提高2.2%—16.6%,GDW延長2.2—11.7 d,弱勢(shì)粒GDW提高24.0% —63.1%,GDW提高21.0%—128.5%,GDW推遲3.4—17.4 d,GDW延長5.2—8.9 d;N300-N360處理GDW和GDW比N240提高4.8%—31.5%、2.8%—49.7%,GDW延長1.4—8.4 d,強(qiáng)勢(shì)粒GDW提前0.8—3.9 d,而弱勢(shì)粒推遲2.8—6.4 d。
相關(guān)性分析表明(表6),GDW和GDW、GDW、GDW與產(chǎn)量呈正相關(guān),而GDW和GDW與產(chǎn)量呈負(fù)相關(guān),干旱年型GDW、GDW、GDW與產(chǎn)量相關(guān)性均達(dá)顯著或極顯著水平,多雨年型下強(qiáng)勢(shì)粒灌漿參數(shù)與產(chǎn)量相關(guān)性高于弱勢(shì)粒。
灌漿期夏玉米GMC呈指數(shù)方程下降趨勢(shì)(圖6),降雨年型間及強(qiáng)、弱勢(shì)粒間GMC無顯著差異。干旱年型和多雨年型條件下,DH處理GMC比NH處理極顯著降低35.1%—40.4%和31.3%—35.7%,至22.6%— 26.0%和23.3%—25.5%。不同年型條件下,施氮NH處理GMC比N0降低5.1%—17.4%和8.7%—20.8%,DH處理GMC降低3.0%—19.3%和2.7%—11.8%;干旱年型DH處理N240GMC比N180降低5.9%—15.2%,多雨年型施氮處理間GMC無差異。
圖5 不同降雨年型條件下施氮量對(duì)延遲收獲夏玉米灌漿期強(qiáng)弱勢(shì)粒干重的影響
不同降雨年型間夏玉米GDR差異主要集中在DAS0-20,灌漿期GDR不斷降低(圖7)。多雨年型強(qiáng)、弱勢(shì)粒GDR比干旱年型提高15.0%—44.9%和16.9%—51.7%。干旱和多雨年型下,DAS0-20弱勢(shì)粒GDR比強(qiáng)勢(shì)粒提高5.5%—12.5%和16.9%—23.2%,DH處理GDR比NH顯著降低44.6%—46.4%、48.0%—48.6%。多雨年型N180—N360處理DAS0-30GDR比N0降低7.3%—19.0%(<0.05),N180—N360無顯著差異。
漬澇陰雨等氣候?yàn)?zāi)害引起籽粒灌漿特性改變,灌漿速率顯著降低,持續(xù)期縮短,降低籽粒體積和粒重[5, 41-42]。任佰朝等[5]研究表明,三葉期淹水導(dǎo)致夏玉米籽粒體積和干重降低7.5%—19.4%和9.9%—12.0%,開花后淹水降低3.7%—11.1%和0.2%—7.5%。本研究結(jié)果表明,2021年華北平原強(qiáng)降雨導(dǎo)致夏玉米全生育期長時(shí)間遭受淹水脅迫,與干旱年型(2020年)相比,G、W和R均降低,弱勢(shì)粒鮮體積、鮮重和干重顯著降低15.4%—50.6%、25.4%—62.0%、31.2%—57.3%,GY極顯著降低3.03×103—5.44×103kg·hm-2。分析原因主要在于長時(shí)間淹水限制根系發(fā)育[42],影響植株形態(tài)構(gòu)建,葉片葉綠素結(jié)構(gòu)破壞,影響光合特性[3, 6],籽粒灌漿進(jìn)程受阻,主要表現(xiàn)為吐絲后籽粒灌漿速率降低,灌漿活躍期縮短,淀粉積累速率與含量下降[23-24],粒重顯著降低導(dǎo)致大幅減產(chǎn)[4-5, 42-43]。同時(shí)多雨年型常陰雨寡照,日均溫度降低導(dǎo)致灌漿期可溶性淀粉合成酶等活性下降,淀粉積累速率減慢,籽粒產(chǎn)量顯著降低[26, 29]。強(qiáng)、弱勢(shì)粒間籽粒灌漿動(dòng)態(tài)、物質(zhì)代謝及同化物積累因著生位置顯著不同[12-13, 28],強(qiáng)勢(shì)粒灌漿速率、物質(zhì)積累速率高于弱勢(shì)粒[15, 28]。本研究結(jié)果證實(shí),弱勢(shì)粒灌漿速率、灌漿速率最大時(shí)生長量降低,導(dǎo)致收獲期籽粒體積和粒重顯著低于強(qiáng)勢(shì)粒,多雨年型條件下強(qiáng)、弱勢(shì)粒間差異更顯著,分析原因是多雨年份吐絲前物質(zhì)積累降低48.5%—76.8%[44],同化物供應(yīng)降低影響了小花個(gè)體發(fā)育及后期籽粒灌漿[45],這種效應(yīng)在非生物逆境下表現(xiàn)更明顯[25-26, 41],多雨年型弱勢(shì)粒GDW、GDW和GDW比強(qiáng)勢(shì)粒顯著降低55.1%—258.1%、13.4%—143.0%和12.0%—126.6%,GDW推遲4.2—20.7 d,因此本研究中弱勢(shì)粒受淹水脅迫影響更大,導(dǎo)致多雨年型弱勢(shì)粒GFV、GFW、GDW比干旱年型降低15.4%—50.6%、25.4%—62.0%、31.2%—57.3%(<0.01),而強(qiáng)勢(shì)粒不顯著。
表5 不同降雨年型條件下施氮量對(duì)延遲收獲夏玉米強(qiáng)弱勢(shì)粒干重灌漿速率的影響
GDW:籽粒干重最大灌漿速率;GDW:籽粒干重到達(dá)最大灌漿速率時(shí)間;GDW:籽粒干重灌漿活躍期;GDW:籽粒干重灌漿速率最大時(shí)的生長量;GDW:籽粒干重積累起始勢(shì)。下同
