国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

m6A修飾在肝細(xì)胞癌發(fā)生發(fā)展及治療中作用的研究進(jìn)展*

2023-11-15 14:54:51黃偉健李柳艷曾達(dá)通危丹明熊丹丹
中國病理生理雜志 2023年9期
關(guān)鍵詞:甲基化酶免疫治療甲基化

黃偉健, 李柳艷, 曾達(dá)通, 危丹明, 熊丹丹△

m6A修飾在肝細(xì)胞癌發(fā)生發(fā)展及治療中作用的研究進(jìn)展*

黃偉健1, 李柳艷2, 曾達(dá)通1, 危丹明2, 熊丹丹2△

(1廣西玉林市紅十字會醫(yī)院病理科,廣西 玉林,537000;2廣西醫(yī)科大學(xué)第一附屬醫(yī)院病理科,廣西 南寧,530021)

肝細(xì)胞癌;RNA甲基化修飾;m6A修飾;治療

肝細(xì)胞癌(hepatocellular carcinoma,HCC)是世界上第六大最常見的惡性腫瘤,也是腫瘤相關(guān)死亡的第四大原因[1]。據(jù)報道,2018年全球新增病例約841 000例,死亡病例約781 000例[2]。由于其早期癥狀隱匿,多數(shù)患者確診時已處于疾病晚期,因此HCC的發(fā)病率與死亡率之比接近1[3]。目前,HCC潛在的分子發(fā)病機制在很大程度上尚不清楚[4]。探索HCC發(fā)生發(fā)展的分子機制對HCC早期診斷、精準(zhǔn)治療至關(guān)重要。

表觀遺傳學(xué)改變在腫瘤的發(fā)生發(fā)展中發(fā)揮著重要作用,傳統(tǒng)的表觀遺傳修飾主要包括DNA甲基化、組蛋白修飾、染色質(zhì)重構(gòu)等[5]。近幾年,RNA修飾逐漸成為表觀遺傳調(diào)控新的研究熱點。其中,RNA的6-甲基腺嘌呤(6-methyladenosine, m6A)修飾是大多數(shù)真核生物RNA中最豐富的修飾并涉及RNA生命周期的幾乎所有階段,其特征是將一個甲基基團(tuán)添加到核糖核苷酸的A堿基上,從而影響RNA分子的功能[6]。m6A修飾幾乎存在于所有類型的RNA上,包括mRNA、長鏈非編碼RNA(long non-coding RNA, lncRNA)、miRNA、核糖體RNA、環(huán)狀RNA和小核RNA[7]。大量研究表明m6A修飾在多種腫瘤發(fā)生發(fā)展中起著重要作用,包括HCC[8]、宮頸癌[9]、乳腺癌[10]、子宮內(nèi)膜癌[11]、前列腺癌[12]、非小細(xì)胞肺癌[13]、甲狀腺癌[14]、食管癌[15]、結(jié)直腸癌[16]、胃癌[17]、骨肉瘤[18]等。m6A修飾在腫瘤的發(fā)生和進(jìn)展中的作用具有兩面性,通過甲基轉(zhuǎn)移酶和去甲基化酶的雙重調(diào)節(jié)維持RNA 甲基化修飾的動態(tài)可逆,調(diào)控RNA表達(dá)、剪接、翻譯、穩(wěn)定性、降解,從而調(diào)節(jié)包括HCC在內(nèi)的腫瘤的進(jìn)展。探索RNA m6A修飾在HCC中的作用及分子機制,尋找有效的治療靶點,開發(fā)新的靶向干預(yù)策略,能夠為HCC患者的個體化治療方案提供更多可能性。

