何才蓉, 楊影, 黃金煒, 陳鳳嬌, 陸瑩, 丁潔△
基因與POU4F3、Gfi1協(xié)同作用促毛細(xì)胞再生的研究進展*
何才蓉1, 楊影1, 黃金煒1, 陳鳳嬌2, 陸瑩3, 丁潔1△
(1貴州大學(xué)生命科學(xué)學(xué)院/農(nóng)業(yè)生物工程研究院,山地植物資源保護與種質(zhì)創(chuàng)新教育部重點實驗室,貴州 貴陽 550025;2貴州省人民醫(yī)院,貴州 貴陽 550002;3貴州中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院解剖學(xué)教研室,貴州 貴陽 550025)
毛細(xì)胞再生;直接重編程;互作機制;聽力損失
聽力損失是導(dǎo)致語言障礙和影響人口素質(zhì)的一種世界性頑疾,主要由內(nèi)耳毛細(xì)胞不可逆損傷所致。治療此類頑疾的核心是毛細(xì)胞再生。直接重編程作為一種細(xì)胞再生技術(shù),無需經(jīng)過多能性細(xì)胞階段便可將一種終末分化細(xì)胞直接轉(zhuǎn)變?yōu)槠渌愋偷墓δ芗?xì)胞或祖細(xì)胞,因此也稱為譜系重編程[1-2],包括直接和間接兩種方式。直接的方式是通過導(dǎo)入譜系特異性轉(zhuǎn)錄因子誘導(dǎo)一種類型終末分化細(xì)胞轉(zhuǎn)化為另一種細(xì)胞類型,如慢病毒載體攜帶轉(zhuǎn)錄因子編碼基因感染支持細(xì)胞或成纖維細(xì)胞,經(jīng)細(xì)胞形態(tài)、相關(guān)基因和蛋白表達等參數(shù)驗證獲得與正常內(nèi)耳毛細(xì)胞相似的細(xì)胞,從而實現(xiàn)毛細(xì)胞再生的目的[3-5]。
是內(nèi)耳毛細(xì)胞發(fā)育和再生的關(guān)鍵調(diào)節(jié)因子。研究表明,雖然基因能夠?qū)⒍伔歉杏X細(xì)胞直接重編程為新生毛細(xì)胞,但其重編程能力具有年齡依賴性[6]。為了規(guī)避這種情況,探索簡單有效的譜系特異性轉(zhuǎn)錄因子組合可顯著促進毛細(xì)胞分化、成熟和重編程效率,是毛細(xì)胞再生和功能重塑的可行方案。在眾多的轉(zhuǎn)錄因子中,POU結(jié)構(gòu)域第4類轉(zhuǎn)錄因子3(POU domain class 4 transcription factor 3,Pou4f3)和獨立生長因子1(growth factor independent-1,Gfi1)可與共表達促進生成功能成熟的毛細(xì)胞而備受關(guān)注。已有研究表明,利用慢病毒在人類成纖維細(xì)胞培養(yǎng)物中過表達、和(簡稱)可促人類體細(xì)胞直接重編程為表達毛細(xì)胞標(biāo)志物的細(xì)胞[7]。因此利用直接重編程技術(shù)獲取人類內(nèi)耳毛細(xì)胞將成為一個新的研究方向。但三者在毛細(xì)胞再生及功能重塑中的作用、上下游毛細(xì)胞發(fā)育相關(guān)基因及互作機制未有系統(tǒng)闡明。本文就Atoh1、Pou4f3和Gfi1在毛細(xì)胞再生和功能重塑中的調(diào)控作用及互作機制的最新研究報道進行綜合整理,匯總與毛細(xì)胞發(fā)育相關(guān)的信號通路和關(guān)鍵基因,闡述三者間的表達調(diào)控方式,為未來使用Atoh1-Pou4f3-Gfi1直接重編程策略治療聽力損失提供參考資料。
1.1Atoh1的結(jié)構(gòu)和功能,又名、或,位于染色體4q22,全長1.06 kb,含一個外顯子。轉(zhuǎn)錄因子Atoh1屬第Ⅱ類堿性螺旋-環(huán)-螺旋(basic helix-loop-helix, bHLH)轉(zhuǎn)錄因子,可與第Ⅰ類bHLH轉(zhuǎn)錄因子如E47結(jié)合形成異二聚體,直接與CAGCTG和CAGGTG等E-box基序結(jié)合以激活下游靶基因的轉(zhuǎn)錄。含有較高比例的脯氨酸殘基,可參與蛋白質(zhì)互作,C端的高比例絲氨酸殘基意味著的功能可能受這些絲氨酸殘基的磷酸化調(diào)節(jié)。此外,參與多種細(xì)胞類型的發(fā)育,敲除的小鼠缺乏腸道上皮細(xì)胞,小腦和脊髓神經(jīng)發(fā)育不完全,內(nèi)耳毛細(xì)胞完全缺失[8]。的表達和激活與腫瘤的發(fā)生、發(fā)展和轉(zhuǎn)移有關(guān)[9]。已證實在結(jié)腸和皮膚中充當(dāng)腫瘤抑制基因[10],在髓母細(xì)胞瘤中作為癌基因起作用[11],表明其在不同細(xì)胞類型的分化和增殖中的多重作用。由于在耳蝸感覺上皮及非感覺上皮過表達可誘導(dǎo)原位及異位毛細(xì)胞再生的能力使得成為當(dāng)前研究的熱點。
1.2在耳蝸中的發(fā)育表達模式的表達時序是毛細(xì)胞分化和存活的關(guān)鍵,決定毛細(xì)胞分化的特異性。在小鼠胚胎發(fā)育期間,最初是在耳蝸底部附近內(nèi)耳祖細(xì)胞中檢測到的,隨后在 E13.5~E17.5穩(wěn)定增加并沿頂部擴散[12]。在胚胎后期,多表達于毛細(xì)胞中以啟動毛細(xì)胞分化程序,在支持細(xì)胞內(nèi)僅有少量表達且處于抑制狀態(tài),而在非感覺細(xì)胞內(nèi)則完全沒有[13]。毛細(xì)胞發(fā)育過程中的功能存在兩個關(guān)鍵時期,在E15.5~E17.5 期間缺失會導(dǎo)致毛細(xì)胞快速死亡,而在E17.5后缺失會破壞維持聽覺功能所需的毛束結(jié)構(gòu)以致毛細(xì)胞延遲死亡。由此可見,是毛細(xì)胞正常分化、存活和成熟的必要條件。出生后一周,表達量開始下調(diào),遵循從耳蝸管的基部向頂部的梯度,隨著聽覺毛細(xì)胞成熟而關(guān)閉[14]。