GDW: maximum grain filling rate of grain dry weight; GDW: time reaching the Gof grain dry weight; GDW: the active grain filling stage of grain dry weight; GDW: weight increment of Gof grain dry weight; GDW: the initial grain filling power of grain dry weight. The same as below
表6 不同降雨年型條件下夏玉米產(chǎn)量與收獲期強(qiáng)弱勢(shì)粒干重及其變化參數(shù)的相關(guān)性
圖6 不同降雨年型條件下施氮量對(duì)延遲收獲夏玉米灌漿期強(qiáng)弱勢(shì)粒含水率的影響
圖7 不同降雨年型下施氮量對(duì)延遲收獲夏玉米強(qiáng)弱勢(shì)粒脫水速率的影響
夏玉米籽粒體積、粒重與產(chǎn)量顯著正相關(guān),受到灌漿特性顯著調(diào)控,一般認(rèn)為灌漿速率越大、灌漿活躍期越長,營養(yǎng)物質(zhì)積累越快,越有利于籽粒庫容增加、粒重增大[46-47]。改變玉米熟期,提高籽粒灌漿速率和脫水速率,降低籽粒含水率,可實(shí)現(xiàn)增產(chǎn)與機(jī)械粒收[48]。李璐璐等[9]在華北平原南部研究表明夏玉米生理成熟后延遲收獲百粒重自23.3—37.4 g提高至22.9—38.4 g。本研究結(jié)果表明,延遲收獲期籽粒G和R提高,強(qiáng)、弱勢(shì)粒P顯著延長,在干旱年型和多雨年型條件下,延遲收獲籽粒持續(xù)脫水,GFV降低2.1%—8.1%和12.2%—17.1%(<0.05),GFW降低4.0%—5.2%和15.7%—19.5%(<0.05),不同年型間籽粒干重自25.1—28.2 g/100 grains提高到28.0— 34.4 g/100 grains,產(chǎn)量提高0.02×103—1.67×103kg·hm-2,支持已有結(jié)論。且多雨年型GFV和GFW在延遲收獲期間降低幅度顯著高于干旱年型,說明夏玉米授粉結(jié)實(shí)期遭遇陰雨寡照的逆境下,延遲收獲仍能對(duì)籽粒含水率起到降低作用。收獲期籽粒含水率是決定籽粒機(jī)械直收的重要指標(biāo),研究表明收獲期籽粒含水率與收獲時(shí)期、灌漿天數(shù)、灌漿速率、籽粒脫水速率顯著相關(guān)[49-50],而脫水速率與灌漿速率相關(guān)性不顯著[28],適當(dāng)推遲收獲延長籽粒灌漿脫水期,是降低籽粒含水率,提高機(jī)械粒收質(zhì)量的重要途徑[49]。本研究結(jié)果表明,華北平原北部夏玉米延遲23—33 d收獲籽粒含水率可降至22.6%— 26.0%,比正常收獲降幅達(dá)31.3%—40.4%,滿足玉米機(jī)械粒收含水率的標(biāo)準(zhǔn)。李璐璐等[9]在華北平原南部的試驗(yàn)結(jié)果表明,延遲收獲籽粒含水率降低至12.9%—24.4%,差異的原因在于本試驗(yàn)在華北平原北部延遲收獲10月中下旬至11月上旬氣溫整體低于南部地區(qū),限制了籽粒脫水速率[51]。另外,華北平原北部熱量限制下夏玉米收獲及冬小麥播種時(shí)間不能晚于10月15日,傳統(tǒng)收獲時(shí)夏玉米籽粒剛剛甚至尚未達(dá)生理成熟期,含水率高達(dá)30.8%— 41.8%,因此本區(qū)域延遲收獲籽粒含水率降幅及籽粒干重增加值顯著高于華北平原南部。
合理施氮促進(jìn)光合產(chǎn)物向籽粒轉(zhuǎn)運(yùn),改善籽粒灌漿特性[15],延長灌漿活躍期,提高最大灌漿速率和灌漿速率最大時(shí)的生長量,粒重增大,且強(qiáng)勢(shì)粒高于弱勢(shì)粒[27, 40, 52]。施氮過多導(dǎo)致群體結(jié)構(gòu)變差,降低花前莖稈非結(jié)構(gòu)性碳水化合物積累,阻礙營養(yǎng)物質(zhì)向籽粒轉(zhuǎn)運(yùn),降低W、G[27],營養(yǎng)物質(zhì)積累減慢,對(duì)籽粒灌漿無促進(jìn)作用,粒重和產(chǎn)量提高受限[27, 48]。本研究表明,施氮240 kg·hm-2以上強(qiáng)、弱勢(shì)粒G和W提高,T推遲,P延長,體積和粒重顯著提高,施氮240 kg·hm-2以上GY無顯著差異。分析原因可能是合理施氮加快IAA、ZR、GA3等植物內(nèi)源激素合成,提高籽粒灌漿速率,延長灌漿持續(xù)期,促進(jìn)同化物積累,增加千粒重;過量施氮降低植物激素含量,減慢籽粒中碳水化合物、蛋白質(zhì)等的合成及運(yùn)輸進(jìn)而抑制籽粒灌漿進(jìn)程[12, 27, 53-54]。多雨年型下施氮的增產(chǎn)效應(yīng)(74.4%—169.5%)顯著高于干旱年型(51.5%— 99.1%),主要原因一是施氮提高土壤中硝態(tài)氮含量,土壤硝態(tài)氮運(yùn)移受土壤水分狀況和含量高低的影響,含量越高,向下移動(dòng)越深,水分利用效率顯著提高,實(shí)現(xiàn)增產(chǎn)28.52%—37.86%[55],二是水肥管理不同顯著影響水分和肥料的利用效率,相同施氮處理氮肥利用率隨土壤含水率增加而增加[56]。