1 m6A概述

m6A修飾是指在RNA腺苷核苷酸的第六個氮原子上添加一個甲基基團(tuán),改變RNA分子的化學(xué)性質(zhì)和空間結(jié)構(gòu),進(jìn)而影響RNA的功能和調(diào)控[19]。m6A修飾過程由一組復(fù)雜的酶系統(tǒng)協(xié)同作用完成,該酶系統(tǒng)包括甲基轉(zhuǎn)移酶(writers)、去甲基化酶(erasers)和讀取蛋白(readers)[20]。其中,甲基轉(zhuǎn)移酶(包括METTL3、METTL4、METTL5、METTL14、METTL16、WTAP、KIAA1429、RBM15/15B、ZCCHC4、ZC3H13、CBLL1、PCIF1)負(fù)責(zé)催化RNA腺苷酸發(fā)生m6A修飾并維持m6A甲基化的穩(wěn)定性,去甲基化酶(包括FTO、ALKBH3、ALKBH5)介導(dǎo)已發(fā)生m6A修飾的堿基去甲基化,而讀取蛋白(包括YTHDC1、YTHDC2、YTHDF1、YTHDF2、YTHDF3、HNRNPC、HNRNPG、HNRNPA2B1、IGF2BP1/2/3、FMRP、LRPPRC、eIF3、SND1、PRRC2A)的主要功能是識別并結(jié)合m6A位點,從而調(diào)控下游RNA的轉(zhuǎn)錄后翻譯或調(diào)控RNA的穩(wěn)定性(見圖1)[6, 21]。

2 m6A修飾促進(jìn)HCC發(fā)生、侵襲與轉(zhuǎn)移

METTL3具有催化結(jié)構(gòu)域,在m6A甲基化過程中起著重要作用。研究報道,METTL3介導(dǎo)的m6A修飾可通過穩(wěn)定LINC00958(一種與脂肪生成相關(guān)的lncRNA)的RNA轉(zhuǎn)錄,促進(jìn)其在HCC細(xì)胞系和組織中的表達(dá)上調(diào),而LINC00958則通過抑制mir-3619-5p的表達(dá),上調(diào)肝原性生長因子的表達(dá),從而促進(jìn)HCC的進(jìn)展[22]。Chen等[23]報道METTL3通過m6A閱讀蛋白YTHDF2依賴的方式促進(jìn)細(xì)胞因子信號通路2抑制因子(suppressor of cytokine signaling 2,SOCS2)的m6A修飾,降低SOCS2穩(wěn)定性,抑制其表達(dá),從而發(fā)揮促進(jìn)HCC進(jìn)展的作用。Li等[24]研究顯示m6A去甲基化酶FTO在HCC組織和細(xì)胞中顯著上調(diào),且與較差的預(yù)后相關(guān),其可觸發(fā)丙酮酸激酶M2 mRNA去甲基化,從而促進(jìn)HCC進(jìn)展。KIAA1429是一個常見的m6A“reader”,在HCC組織中表達(dá)升高且與HCC患者預(yù)后不良有關(guān),其可通過誘導(dǎo)GATA3前體信使RNA的m6A修飾,促進(jìn)GATA3前體信使RNA降解,導(dǎo)致GATA3表達(dá)量下降,從而促進(jìn)HCC生長[25]。

血管生成是HCC生長和轉(zhuǎn)移的必要條件,抗血管生成是HCC治療的手段之一。1999年Maniotis等提出了血管生成擬態(tài)(vasculogenic mimicry,VM)這一概念,即腫瘤的功能性血供通道可能與內(nèi)皮細(xì)胞無關(guān),而是由侵襲性腫瘤細(xì)胞形成的。迄今為止,VM已在多種腫瘤類型中被檢測,如黑色素瘤[26-28]、卵巢癌[29-30]、結(jié)直腸癌[31]、喉鱗癌[32, 33]、HCC[34-36]等,且與患者預(yù)后不良有關(guān)。VM不僅可為腫瘤細(xì)胞提供營養(yǎng)和氧氣,還可以促進(jìn)腫瘤細(xì)胞的轉(zhuǎn)移[37]。有研究表明,m6A修飾在HCC VM的形成中起關(guān)鍵作用。METTL3參與了HCC VM的形成,其通過介導(dǎo)YAP1的m6A修飾,促進(jìn)YAP1 mRNA的翻譯,從而促進(jìn)VM的形成,并進(jìn)一步促進(jìn)HCC遷移、侵襲,METTL3和YAP1可能通過阻礙VM的形成成為抗HCC轉(zhuǎn)移的潛在治療靶點[38]。