1.3在毛細(xì)胞再生中的作用是毛細(xì)胞形態(tài)和功能再生過程中必不可少的基因?;蚯贸蟮亩伜颓巴ジ杏X毛細(xì)胞完全缺失,大多數(shù)支持細(xì)胞標(biāo)志基因的表達顯著降低[15]。提示的丟失不僅直接影響毛細(xì)胞存活,還會破壞周圍支持細(xì)胞的發(fā)育,間接控制感覺上皮鑲嵌發(fā)育。內(nèi)耳毛細(xì)胞和支持細(xì)胞來源于相同前體細(xì)胞,故通常采用上調(diào)在耳蝸支持細(xì)胞中的表達水平以促進支持細(xì)胞向毛細(xì)胞的轉(zhuǎn)化[3],但新生毛細(xì)胞仍不成熟,無法長期存活。在支持細(xì)胞中的重編程能力隨年齡增長而受到限制[6],說明僅過表達不足以有效且持續(xù)地實現(xiàn)毛細(xì)胞功能成熟。毛細(xì)胞的形成和成熟受多種信號通路和轉(zhuǎn)錄因子的時空調(diào)控,作為毛細(xì)胞分化及存活過程中的先鋒因子,其功能的發(fā)揮依賴與其他因子的協(xié)同作用。
1.4結(jié)合其他轉(zhuǎn)錄因子的毛細(xì)胞重編程策略已知有多種信號通路參與調(diào)節(jié)表達,如Notch信號通路、Shh信號通路、Wnt信號通路、FGF信號通路和BMP信號通路等。此外β-連環(huán)蛋白(β-catenin、E2F轉(zhuǎn)錄因子1(E2F transcription factor 1,)、GATA結(jié)合蛋白3(GATA binding protein-3,Gata3)等轉(zhuǎn)錄因子可增強的表達[17-18],癌高甲基化基因1(hypermethylated in cancer 1,Hic1)、Zic家族成員1(Zic family member 1,Zic1)則抑制了Atoh1活性[19-20]。性別決定相關(guān)基因簇2(sex determining region Y,Sox2)、同源異型盒基因1(sineoculishomeobox homolog1,Six1)、Gata3等轉(zhuǎn)錄因子位于Atoh1上游。神經(jīng)元素1 (neurogenin1, Neurog1)和Atoh1通過神經(jīng)源分化因子1(neurogenic differentiation factor1, Neurod1)介導(dǎo)互為拮抗關(guān)系,在神經(jīng)元與毛細(xì)胞的命運決定中發(fā)揮作用[4, 21]。Sox2表達于整個感覺上皮細(xì)胞,通過激活Neurog1、Neurod1、分化抑制因子(inhibitor of differentiation,Id)1-3和Hes/Hey家族等因子以抑制的表達。上皮祖細(xì)胞分化為毛細(xì)胞后,Atoh1的表達導(dǎo)致Sox2下調(diào),因此Atoh1 mRNA激活后可下調(diào)Sox2以維持Atoh1在毛細(xì)胞發(fā)育中的表達水平,Sox2的下調(diào)由Six1介導(dǎo)[22]。如圖1所示,在毛細(xì)胞發(fā)育過程中Shh信號作為Atoh1的負(fù)性調(diào)控因子,通過FGF信號通路介導(dǎo)維持Hey1和Hey2表達水平,從而負(fù)調(diào)節(jié)Atoh1以防止毛細(xì)胞過早分化[23]。因此,調(diào)控Shh信號-FGF信號-Hey1/Hey2-Atoh1這一分子通路可能是誘導(dǎo)毛細(xì)胞再生的潛在途徑。此外,Atoh1受分化抑制基因Id1-3的負(fù)調(diào)控[24]。在耳蝸中Id蛋白受BMP信號調(diào)節(jié),并可能受到細(xì)胞周期蛋白依賴性激酶2(cyclin-dependent kinase 2, Cdk-2)的負(fù)調(diào)控[25]。Atoh1表達后,其下游靶基因如Gfi1、Pou4f3和Barhl1對毛細(xì)胞的成熟和長期存活也是必要的。由此可見,在內(nèi)耳發(fā)育的不同階段調(diào)控上述關(guān)鍵因子和信號通路對毛細(xì)胞的正常發(fā)育至關(guān)重要,有助于為毛細(xì)胞再生直接重編程技術(shù)制定可行方案。如圖2所示,幾種關(guān)鍵重編程轉(zhuǎn)錄因子與Atoh1的聯(lián)合調(diào)控可顯著促進毛細(xì)胞再生效率:Walters等[16]驗證,Atoh1過表達結(jié)合細(xì)胞周期蛋白激酶抑制因子(cyclin dependent kinase inhibitor 1, p27kip1)缺失或Atoh1和Gata3、Pou4f3的聯(lián)合激活足以將成年小鼠的支持細(xì)胞轉(zhuǎn)化為毛細(xì)胞,并克服轉(zhuǎn)分化的年齡依賴性。Ahmed等[26]鑒定眼發(fā)育缺失1(eyes absent1, Eya1)、Six1和Sox2為Atoh1的上游調(diào)控因子,通過直接互作協(xié)同調(diào)節(jié)Atoh1增強子,誘導(dǎo)耳蝸非感覺上皮產(chǎn)生異位新生毛細(xì)胞。在新生小鼠中大上皮嵴中同時過表達Atoh1和胰島素增強子結(jié)合蛋白1(insulin enhancer binding protein 1, Isl1)可有效增強毛細(xì)胞轉(zhuǎn)化效率[27]。新霉素?fù)p傷耳蝸毛細(xì)胞后,共轉(zhuǎn)染配對盒子基因2(paired box 2, Pax2)和Atoh1能誘導(dǎo)支持細(xì)胞原位增殖和轉(zhuǎn)分化為再生毛細(xì)胞[28]。