多雨年型弱勢(shì)粒對(duì)氮肥的調(diào)控響應(yīng)顯著,DH處理N240—N360弱勢(shì)粒GFV、GFW、GDW比N180顯著提高25.7%—85.3%、59.4%— 83.6%和17.9%—43.9%,但NH處理不顯著,證實(shí)玉米高密群體產(chǎn)量的提高主要通過促進(jìn)弱勢(shì)粒發(fā)育提高結(jié)實(shí)率起作用[57],同時(shí)說明淹水脅迫灌漿期弱勢(shì)粒發(fā)育受阻后,延遲收獲和施氮處理能夠改善淹水對(duì)弱勢(shì)粒的庫容降低,分析原因?yàn)槭┑吭黾樱蚜?扇苄运嵝哉崽寝D(zhuǎn)化酶活性逐漸升高,多胺含量增加而乙烯含量下降,弱勢(shì)粒庫活性提高[29],且華北平原北部熱量限制區(qū)夏玉米適時(shí)延遲收獲仍保持一定灌漿和脫水速率[44]。線性加平臺(tái)模型模擬可知,同一施氮量對(duì)DH處理的增產(chǎn)效應(yīng)顯著高于NH處理,延遲收獲后玉米灌漿脫水期仍需要增施氮肥30.3—36.1 kg·hm-2,猜測(cè)可能與吐絲期至成熟期是玉米的需氮高峰[58],而傳統(tǒng)收獲時(shí)夏玉米籽粒剛剛甚至尚未達(dá)生理成熟期有關(guān),因此,關(guān)于玉米延遲收獲后氮肥的需求與轉(zhuǎn)運(yùn)仍需進(jìn)一步研究。
多雨年型對(duì)夏玉米籽粒灌漿特性影響顯著,籽粒體積和粒重降低,弱勢(shì)粒受水分脅迫顯著大于強(qiáng)勢(shì)粒,弱勢(shì)粒灌漿受限導(dǎo)致體積和粒重均低于強(qiáng)勢(shì)粒,籽粒產(chǎn)量極顯著降低3.03×103—5.44×103kg·hm-2。夏玉米延遲收獲延長籽粒灌漿活躍期,提高灌漿速率,持續(xù)脫水,GFV、GFW降低,籽粒干重自25.1—28.2 g/100 grains顯著提高至28.0—34.4 g/100 grains,籽粒含水率自36.3%—40.1%顯著降低至22.6%—26.0%,滿足玉米機(jī)械粒收含水率標(biāo)準(zhǔn)的同時(shí)顯著增產(chǎn)0.02×103—1.67×103kg·hm-2。
施氮N240—N360顯著改善籽粒灌漿特性,提高最大灌漿速率及其生長量,延長灌漿持續(xù)期,提高強(qiáng)弱勢(shì)粒體積和粒重,多雨年型和延遲收獲處理下弱勢(shì)粒粒重對(duì)氮肥的響應(yīng)均高于強(qiáng)勢(shì)粒,最優(yōu)施氮N240比低施氮量N120—N180增產(chǎn)12.6%—54.5%??傊A北平原熱量資源限制區(qū)夏玉米正常收獲最優(yōu)施氮量為201.1—218.3 kg·hm-2,產(chǎn)量6.31×103—10.66×103kg·hm-2;將冬小麥變?yōu)榇盒←?,夏玉米通過延遲收獲23—33 d,顯著提高弱勢(shì)粒庫容與粒重,籽粒含水率降低至籽粒機(jī)收含水率標(biāo)準(zhǔn),實(shí)現(xiàn)周年機(jī)械化粒收,優(yōu)化施氮247.2—248.6 kg·hm-2,實(shí)現(xiàn)不同降雨年型下產(chǎn)量穩(wěn)定在7.0×103—12.0×103kg·hm-2的穩(wěn)產(chǎn)減氮增效的生產(chǎn)目標(biāo)。
[1] 陸偉婷, 于歡, 曹勝男, 陳長青. 近20年黃淮海地區(qū)氣候變暖對(duì)夏玉米生育進(jìn)程及產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2015, 48(16): 3132-3145.
LU W T, YU H, CAO S N, CHEN C QEffects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai plain in last 20 years. Scientia Agricultura Sinica, 2015, 48(16): 3132-3145. (in Chinese)
[2] 沈皓俊, 羅勇, 趙宗慈, 王漢杰. 基于LSTM網(wǎng)絡(luò)的中國夏季降水預(yù)測(cè)研究. 氣候變化研究進(jìn)展, 2020, 16(3): 263-275.
SHEN H J, LUO Y, ZHAO Z C, WANG H J. Prediction of summer precipitation in China based on LSTM network. Climate Change Research, 2020, 16(3): 263-275. (in Chinese)
[3] 于維禎, 張曉馳, 胡娟, 邵靖宜, 劉鵬, 趙斌, 任佰朝. 弱光澇漬復(fù)合脅迫對(duì)夏玉米產(chǎn)量及光合特性的影響. 中國農(nóng)業(yè)科學(xué), 2021, 54(18): 3834-3846.
YU W Z, ZHANG X C, HU J, SHAO J Y, LIU P, ZHAO B, REN B Z. Combined effects of shade and waterlogging on yield and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2021, 54(18): 3834-3846. (in Chinese)
[4] REN B Z, ZHANG J W, LI X, FAN X, DONG S T, LIU P, ZHAO B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of Plant Science, 2014, 94(1): 23-31.