上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是上皮細(xì)胞轉(zhuǎn)化為間充質(zhì)細(xì)胞的短暫的、可逆的細(xì)胞去分化過程[39]。在腫瘤中,EMT被認(rèn)為是一種促進(jìn)腫瘤細(xì)胞浸潤和轉(zhuǎn)移的重要機制[40]。當(dāng)腫瘤細(xì)胞發(fā)生EMT時,它們會從原始腫瘤部位脫離出來,通過血管和淋巴管進(jìn)入血液和淋巴系統(tǒng),進(jìn)而轉(zhuǎn)移到遠(yuǎn)處組織器官,形成遠(yuǎn)處轉(zhuǎn)移。抑制腫瘤細(xì)胞的EMT過程,可以有效減緩腫瘤細(xì)胞的浸潤和轉(zhuǎn)移,從而提高腫瘤的治療效果和預(yù)后。因此,探究腫瘤細(xì)胞EMT的分子機制,尋找EMT相關(guān)的分子靶點,并開發(fā)相關(guān)的藥物,對于腫瘤治療具有重要的臨床意義。Lin等[41]證實METTL3可通過YTHDF1介導(dǎo)的m6A修飾促進(jìn)Snail(EMT的關(guān)鍵轉(zhuǎn)錄因子)翻譯,進(jìn)一步促進(jìn)腫瘤細(xì)胞EMT的發(fā)生及腫瘤細(xì)胞遷移、侵襲,提示m6A修飾在HCC EMT形成中可能發(fā)揮著重要作用,基于m6A修飾的分子靶向治療可能能夠通過逆轉(zhuǎn)EMT過程抑制HCC轉(zhuǎn)移。

以上證據(jù)均表明,m6A修飾在HCC的進(jìn)展及轉(zhuǎn)移中發(fā)揮著重要作用,有望成為HCC預(yù)后標(biāo)志物及HCC治療最具潛力的分子靶標(biāo)。

3 m6A修飾與HCC治療的關(guān)系

3.1m6A修飾與HCC耐藥有研究揭示METTL3在索拉非尼耐藥的HCC細(xì)胞中低表達(dá),缺氧條件下,METTL3的消耗會促進(jìn)HCC對索拉非尼耐藥,METTL3和YTHDF1可共同介導(dǎo)FOXO3的m6A修飾,從而增加FOXO3mRNA穩(wěn)定性,而FOXO3則通過下調(diào)自噬相關(guān)基因(、、、、、)的表達(dá),增強肝癌細(xì)胞對索拉非尼的敏感性[42]。另有研究表明METTL3下調(diào)可抑制mRNA的m6A修飾,通過誘導(dǎo)細(xì)胞凋亡,使HCC對阿帕替尼敏感[43]。m6A修飾的circRNA-SORE通過調(diào)節(jié)β-catenin信號傳導(dǎo)來維持HCC中的索拉非尼耐藥性[44]。m6A修飾通過上調(diào)HCC中l(wèi)ncRNA NIFK-AS1,促進(jìn)HCC進(jìn)展和索拉非尼耐藥性[45]??傊瑢6A修飾在耐藥機制中的作用及其調(diào)控網(wǎng)絡(luò)的深入研究,有望為提高HCC患者化療的敏感性提供理論支持。

3.2m6A修飾與HCC局部消融治療有研究顯示m6A-YTHDF1-EGFR軸促進(jìn)射頻消融不足(insufficient radiofrequency ablation,IRFA)后HCC進(jìn)展,證實了IRFA通過m6A mRNA甲基化依賴性機制促進(jìn)HCC轉(zhuǎn)移,該研究為靶向m6A修飾與EGFR抑制劑聯(lián)合使用以抑制射頻消融后HCC轉(zhuǎn)移提供了科學(xué)依據(jù)[46]。Xiao等[47]構(gòu)建了一種抗原捕獲納米平臺,用于將腫瘤相關(guān)抗原和m6A去甲基化酶抑制劑(FTO抑制劑)共遞送到腫瘤浸潤樹突狀細(xì)胞中,結(jié)果顯示,HCC組織內(nèi)注射納米藥物后進(jìn)行熱消融可促進(jìn)樹突狀細(xì)胞成熟,改善腫瘤組織對效應(yīng)T細(xì)胞的浸潤并產(chǎn)生免疫記憶,與免疫檢查點抑制劑協(xié)同作用,抑制腫瘤生長和遠(yuǎn)處轉(zhuǎn)移。