在成年小鼠耳蝸支持細(xì)胞中同時誘導(dǎo)Atoh1和Ikaros家族鋅指轉(zhuǎn)錄因子2(Ikaros family zinc finger 2, Ikzf2兩個外毛細(xì)胞發(fā)育關(guān)鍵轉(zhuǎn)錄因子,可將支持細(xì)胞轉(zhuǎn)化為Prestin特異性表達的外毛細(xì)胞樣細(xì)胞[29]。若將Atoh1及其輔因子T細(xì)胞因子3(T-cell factor3, Tcf3)、Gata3或ETS變異體4(ETS Translocation Variant 4,Etv4)、Mycn原癌基因(MYCN proto-oncogene, Nmyc)、E26轉(zhuǎn)錄因子2 (E-twenty six 2, Ets2)聯(lián)合傳遞到耳蝸上皮也可誘導(dǎo)耳蝸非感覺細(xì)胞再生毛細(xì)胞[30-31]。關(guān)于Gfi1、Pou4f3和Atoh1組合表達(GPA)的研究顯示,GPA可有效誘導(dǎo)雞胚耳上皮細(xì)胞直接重編程為毛細(xì)胞樣細(xì)胞[32],Chen[33]等再次驗證了GPA是功能性毛細(xì)胞再生必不可少的基因,且GPA因子與另一轉(zhuǎn)錄因子Six1可在體外將小鼠胚胎成纖維細(xì)胞和尾尖成纖維細(xì)胞直接重編程為毛細(xì)胞樣細(xì)胞[34]。上述研究結(jié)果表明:結(jié)合不同的轉(zhuǎn)錄因子對增強Atoh1的毛細(xì)胞重編程效率是必要的。其中,Gfi1和Pou4f3與Atoh1互作促毛細(xì)胞再生效率、功能建立和存活的效果尤為顯著。
Figure 1. Interactions of atonal bHLH transcription factor 1 (Atoh1) with other hair cell development-related factors and their signaling pathways. Pou4f3: POU domain class 4 transcription factor 3; Gfi1: growth factor independent-1; E2f1: E2F transcription factor 1; Hic1: hypermethylated in cancer 1; Barhl1: BarH-like homeobox 1; Zic1: Zic family member 1; Six1:sineoculis homeobox homolog 1; Sox2: sex-determining region Y-box 2; Neurog1: neurogenin 1; Neurod1: neurogenic differentiation factor1; Id1-3: inhibitor of differentiation 1-3; Cdk-2: cyclin-dependent kinase-2; Hey1: hairy/enhancer-of-split related with YRPW motif 1; Hey2: hairy/enhancer-of-split related with YRPW motif 2; Pias3: protein inhibitor of activated signal transducer and activator of transcription 3; Stat3: signal transducer and activator of transcription 3; Gata3: GATA binding protein3; p27kip1: cyclin-dependent kinase inhibitor 1. → refers to activation; ⊥ refers to inhibition; ├┤ refers to antagonism; ┄ refers to predicted.
Figure 2. Hair cell reprogramming strategies of atonal bHLH transcription factor 1 (Atoh1) in combination with additional transcription factors. Pou4f3: POU domain class 4 transcription factor 3; Gata3: GATA binding protein 3; p27kip1: cyclin-dependent kinase inhibitor 1; Eya1: eyes absent 1; Six1: sineoculis homeobox homolog 1; Sox2: sex-determining region Y-box 2; Isl1: insulin enhancer binding protein 1; Pax2: paired box 2; Ikzf2: Ikaros family zinc finger 2; Tcf3: transcription factor 3; Etv4: ETS translocation variant 4; Nmyc: MYCN proto-oncogene, bHLH transcription factor; Ets2:E-twenty six 2; Gfi1: growth factor independent-1. Red refers to knockout.