[5] 任佰朝, 張吉旺, 李霞, 范霞, 董樹亭, 趙斌, 劉鵬. 淹水脅迫對(duì)夏玉米籽粒灌漿特性和品質(zhì)的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46(21): 4435-4445.
REN B Z, ZHANG J W, LI X, FAN X, DONG S T, ZHAO B, LIU P. Effect of waterlogging on grain filling and quality of summer maize. Scientia Agricultura Sinica, 2013, 46(21): 4435-4445. (in Chinese)
[6] 任佰朝, 朱玉玲, 李霞, 范霞, 董樹亭, 趙斌, 劉鵬, 張吉旺. 大田淹水對(duì)夏玉米光合特性的影響. 作物學(xué)報(bào), 2015, 41(2): 329-338.
REN B Z, ZHU Y L, LI X, FAN X, DONG S T, ZHAO B, LIU P, ZHANG J W. Effects of waterlogging on photosynthetic characteristics of summer maize under field conditions. Acta Agronomica Sinica, 2015, 41(2): 329-338. (in Chinese)
[7] 任佰朝, 高飛, 魏玉君, 董樹亭, 趙斌, 劉鵬, 張吉旺. 冬小麥-夏玉米周年生產(chǎn)條件下夏玉米的適宜熟期與積溫需求特性. 作物學(xué)報(bào), 2018, 44(1): 137-143.
REN B Z, GAO F, WEI Y J, DONG S T, ZHAO B, LIU P, ZHANG J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agronomica Sinica, 2018, 44(1): 137-143. (in Chinese)
[8] 李璐璐, 明博, 謝瑞芝, 王克如, 侯鵬, 李少昆. 黃淮海夏玉米品種脫水類型與機(jī)械粒收時(shí)間的確立. 作物學(xué)報(bào), 2018, 44(12): 1764-1773.
LI L L, MING B, XIE R Z, WANG K R, HOU P, LI S K. Grain dehydration types and establishment of mechanical grain harvesting time for summer maize in the yellow-Huai-Hai rivers plain. Acta Agronomica Sinica, 2018, 44(12): 1764-1773. (in Chinese)
[9] 李璐璐, 王克如, 謝瑞芝, 明博, 趙磊, 李?yuàn)檴? 侯鵬, 李少昆. 玉米生理成熟后田間脫水期間的籽粒重量與含水率變化. 中國農(nóng)業(yè)科學(xué), 2017, 50(11): 2052-2060.
LI L L, WANG K R, XIE R Z, MING B, ZHAO L, LI S S, HOU P, LI S K. Corn kernel weight and moisture content after physiological maturity in field. Scientia Agricultura Sinica, 2017, 50(11): 2052-2060. (in Chinese)
[10] 周寶元, 馬瑋, 孫雪芳, 高卓晗, 丁在松, 李從鋒, 趙明. 播/收期對(duì)冬小麥-夏玉米一年兩熟模式周年氣候資源分配與利用特征的影響. 中國農(nóng)業(yè)科學(xué), 2019, 52(9): 1501-1517.
ZHOU B Y, MA W, SUN X F, GAO Z H, DING Z S, LI C F, ZHAO M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Scientia Agricultura Sinica, 2021, 2019, 52(9):1501-1517. (in Chinese)
[11] 王克如, 李璐璐, 魯鎮(zhèn)勝, 高尚, 王浥州, 黃兆福, 謝瑞芝, 明博, 侯鵬, 薛軍, 張鎮(zhèn)濤, 侯梁宇, 李少昆. 黃淮海夏玉米機(jī)械化粒收質(zhì)量及其主要影響因素. 農(nóng)業(yè)工程學(xué)報(bào), 2021, 37(7): 1-7.
WANG K R, LI L L, LU Z S, GAO S, WANG Y Z, HUANG Z F, XIE R Z, MING B, HOU P, XUE J, ZHANG Z T, HOU L Y, LI S K. Mechanized grain harvesting quality of summer maize and its major influencing factors in Huanghuaihai region of China. Transactions of
the Chinese Society of Agricultural Engineering, 2021, 37(7): 1-7. (in Chinese)
[12] 徐云姬, 顧道健, 張博博, 張耗, 王志琴, 楊建昌. 玉米果穗不同部位籽粒激素含量及其與胚乳發(fā)育和籽粒灌漿的關(guān)系. 作物學(xué)報(bào), 2013, 39(8): 1452-1461.
XU Y J, GU D J, ZHANG B B, ZHANG H, WANG Z Q, YANG J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agronomica Sinica, 2013, 39(8): 1452-1461. (in Chinese)
[13] 徐云姬, 顧道健, 秦昊, 張耗, 王志琴, 楊建昌. 玉米灌漿期果穗不同部位籽粒碳水化合物積累與淀粉合成相關(guān)酶活性變化. 作物學(xué)報(bào), 2015, 41(2): 297-307.
XU Y J, GU D J, QIN H, ZHANG H, WANG Z Q, YANG J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agronomica Sinica, 2015, 41(2): 297-307. (in Chinese)
[14] 于寧寧, 趙子航, 任佰朝, 趙斌, 劉鵬, 張吉旺. 綜合農(nóng)藝管理促進(jìn)夏玉米氮素吸收、籽粒灌漿和品質(zhì)提高. 植物營養(yǎng)與肥料學(xué)報(bào), 2020, 26(5): 797-805.
YU N N, ZHAO Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Integrated agronomic management practices improve nitrogen absorption, grain filling and nutritional qualities of summer maize. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 797-805. (in Chinese)
[15] 于寧寧, 任佰朝, 趙斌, 劉鵬, 張吉旺. 施氮量對(duì)夏玉米籽粒灌漿特性和營養(yǎng)品質(zhì)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(11): 3771-3776.