3.3m6A修飾與基于微環(huán)境的免疫治療腫瘤微環(huán)境(tumor microenvironment, TME)相關(guān)的研究因其對促進(jìn)免疫治療的作用而備受人們的關(guān)注。TME不僅包括惡性細(xì)胞本身,還包括周圍組織和免疫細(xì)胞等多種細(xì)胞成分,以及不同的細(xì)胞因子和分子信號,這些因素共同影響腫瘤生長、轉(zhuǎn)移和對治療的反應(yīng)[48]。最近的研究表明,m6A修飾在TME中也扮演著重要的調(diào)控角色?;趍6A調(diào)節(jié)因子表達(dá)模式的m6A評分可能有助于腫瘤患者風(fēng)險分層和精準(zhǔn)免疫治療策略的確定[4]。Wei等[49]基于m6A評分鑒定出三種不同的HCC腫瘤微環(huán)境相關(guān)表型:免疫衰竭型、免疫激活型和免疫免疫型。其中免疫衰竭型以T細(xì)胞耗竭和巨噬細(xì)胞富集為特征,此類型更具有侵襲性,轉(zhuǎn)化生長因子-β抑制劑和免疫檢查點抑制劑的組合可以潛在地提高這些患者的療效。雖然免疫檢查點療法已經(jīng)徹底改變了腫瘤治療方式,但仍有部分患者對免疫檢查點治療沒有反應(yīng)或產(chǎn)生耐藥性。Yang等[50]的一項研究顯示,m6A RNA去甲基化酶FTO在抗PD-1免疫療法的耐藥性的產(chǎn)生中起著重要作用,抑制FTO表達(dá)可有效改善腫瘤患者對PD-1免疫治療的反應(yīng)。此外,YTHDF1缺失導(dǎo)致CD8+ T細(xì)胞升高,樹突狀細(xì)胞中具有m6A修飾的溶酶體蛋白酶mRNA的翻譯受到抑制,導(dǎo)致攝入的抗原降解速度減慢,從而促進(jìn)體內(nèi)樹突狀細(xì)胞介導(dǎo)的抗原交叉提呈和交叉啟動,使抗PD-L1治療的免疫反應(yīng)增敏[51]。METTL3催化的m6A修飾以YTHDF2依賴的mRNA降解方式抑制HCC中的SOCS2表達(dá),并通過IL2‐STAT5途徑維持Treg細(xì)胞的免疫抑制功能,從而促進(jìn)HCC增殖和轉(zhuǎn)移[23]。m6A修飾在非編碼RNA中也有一定的研究。Peng等[52]報道脂多糖通過介導(dǎo)lncRNAMIR155HG的m6A修飾上調(diào)PD-L1表達(dá),促進(jìn)HCC細(xì)胞的免疫逃逸。Song等[53]在HCC中鑒定出m6A相關(guān)的lncRNA標(biāo)簽,證實該標(biāo)簽可能用于預(yù)測HCC患者化療和免疫治療的治療反應(yīng)。先天免疫可以通過外源性和內(nèi)源性RNA以不同的方式激活,由于circRNA的閉合環(huán)結(jié)構(gòu),其被認(rèn)為能夠從終端監(jiān)控系統(tǒng)中逃逸,而m6A修飾有助于circRNA翻譯,并幫助外源circRNA逃避免疫監(jiān)測,人類circRNA可能由共價m6A修飾標(biāo)記,這對于先天免疫的識別至關(guān)重要,但m6A修飾是如何通過影響circRNA免疫轉(zhuǎn)錄本的翻譯而參與先天免疫還有待進(jìn)一步研究[54]。以上證據(jù)表明,m6A修飾可能是免疫逃逸的調(diào)節(jié)因子和潛在的免疫治療預(yù)測因子,在調(diào)節(jié)HCC免疫微環(huán)境中發(fā)揮著重要作用。深入研究m6A修飾的機制,不僅可以提高我們對HCC免疫治療的理解,還可以為個體化免疫治療方案的制定提供支持和指導(dǎo),促進(jìn)免疫治療的進(jìn)一步發(fā)展和應(yīng)用。

4 總結(jié)

綜上所述,在過去的幾年里,研究人員對m6A修飾在腫瘤中的作用進(jìn)行了廣泛的研究,m6A調(diào)節(jié)因子的失調(diào)在促進(jìn)或抑制HCC的發(fā)展中起著至關(guān)重要的作用。通過有效的抑制劑來靶向失調(diào)的m6A調(diào)節(jié)因子可達(dá)到治療腫瘤的效果,但這些抑制劑的缺點也是不容忽視的,如特異性較差,副作用較大等,因此將其與化療、放療或免疫治療聯(lián)合應(yīng)用可能在治療各種類型的癌癥,尤其是針對那些對現(xiàn)有治療方法具有耐性的腫瘤具有可觀的治療潛力。m6A調(diào)控基因可作為HCC患者分子分型和預(yù)測預(yù)后的生物標(biāo)志物,但目前未有研究報道m(xù)6A調(diào)控因子的異常表達(dá)及m6A修飾水平的改變能否用于HCC的早期診斷,研究外周血RNA m6A修飾水平的變化,對為HCC患者開發(fā)新的非侵入性早期篩查手段具有重要的現(xiàn)實意義。

[1] Pan F, Lin XR, Hao LP, et al. The role of RNA methyltransferase METTL3 in hepatocellular carcinoma: results and perspectives[J]. Front Cell Dev Biol, 2021, 9:674919.