2.1Pou4f3在內(nèi)耳中的功能及其效應(yīng)基因(亦稱或)基因是調(diào)節(jié)神經(jīng)內(nèi)分泌途徑的第Ⅳ類POU結(jié)構(gòu)域轉(zhuǎn)錄因子,含有2個外顯子,編碼338個氨基酸,位于人類染色體5q31-q33。突變會導(dǎo)致常染色體顯性非綜合征型耳聾DFNA15。敲除小鼠在內(nèi)耳分化初始階段無形態(tài)異常,毛細(xì)胞表達、、等特異性標(biāo)志基因,隨后部分毛細(xì)胞表現(xiàn)異常,未能形成正常毛束結(jié)構(gòu)并逐漸發(fā)生凋亡,許多螺旋和前庭神經(jīng)節(jié)細(xì)胞丟失,出現(xiàn)全聾和前庭系統(tǒng)重度受損的癥狀[35]。Weiss等[36]通過免疫定位明確的正常產(chǎn)物定位于細(xì)胞核,突變蛋白定位于細(xì)胞質(zhì)和細(xì)胞核,的細(xì)胞質(zhì)定位可能阻止其作為轉(zhuǎn)錄調(diào)節(jié)因子發(fā)揮作用。馬登濱[37]在透射電鏡下觀察到基因突變小鼠內(nèi)毛細(xì)胞出現(xiàn)線粒體空化現(xiàn)象。線粒體作為細(xì)胞能量供應(yīng)器,其形態(tài)結(jié)構(gòu)異常會使毛細(xì)胞能量供應(yīng)受損以致功能障礙,提示毛細(xì)胞功能障礙可能與自身超微結(jié)構(gòu)發(fā)生變化有關(guān)[38]。上述研究為基因突變致小鼠耳聾提供了可能的細(xì)胞學(xué)機制。
目前參與毛細(xì)胞分化和功能維持的分子途徑有待深入研究,其下游靶基因的鑒定將有助于闡明突變導(dǎo)致人類聽力損失的分子機制。已知的直接靶點有腦源性神經(jīng)營養(yǎng)因子(neurotrophins brain derived neurotrophic factor,Bdnf)、神經(jīng)營養(yǎng)素3(neurotrophin-3,Nt-3)、細(xì)胞質(zhì)激活增殖相關(guān)蛋白1(cytoplasmic activation and proliferation-associated protein-1,Caprin-1)和核受體2家族2(nuclear receptor subfamily 2 group fmember 2,Nr2f2)[39-40],以及下游靶標(biāo)LIM同源盒3(LIM-homeodomain 3,Lhx3)和Gfi1[39-42]。神經(jīng)生長因子Bdnf和Nt-3在前庭毛細(xì)胞及支持細(xì)胞中均有表達,Bdnf主要在毛細(xì)胞中表達,Nt-3則主要表達于支持細(xì)胞[43-47]。Pou4f3敲除鼠的Bdnf和Nt-3表達量均有下降,表現(xiàn)出耳蝸神經(jīng)支配缺陷和感覺神經(jīng)元丟失[40],間接影響毛細(xì)胞發(fā)育。Caprin-1在毛細(xì)胞和支持細(xì)胞中表達,其5′-端側(cè)翼序列包含Pou4f3結(jié)合位點,介導(dǎo)Pou4f3對Caprin-1表達的抑制作用。氨基糖苷類藥物損傷耳蝸后,內(nèi)耳毛細(xì)胞被誘導(dǎo)生成含有Caprin-1的應(yīng)激顆粒,參與毛細(xì)胞的應(yīng)激反應(yīng)[48]。Nr2f2是一種類固醇/甲狀腺激素核受體,其5′-側(cè)翼區(qū)包含Pou4f3的兩個結(jié)合位點,參與耳蝸基底膜的延伸發(fā)育。Tornari等[49]采用消減雜交法將鑒定為Pou4f3的靶基因,Pou4f3突變致兩個結(jié)合位點活性減弱,Nr2f2表達相應(yīng)下調(diào),繼而影響內(nèi)耳功能。Lhx3屬LIM 同源域轉(zhuǎn)錄因子家族的一員,在小鼠E16特異性表達于內(nèi)耳毛細(xì)胞中,其在耳蝸中受Pou4f3調(diào)控,但在前庭毛細(xì)胞中不受調(diào)控[50]。此外Gfi1作為Pou4f3下游靶基因,也是毛細(xì)胞發(fā)育和存活的重要轉(zhuǎn)錄因子(圖3)。闡明在毛細(xì)胞中的作用對判斷其能否成為毛細(xì)胞再生直接重編程的候選基因至關(guān)重要。
Figure 3. POU domain class 4 transcription factor 3 (Pou4f3) downstream target genes and the mechanistic relationship between atonal bHLH transcription factor 1 (Atoh1)-Pou4f3-growth factorindependent-1 (Gfi1). Sox2:sex-determining region Y-box 2; Neurog1: neurogenin 1; Neurod1: neurogenic differentiation factor1; Bdnf: brain-derived neurotrophic factor; Nt-3: neurotrophin-3; Caprin-1: cytoplasmic activation and proliferation-associated protein-1; Nr2f2: nuclear receptor subfamily 2 group F member 2; Lhx3: LIM-homeodomain 3; Stat3: signal transducer and activator of transcription 3; Pias3: protein inhibitor of activated signal transducer and activator of transcription 3; Prox1: Prospero-related homeobox protein 1; Id1: inhibitor of differentiation 1; Gata3: GATA binding protein 3; Tef2: transcription factor 3; Myc: MYC proto-oncogene, bHLH transcription factor; Six1: sineoculis homeobox homolog 1; Eya1: eyes absent 1. → refers to activation; ⊥ refers to inhibition ; ├┤refers to antagonism.