YU N N, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and nutritional quality of summer maize. Chinese Journal of Applied Ecology, 2019, 30(11): 3771-3776. (in Chinese)
[16] 茹淑華, 耿暖, 張國印, 王凌, 孫世友. 施用氮肥對(duì)太行山前平原區(qū)作物產(chǎn)量和土壤硝態(tài)氮?dú)埩袅康挠绊? 華北農(nóng)學(xué)報(bào), 2015, 30(5): 161-166.
RU S H, GENG N, ZHANG G Y, WANG L, SUN S Y.Effect of nitrogen application rate on crop yield and the soil nitrate nitrogen content in Taihang piedmont area. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 161-166.(in Chinese)
[17] 修明, 谷世祿, 田中偉, 祝慶, 蔡劍, 姜東, 戴廷波. 稻秸還田下播種密度與氮肥運(yùn)籌對(duì)小麥產(chǎn)量及氮素利用效率的影響. 麥類作物學(xué)報(bào), 2016, 36(10): 1377-1385.
XIU M, GU S L, TIAN Z W, ZHU Q, CAI J, JIANG D, DAI T B. Effect of planting density and nitrogen application on wheat yield and nitrogen use efficiency under rice straw returning. Journal of Triticeae Crops, 2016, 36(10): 1377-1385.(in Chinese)
[18] 王艷群. 華北小麥/玉米輪作體系氮素調(diào)控綜合效應(yīng)研究[D]. 保定: 河北農(nóng)業(yè)大學(xué), 2018.
WANG Y Q. Comprehensive effects of nitrogen regulation on wheat and maize rotation system in the North China[D]. Baoding: Hebei agricultural university, 2018.(in Chinese)
[19] Xiong W, Matthews R, Holman I, Lin E D, Xu Y L. Modelling China’s potential maize production at regional scale under climate change. Climatic Change, 2007, 85(3): 433-451.
[20] Dong J W, Liu J Y, Tao F L, Xu X L, Wang J B. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Research, 2009, 40: 37-48.
[21] Chen C, Wang E L, Yu Q, Zhang Y Q. Quantifying the effects of climate trends in the past 43 years (1961-2003) on crop growth and water demand in the North China Plain. Climatic Change, 2010, 100(3): 559-578.
[22] ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 2016, 108(1): 196-204.
[23] 徐振和, 梁明磊, 路篤旭, 劉梅, 劉鵬, 董樹亭, 張吉旺, 趙斌, 李耕, 楊金勝. 在植株不同水平距離處垂直斷根對(duì)夏玉米產(chǎn)量形成和籽粒庫容特性的影響. 作物學(xué)報(bào), 2016, 42(12): 1805-1816.
XU Z H, LIANG M L, LU D X, LIU M, LIU P, DONG S T, ZHANG J W, ZHAO B, LI G. Effect of cutting roots vertically at a place with different horizontal distance from plant on yield and grain storage capacity of summer maize. Acta Agronomica Sinica, 2016, 42(12): 1805-1816. (in Chinese)
[24] 路篤旭, 徐振和, 劉梅, 劉鵬, 董樹亭, 張吉旺, 趙斌, 李耕, 劉少坤, 李慶方. 側(cè)向垂直斷根對(duì)不同根型夏玉米品種葉片光合性能及產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50(18): 3482-3493.
LU D X, XU Z H, LIU M, LIU P, DONG S T, ZHANG J W, ZHAO B, LI G, LIU S K, LI Q F. Effect of vertically cutting roots at different horizontal distances from plant on leaf photosynthetic characteristics and yield of summer maize with different root types. Scientia Agricultura Sinica, 2017, 50(18): 3482-3493. (in Chinese)
[25] 張萍, 陳冠英, 耿鵬, 高雅, 鄭雷, 張沙沙, 王璞. 籽粒灌漿期高溫對(duì)不同耐熱型玉米品種強(qiáng)弱勢(shì)粒發(fā)育的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50(11): 2061-2070.
ZHANG P, CHEN G Y, GENG P, GAO Y, ZHENG L, ZHANG S S WANG P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 2017, 50(11): 2061-2070.(in Chinese)
[26] 張巽, 郝建平, 王璞, 張萍, 陳璐潔. 灌漿期低溫對(duì)離體培養(yǎng)玉米強(qiáng)弱勢(shì)粒發(fā)育的影響. 中國農(nóng)業(yè)科學(xué), 2018, 51(12): 2263-2273.
ZHANG X, HAO J P, WANG P, ZHANG P, CHEN L J. Effects of low temperature on maize superior and inferior kernels development during grain filling. Scientia Agricultura Sinica, 2018, 51(12): 2263-2273.(in Chinese)
[27] 張振博, 屈馨月, 于寧寧, 任佰朝, 劉鵬, 趙斌, 張吉旺. 施氮量對(duì)夏玉米籽粒灌漿特性和內(nèi)源激素作用的影響. 作物學(xué)報(bào), 2022, 48(9): 2366-2376.
ZHANG Z B, QU X Y, YU N N, REN B Z, LIU P, ZHAO B, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. (in Chinese)
[28] 朱亞利, 王晨光, 楊梅, 鄭學(xué)慧, 趙成鳳, 張仁和. 不同熟期玉米不同粒位籽粒灌漿和脫水特性對(duì)密度的響應(yīng). 作物學(xué)報(bào), 2021, 47(3): 507-519.
ZHU Y L, WANG C G, YANG M, ZHENG X H, ZHAO C F, ZHANG R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agronomica Sinica, 2021, 47(3): 507-519. (in Chinese)
[29] 王志剛, 梁紅偉, 高聚林, 于曉芳, 孫繼穎, 蘇治軍, 胡樹平, 余少波, 李雅劍, 魏淑麗, 楊哲. 玉米弱勢(shì)粒庫活性與籽粒內(nèi)源激素及多胺含量的關(guān)系. 作物學(xué)報(bào), 2017, 43(8): 1196-1204.
