李蘇童 李安生 孫彬妹 鄭鵬 譚新東 劉少群
摘要:近年來,即飲茶在中國飲料行業(yè)中滲透率高,發(fā)展前景廣闊。即飲茶飲料作為茶葉的衍生品,其風味呈現是決定消費者接受度的一個重要因素。當前對即飲茶特征風味呈現的機理探討還相對較少,關于茶飲料的研究也大多集中在其制作工藝的改進層面。文章以前人研究為基礎,對即飲茶香氣品質形成進行綜述,明晰即飲茶揮發(fā)性化合物特性、香氣互作效應,概括總結芳香物質的提取分析方法,并對即飲茶香氣調控的創(chuàng)新技術進行探究歸納,以期為即飲茶風味品質的相關科學研究提供參考,促進即飲茶產品在市場上的消費流通。
關鍵詞:即飲茶;茶葉香氣;香氣物質提取;香氣互作;香氣調控
中圖分類號:TS275.2? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標識碼:A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文章編號:1000-3150(2023)09-19-9
Research Progress on Aroma Quality of Ready-to-drink Tea
LI Sutong, LI Ansheng, SUN Binmei, ZHENG Peng, TAN Xindong, LIU Shaoqun*
College of Horticulture, South China Agricultural University, Guangzhou 510642, China
Abstract: In recent years, ready-to-drink tea has a high penetration rate in China's beverage industry and a broad development prospect. As a derivative of tea, the flavor of ready-to-drink tea is an important attribute that determines the acceptability of consumers. At present, there are relatively few researches on the mechanism of the characteristic flavor presentation of tea drinks, and most of the researches on tea drinks focused on the improvement of its production technology. Based on previous studies, this paper summarized the formation of aroma quality of ready-to-drink tea. The characteristics of volatile compounds and the mechanism of aroma formation in tea beverage were clarified, and the extraction and analysis methods of aroma substances were summarized. Then the innovative technology of beverage aroma preparation was explored and concluded.? It would provide references for the scientific research on the flavor quality of tea beverage and promote the consumption and circulation of ready-to-drink tea products in the market.
Keywords: ready-to-drink tea, tea aroma, aroma substance extraction, aromatic interaction, aroma regulation
茶作為當今世界上最受歡迎的三大非酒精飲料之一,其消費量僅次于水[1]。2022年全球茶葉市場價值為 330 億美元,預計到 2032 年整體市值將達到705 億美元。2022—2032 年預期的復合年增長率為 7.9%[2]。