[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.

[3] Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: new trends[J]. J Hepatol, 2020, 72(2):250-261.

[4] Yin T, Zhao L,Yao S. Comprehensive characterization of m6A methylation and its impact on prognosis, genome instability, and tumor microenvironment in hepatocellular carcinoma[J]. BMC Med Genomics, 2022, 15(1):53.

[5] Acu?a-Ruiz A, Carrasco-López C, Santisteban P. Genomic and epigenomic profile of thyroid cancer[J]. Best Pract Res Cl En, 2023, 37(1):101656.

[6] Liu L, Li H, Hu D, et al. Insights into6-methyladenosine and programmed cell death in cancer[J]. Mol Cancer, 2022, 21(1):32-47.

[7]張哲明,吳艷,卞濤. RNA m6A修飾在肺部疾病中的研究進(jìn)展[J]. 中國病理生理雜志, 2021, 37(9):1719-1723.

Zhang ZM, Wu Y, Bian T. Progress in role of RNA m6A modification in lung diseases[J]. Chin J Physiol, 2021, 37(9):1719-1723.

[8] Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019, 18(1):127.

[9] Wang Q, Guo X, Li L, et al.6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification[J]. Cell Death Dis, 2020, 11(10):911-920.

[10] Anita R, Paramasivam A, Priyadharsini JV, et al. The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients[J]. Am J Cancer Res, 2020, 10(8):2546-2554.

[11] Zhang L, Wan Y, Zhang Z, et al. IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression[J]. Theranostics, 2021, 11(3):1100-1114.

[12] Ji G, Huang C, He S, et al. Comprehensive analysis of m6A regulators prognostic value in prostate cancer[J]. Aging, 2020, 12(14):14863-14884.

[13] Shi H, Zhao J, Han L, et al. Retrospective study of gene signatures and prognostic value of m6A regulatory factor in non-small cell lung cancer using TCGA database and the verification of FTO[J]. Aging, 2020, 12(17):17022-17037.

[14] Wang K, Jiang L, Zhang Y, et al. Progression of thyroid carcinoma is promoted by the m6A methyltransferase METTL3 through regulating m6A methylation on TCF1[J]. Onco Targets Ther, 2020, 13:1605-1612.

[15] Zhao H, Xu Y, Xie Y, et al. m6A regulators is differently expressed and correlated with immune response of esophageal cancer[J]. Front Cell Dev Biol, 2021, 9:650023.

[16] Song P, Feng L, Li J, et al. β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer[J]. Mol Cancer, 2020, 19(1):129.

[17] Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10):4766-4781.

[18] Li J, Rao B, Yang J, et al. Dysregulated m6A-related regulators are associated with tumor metastasis and poor prognosis in osteosarcoma[J]. Front Oncol, 2020, 10:769.

[19] He PC, He C. m6A RNA methylation: from mechanisms to therapeutic potential[J]. EMBO J, 2021, 40(3):e105977.

[20] Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10):608-624.

[21] Qu N, Bo X, Li B, et al. Role of6-methyladenosine (m6A) methylation regulators in hepatocellular carcinoma[J]. Front Oncol, 2021, 11:755206.

[22] Zuo X, Chen Z, Gao W, et al. m6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. J Hematol Oncol, 2020, 13(1):5-24.

[23] Chen M, Wei L, Law CT, et al. RNA6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6):2254-2270.

[24] Li J, Zhu L, Shi Y, et al. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation[J]. Am J Transl Res, 2019, 11(9):6084-6092.

[25] Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through6-methyladenosine-dependent post-transcriptional modification of GATA3[J]. Mol Cancer, 2019, 18(1):186-204.

[26] Delgado-Bellido D, Fernández-Cortés M, Rodríguez MI, et al. VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression[J]. Cell Death Differ, 2019, 26(2):348-361.