WANG Z G, LIANG H W, GAO J L, YU X F, SUN J Y, SU Z J, HU S P, YU S B, LI Y J, WEI S L, YANG Z. Relationship of sink activity with endogenous hormones and polyamine contents in inferior kernels of maize. Acta Agronomica Sinica, 2017, 43(8): 1196-1204. (in Chinese)
[30] WORKU M, B?NZIGER M, ERLEY G S A, FRIESEN D, DIALLO A O, HORST W J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Science, 2007, 47(2): 519-528.
[31] NYIRANEZA J, N'DAYEGAMIYE A, CHANTIGNY M H, LAVERDIèRE M R. Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices. Soil Science Society of America Journal, 2009, 73(1): 317-327.
[32] 張法全, 王小燕, 于振文, 王西芝, 白洪立. 公頃產(chǎn)10000kg小麥氮素和干物質(zhì)積累與分配特性. 作物學(xué)報(bào), 2009, 35(6): 1086-1096.
ZHANG F Q, WANG X Y, YU Z W, WANG X Z, BAI H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agronomica Sinica, 2009, 35(6): 1086-1096.(in Chinese)
[33] Malhi S S, Lemke R, Wang Z H, Chhabra B S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 2006, 90(1/2): 171-183.
[34] Zhao R F, Chen X P, Zhang F S, Zhang H L, Schroder J, R?mheld V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal, 2006, 98(4): 938-945.
[35] Snyder C S, Bruulsema T W, Jensen T L, Fixen P E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 2009, 133(3/4): 247-266.
[36] 周寶元, 葛均筑, 孫雪芳, 韓玉玲, 馬瑋, 丁在松, 李從鋒, 趙明. 黃淮海麥玉兩熟區(qū)周年光溫資源優(yōu)化配置研究進(jìn)展. 作物學(xué)報(bào), 2021, 47(10): 1843-1853.
ZHOU B Y, GE J Z, SUN X F, HAN Y L, MA W, DING Z S, LI C F, ZHAO M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agronomica Sinica, 2021, 47(10): 1843-1853. (in Chinese)
[37] Liu M, Ma Z Q, Liang Q, Zhang Y, Yang Y A, Hou H P, Wu X D, Ge J Z. Spring wheat-summer maize annual crop system grain yield and nitrogen utilization response to nitrogen application rate in the thermal-resource-limited region of the North China plain. Agronomy, 2023, 13(1): 155.
[38] 陸桂榮, 鄭美琴, 袁安芳, 滕麗峰. 日照市旱澇變化特征分析. 中國農(nóng)業(yè)氣象, 2009, 30(3): 436-439, 448.
LU G R, ZHENG M Q, YUAN A F, TENG L F. Characteristic of flood and drought changes in rizhao city. Chinese Journal of Agrometeorology, 2009, 30(3): 436-439, 448.(in Chinese)
[39] 湯永祿, 吳曉麗, 吳元奇, 李朝蘇, 吳春, 郭大明. 小麥籽粒灌漿參數(shù)的基因型差異及其穩(wěn)定性分析. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2014, 19(1): 9-20.
TANG Y L, WU X L, WU Y Q, LI C S, WU C, GUO D M. Analysis of the genotypic variation and stability of grain filling parameters of wheat. Journal of China Agricultural University, 2014, 19(1): 9-20.(in Chinese)
[40] 曹玉軍, 竇金剛, 高玉山, 魏雯雯, 呂艷杰, 姚凡云, 劉慧濤, 王永軍. 施氮對(duì)不同種植密度玉米產(chǎn)量和子粒灌漿特性的影響. 玉米科學(xué), 2015, 23(6): 136-141, 148.
CAO Y J, DOU J G, GAO Y S, WEI W W, Lü Y J, YAO F Y, LIU H T, WANG Y J. Effect of nitrogen application on yield and grain filling characteristics under different densities of maize. Journal of Maize Sciences, 2015, 23(6): 136-141, 148. (in Chinese)
[41] 周衛(wèi)霞, 董朋飛, 王秀萍, 李潮海. 弱光脅迫對(duì)不同基因型玉米籽粒發(fā)育和碳氮代謝的影響. 作物學(xué)報(bào), 2013, 39(10): 1826-1834.
ZHOU W X, DONG P F, WANG X P, LI C H. Effects of low-light stress on kernel setting, and metabolism of carbon and nitrogen in different maize (L.) genotypes. Acta Agronomica Sinica, 2013, 39(10): 1826-1834. (in Chinese)
[42] 王群, 趙向陽, 劉東堯, 閆振華, 李鴻萍, 董朋飛, 李潮海. 淹水弱光復(fù)合脅迫對(duì)夏玉米根形態(tài)結(jié)構(gòu)、生理特性和產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2020, 53(17): 3479-3495.
WANG Q, ZHAO X Y, LIU D Y, YAN Z H, LI H P, DONG P F, LI C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495.(in Chinese)
[43] 武文明, 王世濟(jì), 陳洪儉, 魏鳳珍, 李金才. 氮肥運(yùn)籌對(duì)苗期受漬夏玉米子粒灌漿特性和產(chǎn)量的影響. 玉米科學(xué), 2016, 24(6): 120-125.
WU W M, WANG S J, CHEN H J, WEI F Z, LI J C. Effects of nitrogen fertilization on grain filling characteristics in summer maize under waterlogging at the seedling stage. Journal of Maize Sciences, 2016, 24(6): 120-125. (in Chinese)
[44] 劉夢(mèng), 張垚, 葛均筑, 周寶元, 吳錫冬, 楊永安, 侯海鵬. 不同降雨年型施氮量與收獲期對(duì)夏玉米產(chǎn)量及氮肥利用效率的影響. 作物學(xué)報(bào), 2023, 49(2): 497-510.