2.2在內(nèi)耳毛細(xì)胞中的功能的C末端含有由六個C2H2鋅指結(jié)構(gòu)組成的DNA結(jié)合結(jié)構(gòu)域,N末端含有20個氨基酸的SNAG阻遏物結(jié)構(gòu)域和一個保守的核定位信號。小鼠內(nèi)耳發(fā)育早期敲除不會嚴(yán)重破壞毛細(xì)胞形態(tài)結(jié)構(gòu),但隨著分化進行,毛細(xì)胞缺陷會逐漸明顯:在E16.5時毛細(xì)胞紊亂,到E18.5時外毛細(xì)胞、內(nèi)毛細(xì)胞先后由基底至頂端呈凋亡跡象,至P14時所有內(nèi)耳毛細(xì)胞均消失。由此可見,缺失會導(dǎo)致毛細(xì)胞發(fā)育異常和程序性死亡。Hertzano等[42]鑒定轉(zhuǎn)錄激活蛋白3(signal transducer and activator of transcription 3,Stat3)為的下游效應(yīng)蛋白,定位于耳蝸感覺上皮的外毛細(xì)胞中,參與調(diào)控細(xì)胞的增殖、分化和凋亡等過程。與轉(zhuǎn)錄激活子3的蛋白抑制劑(protein inhibitor of activated signal transducer and activator of transcription 3, Pias3)相互作用可增強信號[51],推測Gfi1在內(nèi)耳毛細(xì)胞中的作用機制是通過與相互作用以促進毛細(xì)胞分化(圖3)。Matern等[52]使用Gfi1小鼠模型對缺失的毛細(xì)胞翻譯組進行分析,顯示神經(jīng)元相關(guān)基因(如)上調(diào),而毛細(xì)胞功能相關(guān)基因表達量顯著降低。提示作為干細(xì)胞分化為毛細(xì)胞命運的特異性基因,可能通過抑制神經(jīng)元為主的非毛細(xì)胞基因的表達,并激活毛細(xì)胞特異基因的表達。
總之,、和在毛細(xì)胞分化、成熟和聽覺功能建立中均不可或缺,可作為毛細(xì)胞再生直接重編程的候選治療基因,分析三者在毛細(xì)胞功能重塑中的互作機制以便更好地指導(dǎo)并實現(xiàn)毛細(xì)胞再生。
3.1Atoh1與Pou4f3互作Pou4f3和Gfi1均為Atoh1的下游靶點,具有相似的表達梯度。但與缺失不同的是,缺失導(dǎo)致的表型缺陷更嚴(yán)重:缺失不僅導(dǎo)致耳蝸及前庭毛細(xì)胞凋亡,且細(xì)胞凋亡在胚胎期便已有跡象,靜纖毛束形態(tài)缺陷也比基因敲除小鼠更嚴(yán)重[53]。Yu等[54]指出在E15.5,和共表達于耳蝸底部四排毛細(xì)胞中,而分化程度較低的頂端只檢測到表達。Ohyama等[55]使用轉(zhuǎn)基因小鼠在E8.5敲除后,在E15.5耳蝸感覺上皮中未檢測到Pou4f3蛋白??梢姡诿?xì)胞分化過程中,Pou4f3位于Atoh1下游且受Atoh1調(diào)控。Ikeda等[31]報道可與、和協(xié)同調(diào)控基因和毛細(xì)胞表型(圖3)。此外,也可驅(qū)動與異染色質(zhì)結(jié)合而解壓縮DNA,使能激活染色質(zhì)中的毛細(xì)胞分化基因網(wǎng)絡(luò)以促進毛細(xì)胞分化程序[54]。
3.2Atoh1與Gfi1互作作為一種調(diào)節(jié)細(xì)胞周期的原癌基因,具有促進細(xì)胞增殖和抑制細(xì)胞凋亡的功能。García-A?overos等[56]闡明T-BOX轉(zhuǎn)錄因子2(T-BOX transcription factor 2,)是內(nèi)毛細(xì)胞特異性分化及整個發(fā)育過程所必需的基因,而Atoh1和Gfi1的存在是Tbx2行使內(nèi)毛細(xì)胞命運決策因子的前提條件。提示Atoh1和Gfi1是后續(xù)獲取大量毛細(xì)胞及實現(xiàn)毛細(xì)胞功能修復(fù)必不可少的基因。使用成年小鼠毛細(xì)胞損傷模型的體內(nèi)研究表明,Corti器中腺病毒介導(dǎo)的Atoh1和Gfi1過表達會使大量支持細(xì)胞轉(zhuǎn)分化為毛細(xì)胞樣細(xì)胞,再生效率顯著高于單獨過表達Atoh1[57]。Wallis等[58]證明Gfi1敲除鼠的Atoh1表達量并無明顯異常,推測Atoh1的表達可能不受Gfi1影響。Atoh1突變小鼠Gfi1的mRNA量雖無明顯變化,但聽覺上皮中Gfi1蛋白表達量卻明顯下降甚至消失,說明Atoh1為Gfi1的上游調(diào)控基因且對Gfi1的調(diào)控位于翻譯水平。Prospero相關(guān)同源異形盒蛋白1(prospero related homeobox protein 1, Prox1)為Sox2的下游靶基因,不僅可負(fù)調(diào)控Gfi1且介導(dǎo)Sox2對Atoh1的抑制作用[59]。此外,Gfi1可通過抑制Id1以保持Atoh1的表達水平[42],如圖3所示。
3.3Pou4f3與Gfi1互作在耳蝸發(fā)育過程中,蛋白在胚胎期E 13.5~14.5之間的內(nèi)耳祖細(xì)胞基部至頂部表達,驅(qū)使內(nèi)耳祖細(xì)胞向毛細(xì)胞分化,并在E14.5至E16激活Pou4f3的表達,Pou4f3隨后在E16.5激活Gfi1的表達。Pou4f3是毛細(xì)胞分化過程中Atoh1的直接靶基因,Gfi1則為Pou4f3的靶基因[58]。研究發(fā)現(xiàn),在Pou4f3–/–或Pou4f3ddl/ddl小鼠中,Pou4f3的缺失將導(dǎo)致Gfi1的表達水平在統(tǒng)計學(xué)上顯著降低,與Pou4f3的表達量存在正相關(guān)性[42]。馮曉等[60]曾報道Gfi1表達量在野生型、雜合型以及完全缺失Pou4f3的斑馬魚神經(jīng)組織中有明顯的量效差別,二者與神經(jīng)組織發(fā)育有關(guān)??傊琍ou4f3對Gfi1的表達具有調(diào)控作用,我們推測:胚胎后期Pou4f3正向調(diào)控Gfi1之后,Gfi1可能通過Pias3/Stat3級聯(lián)作用或負(fù)調(diào)控Id1以維持Atoh1的表達水平,從而促進毛細(xì)胞分化和成熟。