[27] Liang X, Sun R, Zhao X, et al. Rictor regulates the vasculogenic mimicry of melanoma via the AKT-MMP-2/9 pathway[J]. J Cell Mol Med, 2017, 21(12):3579-3591.

[28] Zhang W, Zhou P, Meng A, et al. Down-regulating myoferlin inhibits the vasculogenic mimicry of melanoma via decreasing MMP-2 and inducing mesenchymal-to-epithelial transition[J]. J Cell Mol Med, 2018, 22(3):1743-1754.

[29] 姚瑤,夏敏,侯聰,等. ABT-737對TAMs與SKOV3細(xì)胞共培養(yǎng)中卵巢癌細(xì)胞生長與血管擬生作用的影響[J]. 中國臨床藥理學(xué)與治療學(xué), 2022, 27(2):144-153.

Yao Y, Xia M, Hou C, et al. The effect of ABT-737 on the growth and angiogenic mimicry of ovarian cancer cells in co-culture with TAMs and SKOV3 cells[J]. Chin J Clin Pharmacol Ther, 2022, 27(2):144-153.

[30] 俞嵐,武世伍,宋文慶,等. 卵巢上皮癌中血管生成擬態(tài)和E-鈣黏蛋白表達(dá)及其臨床意義[J]. 中國病理生理雜志, 2011, 27(11):2120-2125.

Yu L, Wu SW, Song WQ, et al. Vasculogenic mimicry and E-cadherin expression in epithelial ovarian cancer[J]. Chin J Physiol, 2011, 27(11):2120-2125.

[31] Li W, Zong S, Shi Q, et al. Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin[J]. Sci Rep, 2016, 6:37534.

[32] Bedal KB, Gr?ssel S, Spanier G, et al. The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells[J]. Carcinogenesis, 2015, 36(11):1429-1439.

[33] Wang F, Li XK, Xu HY, et al. N-cadherin participated in invasion and metastasis of human esophageal squamous cell carcinoma via taking part in the formation of vasculogenic mimicry[J]. Med Oncol, 2015, 32(2):480-487.

[34] Sun B, Zhang S, Zhang D, et al. Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma[J]. Oncol Rep, 2006, 16(4):693-698.

[35] Liu WB, Xu GL, Jia WD, et al. Prognostic significance and mechanisms of patterned matrix vasculogenic mimicry in hepatocellular carcinoma[J]. Med Oncol, 2011, 28:228-238.

[36] Guzman G, Cotler SJ, Lin AY, et al. A pilot study of vasculogenic mimicry immunohistochemical expression in hepatocellular carcinoma[J]. Arch Pathol Lab Med, 2007, 131(12):1776-1781.

[37] Zheng N, Zhang S, Wu W, et al. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma[J]. Pharmacol Res, 2021, 166:105507.

[38] Qiao K, Liu Y, Xu Z, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway[J]. Angiogenesis, 2021, 24(1):83-96.

[39] 王照巖,楊玉玲,楊志一,等.miR-125a-5p通過GSK-3β/Snail信號通路抑制乳腺癌細(xì)胞的上皮-間充質(zhì)轉(zhuǎn)化[J]. 中國病理生理雜志, 2018, 34(6):1008-1013.

Wang ZY, Yang YL, Yang ZY, et al. miR-125a-5p suppresses epithelial-mesenchymal transition via GSK-3β/ Snail signaling pathway in breast cancer cells[J]. Chin J Physiol,2011, 27(11):2120-2125.

[40] Aiello NM, Maddipati R, Norgard RJ, et al. EMT subtype influences epithelial plasticity and mode of cell migration[J]. Dev Cell, 2018, 45(6):681-695.

[41] Lin X, Chai G, Wu Y, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1):2065.

[42] Lin Z, Niu Y, Wan A, et al. RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12):e103181.

[43] Ke W, Zhang L, Zhao X, et al. P53 m6A modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis[J]. Apoptosis, 2022, 27(5-6): 426-440.

[44] Xu J, Wan Z, Tang M, et al.6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling[J]. Mol Cancer, 2020, 19(1): 163-178.

[45] Chen YT, Xiang D, Zhao XY, et al. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m6A methylation promotes disease progression and sorafenib resistance[J]. Hum Cell, 2021, 34(6): 1800-1811.