LIU M, ZHANG Y, GE J Z, ZHOU B Y, WU X D, YANG Y A, HOU H P. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years. Acta Agronomica Sinica, 2023, 49(2): 497-510. (in Chinese)
[45] 申麗霞, 王璞, 張軟斌. 施氮對(duì)不同種植密度下夏玉米產(chǎn)量及子粒灌漿的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2005, 11(3): 314-319.
SHEN L X, WANG P, ZHANG R B. Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Journal of Plant Nutrition and Fertilizers, 2005, 11(3): 314-319. (in Chinese)
[46] Costa C, Dwyer L M, Zhou X M, Dutilleul P, Hamel C, Reid L M, Smith D L. Root morphology of contrasting maize genotypes. Agronomy Journal, 2002, 94(1): 96.
[47] 王楷, 王克如, 王永宏, 趙健, 趙如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度對(duì)玉米產(chǎn)量(>15000kg·hm-2)及其產(chǎn)量構(gòu)成因子的影響. 中國農(nóng)業(yè)科學(xué), 2012, 45(16): 3437-3445.
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K. Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012, 45(16): 3437-3445. (in Chinese)
[48] 肖珊珊, 張翼飛, 楊克軍, 明立偉, 杜嘉瑞, 徐榮瓊, 孫逸珊, 李偉慶, 李桂彬, 李澤松, 李佳宇. 不同熟期品種間作對(duì)春玉米籽粒灌漿、脫水特性及產(chǎn)量的影響.中國農(nóng)業(yè)科學(xué), 2022, 55(12): 2294-2310.
XIAO S S, ZHANG Y F, YANG K J, MING L W, DU J R, XU R Q, SUN Y S, LI W Q, LI G B, LI Z S, LI J Y. Effects of intercropping with different maturity varieties on grain filling, dehydration characteristics and yield of spring maize. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310. (in Chinese)
[49] 王榮煥, 徐田軍, 陳傳永, 王元東, 呂天放, 劉月娥, 蔡萬濤, 劉秀芝, 趙久然. 不同熟期類型玉米品種籽粒灌漿和脫水特性. 作物學(xué)報(bào), 2021, 47(1): 149-158.
WANG R H, XU T J, CHEN C Y, WANG Y D, Lü T F, LIU Y E, CAI W T, LIU X Z, ZHAO J R. Grain filling and dehydrating characteristics of maize hybrids with different maturity. Acta Agronomica Sinica, 2021, 47(1): 149-158. (in Chinese)
[50] 張先宇, 楊帆, 張嘉月, 韓笑, 周羽, 張林, 曾興, 王振華, 邸宏. 脫水速率和灌漿速率對(duì)玉米收獲期子粒含水量的影響. 玉米科學(xué), 2020, 28(4): 74-78.
ZHANG X Y, YANG F, ZHANG J Y, HAN X, ZHOU Y, ZHANG L, ZENG X, WANG Z H, DI H. Dynamic changes of grain moisture content and filling rate of maize hybrids and parental inbred lines. Journal of Maize Sciences, 2020, 28(4): 74-78. (in Chinese)
[51] 梁效貴, 趙雪, 吳鞏, 陳先敏, 高震, 申思, 林珊, 周順利. 推遲收獲對(duì)華北夏玉米籽粒脫水和力學(xué)特性的影響及其品種差異. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 24(5): 1-9.
LIANG X G, ZHAO X, WU G, CHEN X M, GAO Z, SHEN S, LIN S, ZHOU S L. Grain dehydration and mechanical characteristics of different summer maize hybrids and their responses to delayed harvest in the North China plain. Journal of China Agricultural University, 2019, 24(5): 1-9. (in Chinese)
[52] Li Q, Du L J, Feng D J, Ren Y, Li Z X, Kong F L, Yuan J C. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. The Crop Journal, 2020, 8(6): 990-1001.
[53] 趙麗曉, 張萍, 王若男, 王璞, 陶洪斌. 花后前期高溫對(duì)玉米強(qiáng)弱勢(shì)籽粒生長發(fā)育的影響. 作物學(xué)報(bào), 2014, 40(10): 1839-1845.
ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)
[54] 萬澤花, 任佰朝, 趙斌, 劉鵬, 張吉旺. 不同熟期夏玉米品種籽粒灌漿脫水特性和激素含量變化. 作物學(xué)報(bào), 2019, 45(9): 1446-1453.
WAN Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agronomica Sinica, 2019, 45(9): 1446-1453. (in Chinese)
[55] 杜紅霞, 吳普特, 馮浩, 王百群, 馬軍勇. 氮施用量對(duì)夏玉米土壤水氮?jiǎng)討B(tài)及水肥利用效率的影響. 中國水土保持科學(xué), 2009, 7(4): 82-87.
DU H X, WU P T, FENG H, WANG B Q, MA J Y. Influence of nitrogen application on soil moisture-nitrogen dynamics and water-fertilizer use efficiency of. Science of Soil and Water Conservation, 2009, 7(4): 82-87.(in Chinese)
[56] 潘家榮, 巨曉棠, 劉學(xué)軍, 陳新平, 張福鎖, 毛達(dá)如. 水氮優(yōu)化條件下在華北平原冬小麥/夏玉米輪作中化肥氮的去向. 核農(nóng)學(xué)報(bào), 2009, 23(2): 334-340, 307.