3.4Atoh1-Pou4f3-Gfi1直接重編程策略重編程轉(zhuǎn)錄因子通過改變起始細(xì)胞轉(zhuǎn)錄組和表觀遺傳景觀,從而達到激活某些特定基因的目的,以促進特定細(xì)胞類型轉(zhuǎn)錄程序。Atoh1通過與Gfi1和Pou4f3的聯(lián)合調(diào)控可將神經(jīng)元譜系轉(zhuǎn)變?yōu)閮?nèi)耳毛細(xì)胞譜系。僅過表達Atoh1會促使神經(jīng)元分化,Pou4f3通過激活起始細(xì)胞原來封閉的染色質(zhì)區(qū)域,使Atoh1能夠參與并激活驅(qū)動分化為毛細(xì)胞的基因程序,但Atoh1和Pou4f3不足以促進毛細(xì)胞分化。Gfi1是Atoh1誘導(dǎo)毛細(xì)胞譜系轉(zhuǎn)換的關(guān)鍵,通過抑制Atoh1對毛細(xì)胞分化拮抗基因的誘導(dǎo),同時增強Atoh1促毛細(xì)胞特異性基因表達的能力,進而啟動毛細(xì)胞轉(zhuǎn)錄程序[54]。Chen等[33]為實現(xiàn)毛細(xì)胞功能重塑,構(gòu)建了支持細(xì)胞中同時過表達的轉(zhuǎn)基因小鼠,Lgr5-GPA-tdTomato小鼠中Myo7a+/tdTomato+細(xì)胞數(shù)量顯著高于Lgr5-Atoh1-tdTomato小鼠,新生毛細(xì)胞具有電生理活性,證明Pou4f3和Gfi1在Atoh1介導(dǎo)的支持細(xì)胞直接轉(zhuǎn)分化為毛細(xì)胞過程中起正向調(diào)節(jié)作用。綜上所述,GPA聯(lián)合調(diào)控能夠從根本上改變Atoh1轉(zhuǎn)錄程序以促毛細(xì)胞分化,提高細(xì)胞直接重編程效率,同時促進新生毛細(xì)胞亞型分化和電生理功能成熟。Atoh1、Gfi1和Pou4f3是促進毛細(xì)胞分化的特異性轉(zhuǎn)錄因子,Atoh1-Pou4f3-Gfi1(GPA)的協(xié)同調(diào)控是當(dāng)前毛細(xì)胞再生直接重編程的可行方案。
內(nèi)耳毛細(xì)胞受損導(dǎo)致的感音神經(jīng)性耳聾嚴(yán)重影響著患者的生活質(zhì)量和社會交流能力,其再生性功能修復(fù)的問題一直備受關(guān)注。近年來,Atoh1-Pou4f3-Gfi1直接重編程技術(shù)通過病毒攜帶毛細(xì)胞發(fā)育所需關(guān)鍵轉(zhuǎn)錄因子編碼基因感染支持細(xì)胞或成纖維細(xì)胞使其直接轉(zhuǎn)換為毛細(xì)胞,為后續(xù)臨床治療耳聾提供了一種新思路。但三者在毛細(xì)胞分化和功能重塑中的作用機制及上下游靶基因卻鮮有報道。因此,本文總結(jié)了Atoh1、Pou4f3、Gfi1及其相關(guān)的上下游基因在毛細(xì)胞發(fā)育、成熟、聽覺功能建立中的作用及互作機制,并提出Atoh1-Pou4f3-Gfi1直接重編程技術(shù)是未來治療聽力損失的可行性方案。當(dāng)前大部分直接重編程研究主要在體外或模式動物中進行的,后續(xù)可在人成纖維細(xì)胞中過表達獲取內(nèi)耳毛細(xì)胞,并移植到人類內(nèi)耳類器官損傷模型,通過分析其功能修復(fù)能力,為耳聾治療方法的實驗研究和臨床應(yīng)用提供參考。
[1] Wang H, Yang Y, Liu J, et al. Direct cell reprogramming: approaches, mechanisms and progress[J]. Nat Rev Mol Cell Biol, 2021, 22(6):410-424.
[2]任麗偉,楊曉菲,李富榮. 細(xì)胞直接重編程——治療糖尿病的新技術(shù)[J]. 中國病理生理雜志, 2014, 30(12):2284-2288.
Ren LW, Yang XF, Li FR. Cell direct reprogramming: a new technique for treating diabetes[J]. Chin J Pathophysiol, 2014, 30(12):2284-2288.
[3] Kong L, Xin Y, Chi F, et al. Developmental and functional hair cell-like cells induced by Atoh1 overexpression in the adult mammalian cochlea[J]. Neural Plast, 2020, 2020:8885813.
[4] Iyer AA, Groves AK. Transcription factor reprogramming in the inner ear: turning on cell fate switches to regenerate sensory hair cells[J]. Front Cell Neurosci, 2021, 15:660748.
[5] Schimmang T. Transcription factors that control inner ear development and their potential for transdifferentiation and reprogramming[J]. Hear Res, 2013, 297:84-90.
[6] Liu Z, Dearman JA, Cox BC, et al. Age-dependentconversion of mouse cochlear pillar and deiters' cells to immature hair cells by Atoh1 ectopic expression[J]. J Neurosci, 2012, 32(19):6600-6610.
[7] Duran Alonso MB, Lopez Hernandez I, de la Fuente MA, et al. Transcription factor induced conversion of human fibroblasts towards the hair cell lineage[J]. PLoS One, 2018, 13(7):e0200210.
[8] Maricich SM, Wellnitz SA, Nelson AM, et al. Merkel cells are essential for light-touch responses[J]. Science, 2009, 324(5934):1580-1582.