[46] Su T, Huang M, Liao J, et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma metastasis through6-methyladenosine mRNA methylation-dependent mechanism[J]. Hepatology, 2021, 74(3):1339-1356.

[47] Xiao Z, Li T, Zheng X, et al. Nanodrug enhances post-ablation immunotherapy of hepatocellular carcinoma via promoting dendritic cell maturation and antigen presentation[J]. Bioact Mater, 2022, 21:57-68.

[48] Zhang F, Liu H, Duan M, et al. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application[J]. J Hematol Oncol, 2022, 15(1):84-121.

[49] Wei J, Fang DL, Zhou W, et al.6-methyladenosine (m6A) regulatory gene divides hepatocellular carcinoma into three subtypes[J]. J Gastrointest Oncol, 2021, 12(4):1860-1872.

[50] Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019, 10(1):2782.

[51] Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743):270-274.

[52] Peng L, Pan B, Zhang X, et al. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression[J]. Cell Biol Toxicol, 2022, 38(6):1159-1173.

[53] Song D, Tian Y, Luo J, et al. An6-methyladenosine-associated lncRNA signature for predicting clinical outcome and therapeutic responses in hepatocellular carcinoma[J]. Ann Transl Med, 2022, 10(8):464-478.

[54] Zhang L, Hou C, Chen C, et al. The role of6-methyladenosine (m6A) modification in the regulation of circRNAs[J]. Mol Cancer, 2020, 19(1):105.

Advances in role of m6A modification in development and treatment of hepatocellular carcinoma

HUANG Weijian1, LI Liuyan2, ZENG Datong1, WEI Danming2, XIONG Dandan2△

(1,,537000,;2,,530021,)

6-methyladenosine (m6A) modification of RNA is the most abundant modification in most eukaryotic RNAs and is involved in almost all stages of the RNA lifecycle, playing crucial roles in regulating RNA expression, splicing, translation, stability, degradation, etc. Recent studies have suggested that m6A modification plays a significant role in the pathogenesis of hepatocellular carcinoma (HCC); however, the underlying molecular mechanisms remain unclear. This review summarizes the current research progress on the role of m6A modification in HCC progression, drug resistance, radiofrequency ablation therapy, and immunotherapy, aiming to provide valuable insights for the precise treatment of HCC patients.

hepatocellular carcinoma; RNA methylation modification; m6A modification; treatment

R735.7; R363

A

10.3969/j.issn.1000-4718.2023.09.021

1000-4718(2023)09-1702-06

2023-01-16

2023-04-13

廣西自然科學(xué)基金資助項目(No. 2022GXNSFBA035657);廣西壯族自治區(qū)衛(wèi)生健康委員會自籌經(jīng)費科研課題(No. Z20210764)

Tel: 0771-5356534; E-mail: xiongdandan@gxmu.edu.cn

(責(zé)任編輯:李淑媛,羅森)

猜你喜歡
甲基化酶免疫治療甲基化
腫瘤免疫治療發(fā)現(xiàn)新潛在靶點
過表達(dá)H3K9me3去甲基化酶對豬克隆胚胎體外發(fā)育效率的影響(內(nèi)文第 96 ~ 101 頁)圖版
腎癌生物免疫治療進(jìn)展
組蛋白甲基化酶Set2片段調(diào)控SET結(jié)構(gòu)域催化活性的探討
鼻咽癌組織中SYK基因啟動子區(qū)的甲基化分析
胃癌DNA甲基化研究進(jìn)展
被子植物DNA去甲基化酶基因的進(jìn)化分析
遺傳(2014年3期)2014-02-28 20:59:26
基因組DNA甲基化及組蛋白甲基化
遺傳(2014年3期)2014-02-28 20:58:49
全甲基化沒食子兒茶素沒食子酸酯的制備
Toll樣受體:免疫治療的新進(jìn)展
申扎县| 苍南县| 临泉县| 于田县| 屯门区| 陆良县| 东海县| 白朗县| 开化县| 通江县| 琼中| 九台市| 彰化市| 齐河县| 丁青县| 峨山| 宁晋县| 乌拉特前旗| 安塞县| 达日县| 同心县| 镇原县| 昭平县| 砀山县| 阳城县| 本溪| 平塘县| 筠连县| 翁牛特旗| 贵定县| 鱼台县| 石家庄市| 志丹县| 克山县| 鹿邑县| 钦州市| 兴仁县| 库车县| 遵义市| 雷波县| 新昌县|