PAN J R, JU X T, LIU X J, CHEN X P, ZHANG F S, MAO D R. Fate of fertilizer nitrogen for winter wheat/summer maize rotation in North China Plain under optimization of irrigation and fertilization. Journal of Nuclear Agricultural Sciences, 2009, 23(2): 334-340, 307.(in Chinese)
[57] CáRCOVA J, URIBELARREA M, BORRáS L, OTEGUI M E, WESTGATE M E. Synchronous pollination within and between ears improves kernel set in maize. Crop Science, 2000, 40(4): 1056-1061.
[58] 余垚穎, 莫太相, 劉金丹, 郭應(yīng)菊, 陳代容, 王明富. 四川山地、丘陵玉米N、P、K需肥特性及肥料利用率研究. 西南農(nóng)業(yè)學(xué)報(bào), 2021, 34(2): 326-333.
YU Y Y, MO T X, LIU J D, GUO Y J, CHEN D R, WANG M F. N, P, K demand characteristics and fertilizer use efficiency of maize in mountain and hilly Sichuan. Southwest China Journal of Agricultural Sciences, 2021, 34(2): 326-333.(in Chinese)
Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight under Different Rainfall Years
1Tianjin Key Laboratory of Intelligent Breeding of Major Crops/College of Agronomy and Resources and Environment, Tianjin agricultural university, Tianjin 300392;2Tianjin High-quality Agricultural Products Development Demonstration Center, Tianjin 301500;3Tianjin Agricultural Development Service Center, Tianjin 300061;4college of agronomy, northwest a&funiversity, Yangling 712100, Shaanxi
【Objective】The North China Plain is the thermal resource limited area, summer maize grain mechanical harvesting technology were astricted by higher grain moisture content at harvest stage, which affects the quality of mechanical grain harvest. Under delayed harvest conditions, nitrogen application rate affect summer maize grain yield, and superior and inferior grains morphology and weight are not clear. Through the systematic observation of summer maize superior and inferior grains morphology, filling and dehydration process under different nitrogen application levels, clarified the regulation effect of nitrogen, and which provided support for summer maize grain mechanical harvesting technology cultivation to obtain stabilize yield, reduce nitrogen application and improve efficiency in the of region. 【Method】Summer maize grain mechanical harvesting hybrid Jingnongke 728 was used as the research materials, the field experiment were conducted in 2020-2021 by a harvest time and nitrogen application rate two-factor randomized block design, harvest time were normal harvest time (NH) and delayed harvest (DH), and six nitrogen application rate were 0 (N0), 120 (N120, 2021), 180 (N180), 240 (N240), 300 (N300), 360 (N360) and 450 kg hm-2(N450, 2020). Summer maize grain yield (GY), superior and inferior grains fresh volume (GFV), fresh weight (GFW), dry weight (GDW), and moisture content (GMC) and their change rates were measured. 【Result】Compared to the dry year (2020), the inferior grains maximum grain filling rate (G), the increment at G(W) and initial potential (R) of GFV, GFW and GDW were significantly reduced in the rainy year (2021), and the days reached G(T) were delayed, and the active duration (P) were prolonged, which resulted in GFV, GFW and GDW reduced significantly by 15.4%-50.6%, 25.4%-62.0% and 31.2%-57.3%, respectively, however, there were no significant change in superior grains, and so led GY declined significantly by 3.03×103-5.44×103kg·hm-2. The inferior grains GDW, GDWand GDWwere delayed by 4.2-20.7 d compared to superior grains. The superior grains GFV, GFW and GDW were significantly increased by 56.8%-69.6%, 67.0%-80.4% and 54.1%-92.1%, respectively, than inferior grains. Compared with NH, the grains Gand Rat DH treatments were increased, and the P for superior and inferior grains were significantly prolonged, which led the GFV, GFW decreased significantly by 2.1%-8.1% and 12.2%-17.1%, 4.0%-5.2% and 15.7%-19.5, respectively, under the dry year and rainy year, meanwhile GDW increased from 25.1-28.2 g/100 grains to 28.0-34.4 g/100 grains, the GMC decreased from 22.6%-26.0% to 22.6%-26.0% as well, which were declined by 31.3%-40.4% than NH. The GY for DH were increased 0.02×103-1.67×103kg·hm-2than NH. There was no significant difference in GFV, GFW and GDW between nitrogen application levels in dry year. While in the rainy year, the GDWand GDWfor N240-N360treatment were significantly higher than N180, GDWwere delayed, and GDWwas prolonged (<0.05), and the effects were more intense on inferior grains than on superior grains. Under DH treatment, the GFV, GFW and GDW of inferior grains for N240–N360were significantly increased by 25.7%-85.3%, 59.4%-83.6% and 17.9%–43.9% than N180, respectively. The nitrogen yield increasing effect in rainy year were significantly intense than dry year, as 74.4%-169.5%51.5%-99.1%. GY of N240was significantly rised by 12.6%-54.5% than N120-N180.【Conclusion】In the thermal resource limited area of the North China Plain, changed winter wheat into spring wheat in the wheat–maize cropping system, with summer maize delayed harvest for 23-33 days, the inferior grains capacity and weight were significantly increased, and so the grain moisture content were reduced to the grain mechanical harvesting technology standard to realized the annual grain mechanical harvesting. And by optimized nitrogen application rate at 247.2-248.6 kg·hm-2, the production strategy of stable yield at 7.0×103-12.0×103kg·hm-2, nitrogen reduction and improve efficiency under different rainfall years were achieved in the region.
summer maize; rainfall year types; delayed harvest; nitrogen application rate; superior and inferior grains; grain filling
10.3864/j.issn.0578-1752.2023.20.005
2023-01-20;
2023-04-03
國家自然科學(xué)基金(31701378)、國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0300)、天津科技計(jì)劃(23ZYCGSN00210)
劉夢(mèng),E-mail:m15222312583@126.com。通信作者葛均筑,E-mail:gjz0121@126.com
(責(zé)任編輯 楊鑫浩,李莉)