[9] Westerman BA, Breuer RH, Poutsma A, et al. Basic helix-loop-helix transcription factor profiling of lung tumors shows aberrant expression of the proneural gene atonal homolog 1 (ATOH1, HATH1, MATH1) in neuroendocrine tumors[J]. Int J Biol Markers, 2007, 22(2):114-123.
[10] Bossuyt W, Kazanjian A, De Geest N, et al. Atonal homolog 1 is a tumor suppressor gene[J]. PLoS Biol, 2009, 7(2):e39.
[11] Flora A, Klisch TJ, Schuster G, et al. Deletion of Atoh1 disrupts sonic hedgehog signaling in the developing cerebellum and prevents medulloblastoma[J]. Science, 2009, 326(5958):1424-1427.
[12] Lumpkin EA, Collisson T, Parab P, et al. Math1-driven GFP expression in the developing nervous system of transgenic mice[J]. Gene Expr Patterns, 2003, 3(4):389-395.
[13] Stojanova ZP, Kwan T, Segil N. Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea[J]. Development, 2015, 142(20):3529-3536.
[14] Albu S, Muresanu DF. Vestibular regeneration--experimental models and clinical implications[J]. J Cell Mol Med, 2012, 16(9):1970-1977.
[15] Cai T, Seymour ML, Zhang H, et al. Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti[J]. J Neurosci, 2013, 33(24):10110-10122.
[16] Walters BJ, Coak E, Dearman J, et al.interplay between p27Kip1, GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice[J]. Cell Rep, 2017, 19(2):307-320.
[17] Cheng YF. Atoh1 regulation in the cochlea: more than just transcription[J]. J Zhejiang Univ Sci B, 2019, 20(2):146-155.
[18] Gomez-Dorado M, Daudet N, Gale JE, et al. Differential regulation of mammalian and avian ATOH1 by E2F1 and its implication for hair cell regeneration in the inner ear[J]. Sci Rep, 2021, 11(1):19368.
[19] Ebert PJ, Timmer JR, Nakada Y, et al. Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation[J]. Development, 2003, 130(9):1949-1959.
[20] Briggs KJ, Eberhart CG, Watkins DN. Just say no to ATOH: how HIC1 methylation might predispose medulloblastoma to lineage addiction[J]. Cancer Res, 2008, 68(21):8654-8656.
[21] Jahan I, Pan N, Kersigo J, et al. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea[J]. PLoS One, 2010, 5(7):e11661.
[22] Zhang T, Xu J, Maire P,et al. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium[J]. PLoS Genet, 2017, 13(9):e1006967.
[23] Benito-Gonzalez A, Doetzlhofer A. Hey1 and Hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of hedgehog signaling[J]. J Neurosci, 2014, 34(38):12865-12876.
[24] Benezra R, Davis RL, Lockshon D, et al. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins[J]. Cell, 1990, 61(1):49-59.
[25] Kamaid A, Neves J, Giraldez F. Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between Bmp signaling and Atoh1[J]. J Neurosci, 2010, 30(34):11426-11434
[26] Ahmed M, Wong EY, Sun J, et al. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2[J]. Dev Cell, 2012, 22(2):377-390.
[27] Yamashita T, Zheng F, Finkelstein D, et al. High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor[J]. PLoS Genet, 2018, 14(7):e1007552.
[28] Chen Y, Yu H, Zhang Y, et al. Cotransfection of Pax2 and Math1 promote in situ cochlear hair cell regeneration after neomycin insult[J]. Sci Rep, 2013, 3:2996.
[29] Sun S, Li S, Luo Z, et al. Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells[J]. Elife, 2021, 10:e66547.
[30] Masuda M, Pak K, Chavez E, et al. Tfe2 and Gata3 enhance induction of Pou4f3 and myosin VIIa positive cells in nonsensory cochlear epithelium by Atoh1[J]. Dev Biol, 2012, 372(1):68-80.
[31] Ikeda R, Pak K, Chavez E, et al. Transcription factors with conserved binding sites near Atoh1 on the Pou4f3 gene enhance the induction of cochlear hair cells[J]. Mol Neurobiol, 2015, 51(2):672-684.
[32] Costa A, Sanchez-Guardado L, Juniat S, et al. Generation of sensory hair cells by genetic programming with a combination of transcription factors[J]. Development, 2015, 142(11):1948-1959.
[33] Chen Y, Gu Y, Li Y, et al. Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea[J]. Cell Rep, 2021, 35(3):109016.
[34] Menendez L, Trecek T, Gopalakrishnan S, et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells[J]. Elife, 2020, 9:55249.
[35] Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development[J]. Proc Natl Acad Sci U S A, 1997, 94(17):9445-9450.
[36] Weiss S, Gottfried I, Mayrose I, et al. The DFNA15 deafness mutation affects Pou4f3 protein stability, localization, and transcriptional activity[J]. Mol Cell Biol, 2003, 23(22):7957-7964.
[37] 馬登濱. Pou4f3基因突變致小鼠耳聾的聽力學(xué)機制研究[D]. 南京:南京醫(yī)科大學(xué), 2013:30-32.
Ma DB. The studies of hearing mechanism in Pou4f3 mutant mice[D]. Nanjing: Nanjing Medical University, 2013.
[38] 熊燕,張梅,陳菲,等. 線粒體功能障礙與心血管疾?。跩]. 中國病理生理雜志, 2013, 29(2):364-370.
Xiong Y, Zhang M, Chen F, et al. Roles of mitochondrial dysfunction in cardiovascular diseases[J]. Chin J Pathophysiol, 2013, 29(2):364-370.
[39] Towers ER, Kelly JJ, Sud R, et al. Caprin-1 is a target of the deafness gene Pou4f3 and is recruited to stress granules in cochlear hair cells in response to ototoxic damage[J]. J Cell Sci, 2011, 124(Pt 7):1145-1155.
[40] Clough RL, Sud R, Davis-Silberman N, et al. Brn-3c (POU4F3) regulates BDNF and NT-3 promoter activity[J]. Biochem Biophys Res Commun, 2004, 324(1):372-381.
[41] Hertzano R, Dror AA, Montcouquiol M, et al. Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system[J]. Eur J Neurosci, 2007, 25(4):999-1005.
[42] Hertzano R, Montcouquiol M, Rashi-Elkeles S, et al. Transcription profiling of inner ears fromPou4f3/ddlidentifies Gfi1 as a target of the Pou4f3 deafness gene[J]. Hum Mol Genet, 2004, 13(18):2143-2153.
[43] Fritzsch B, Silos-Santiago I, Bianchi LM, et al. The role of neurotrophic factors in regulating the development of inner ear innervation[J]. Trends Neurosci, 1997, 20(4):159-164.
[44] Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits[J]. Nature, 1994, 368(6467):147-150.
[45] Ernfors P, Lee KF, Kucera J, et al. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents[J]. Cell, 1994, 77(4):503-512.
[46] Agerman K, Hjerling-Leffler J, Blanchard MP, et al.gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development[J]. Development, 2003, 130(8):1479-1491.
[47] Ernfors P, Van De Water T, Loring J, et al. Complementary roles of BDNF and NT-3 in vestibular and auditory development[J]. Neuron, 1995, 14(6):1153-1164.
[48] Solomon S, Xu Y, Wang B, et al. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2α, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs[J]. Mol Cell Biol, 2007, 27(6):2324-2342.
[49] Tornari C, Towers ER, Gale JE, et al. Regulation of the orphan nuclear receptor Nr2f2 by the DFNA15 deafness gene Pou4f3[J]. PLoS One, 2014, 9(11):e112247.
[50] Huang M, Sage C, Li H, et al. Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development[J]. Dev Dyn, 2008, 237(11):3305-3312.
[51] Rodel B, Tavassoli K, Karsunky H, et al. The zinc finger protein Gfi-1 can enhance Stat3 signaling by interacting with the Stat3 inhibitor Pias3[J]. Embo J, 2000, 19(21):5845-5855.
[52] Matern MS, Milon B, Lipford EL, et al. Gfi1 functions to repress neuronal gene expression in the developing inner ear hair cells[J]. Development, 2020, 147(17):dev186015.
[53] Xiang M, Gao WQ, Hasson T, et al. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells[J]. Development, 1998, 125(20):3935-3946.
[54] Yu HV, Tao L, Llamas J, et al. Pou4f3 pioneer activity enables Atoh1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism[J]. Proc Natl Acad Sci U S A, 2021, 118(29):e2105137118.
[55] Ohyama T, Groves AK. Generation of Pax2-Cre mice by modification of a Pax2 bacterial artificial chromosome[J]. Genesis, 2004, 38(4):195-199.
[56] García-A?overos J, Clancy JC, Foo CZ, et al. Tbx2 is a master regulator of inner versus outer hair cell differentiation[J]. Nature, 2022, 605(7909):298-303.
[57] Lee S, Song JJ, Beyer LA, et al. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea[J]. Sci Rep, 2020, 10(1):21397.
[58] Wallis D, Hamblen M, Zhou Y, et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival[J]. Development, 2003, 130(1):221-232.
[59] Dabdoub A, Puligilla C, Jones JM, et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea[J]. Proc Natl Acad Sci U S A, 2008, 105(47):18396-18401.
[60] 馮曉,齊麟,孟娟.斑馬魚耳聾基因Gfi與POU4f3的關(guān)聯(lián)性[J]. 河南大學(xué)學(xué)報(醫(yī)學(xué)版), 2014, 33(4):267-269.
Feng X, Qi L, Meng J. The relation between Gfi and Pou4f3 by zebrafish[J]. J Henan Univ (Med Sci), 2014, 33(4):267-269.
Advances in study ofgene synergizing with POU4F3 and Gfi1 to promote hair cell regeneration
He Cairong1, Yang Ying1, Huang Jinwei1, Chen Fengjiao2, Lu Ying3, Ding Jie1△
[1(),,,550025,;2,550002,;3,,,550025,]
Hair cell regeneration and functional remodeling is an effective method of treating sensorineural deafness. In recent years, direct reprogramming techniques have made substantial progress in the field of hair cell regeneration.is an essential gene that is involved in hair cell morphology and maturation. POU domain class 4 transcription factor 3 (Pou4f3)plays a crucial role in the development of all hair cells within the sensory epithelium.Growth factor indepondent-1 (Gfi1) is an important transcription factor that is required for hair cell development and survival. Studies have demonstrated that the synergistic regulation of Atoh1, Pou4f3 and Gfi1 promotes hair cell differentiation, as well as functional maturation,. However, the regulatory mechanisms of these three factors in the development, maturation, and establishment of the auditory function of hair cells are still to be further explored. The aim of this paper is to elucidate the function and mechanistic relationship between Atoh1, Pou4f3 and Gfi1 in the functional remodeling of hair cells, as well as to determine the feasibility of using the Atoh1-Pou4f3-Gfi1 direct reprogramming strategy in order to restore human hearing in the future.
hair cell regeneration; direct reprogramming; interoperability mechanisms; hearing loss
R363; R763.3
A
10.3969/j.issn.1000-4718.2023.09.016
1000-4718(2023)09-1666-09
2023-03-15
2023-06-19
國家自然科學(xué)基金資助項目(No. 32260163; No. 81960838);貴州省科技計劃項目(黔科合基礎(chǔ)?ZK[2021]一般108);貴州省高層次創(chuàng)新人才(黔科合平臺人才-GCC[2022]027-1)
Tel: 18085108128; E-mail: 47734092@qq.com
(責(zé)任編輯:余小慧,羅森)