即飲茶(Ready-to-drink tea)是指將傳統(tǒng)原葉茶進行深加工制成瓶裝、罐裝或利樂包的茶飲料及當下熱門的新式茶飲,具有一定的佐餐解膩、助消化、減脂降糖等保健功效[3]。隨著經濟的快速增長及消費者對健康生活方式必要性的認知不斷提高,越來越多的飲料品牌針對不同地區(qū)開發(fā)供應即飲茶系列產品,驅動即飲茶市場快速發(fā)展[4]。
即飲茶品質的判別主要是對香氣、滋味和色澤的綜合感官識別、判斷及評價[5-6]。茶的風味包括茶葉中的可揮發(fā)性香氣化合物及茶湯中的可溶性滋味化合物[7],對風味組分進行研究可以從分子水平來解析構成茶香的物質基礎。
目前茶飲料的風味研究中,如何定量描述并評價茶湯香氣,并闡明各香氣成分的含量配比對茶湯總體接受度的影響已成為茶飲料風味學發(fā)展的瓶頸問題,有必要展開深入研究。本文針對即飲茶中主要揮發(fā)性物質在加工貯藏過程中的形成及其變化規(guī)律,對即飲茶香氣互作效應和芳香物質的提取分析方法進行概括總結,并對即飲茶香氣調配的創(chuàng)新技術進行探究歸納,旨在為即飲茶風味品質相關的科學研究提供參考,在一定程度上促進即飲茶產品在市場上的消費流通。
1? 即飲茶香氣品質呈現
1.1? 香氣感知的生理基礎
產品獨特的香氣是消費者能夠對其產生記憶及下一次識別產品的重要因素。人類日常感知到的香氣幾乎都是揮發(fā)性物質多組分混合的結果。人體對于香氣的感知主要借助嗅覺,即生物鼻腔的嗅覺神經受某些揮發(fā)性分子刺激后,由神經元末端纖毛轉化的電信號通過嗅球和嗅束抵達中樞神經而引起的一種復雜而模糊的感覺[8]。人體嗅聞過程可分為鼻前嗅聞(香氣分子從外界直接到達嗅上皮)以及鼻后嗅聞(香氣分子經過吞咽從咽喉部再到達鼻腔)[9]。圖1描繪了人體的嗅覺系統(tǒng)以及對外部氣味的感知過程。據理論估計,人類能夠辨別和記憶近1 000種不同的氣味,但大腦編碼這些復雜混合物的方式尚且未知。作為評價茶葉品質的重要指標,到目前為止,從茶葉和茶湯中鑒定出來的香氣成分多達600種[10],但其中只有部分揮發(fā)性物質會產生特征性氣味。
1.2? 即飲茶中重要呈香物質
茶葉中揮發(fā)性的風味物質是多種復雜成分構成的混合物,其含量低、揮發(fā)性強。但是在茶飲料的加工中,僅有很少一部分化合物能夠保留并賦予茶湯特殊的香氣?,F今歐美即飲茶市場中較為流行的調味酒精冰茶飲料,是由茶、天然香料和麥芽基底釀造而成,其中的檸檬口味冰茶是市場的主打產品。經香氣物質提取分析表明,該產品檸檬香調的主要貢獻物質是萜烯烴(蒎烯、檸檬烯和松油烯)以及含氧萜類化合物(香茅醛、芳樟醇、檸檬醛、橙花醛和香葉醛)。其中,檸檬醛(3,7-二甲基-2,6-辛二醛)是柑橘油中最重要的風味化合物之一,廣泛應用于食品和飲料加工,而其他如(Z)-3-己烯醇、1-己醛和4-乙烯基愈創(chuàng)木酚等茶葉中的揮發(fā)性成分雖然對風味影響較小,但為檸檬風味提供了豐富的層次感[11]。干茶經過浸提、過濾、濃縮、滅菌、干燥和儲存而制成即飲茶飲料,直接對即飲茶產品進行香氣提取分析,結果顯示大量揮發(fā)性成分經提取定量后的含量較最初浸提液大幅減少,說明茶飲料感官質量發(fā)生的變化可能是由于加工及貯藏過程中揮發(fā)性物質的氧化及水解所致[12]。
干茶經過浸提或萃取后,茶湯特征香氣的呈現中起主要貢獻作用的部分被稱為關鍵香氣組分,因具有較高的香氣強度、香氣活度值(OAV)或風味稀釋因子(FD),從而能夠決定茶飲整體的香型[13-16]。目前認為,醛、醇、酮類和萜烯是茶湯中重要的香氣活性化合物,對茶湯的整體香氣有重要的潛在影響。有學者研究認為,β-大馬士酮和芳樟醇便是茶飲料中最活躍的揮發(fā)性化合物[12]。醛類和醇類通常經審評小組成員的感官描述被賦予綠色植物、柑橘、脂肪氣息和甜味等風味特征詞匯;萜烯則被描述為茶湯具有的花香、果香及甜味;酮類化合物是茶湯中典型黃油味的來源。沖泡后的綠茶茶湯中還含有少量芳樟醇、壬醛、香葉醇、茉莉酮和β-紫羅蘭酮等揮發(fā)性化合物,有助于花香味的呈現[17]。烏龍茶浸提液中揮發(fā)性硫化物(VSC)的適量存在,令茶湯具有獨特的熟土豆香[18]。凍頂烏龍茶湯中的二甲硫醚更是使茶飲整體香氣接近綠茶[19-20]。臺灣紅玉紅茶含有正庚醇、β-環(huán)檸檬醛、月桂烯等多個柑橘香的香氣成分,加工制得的即飲茶整體以青果香(正己醛、水楊酸甲酯、1-戊烯-3-醇等)為主,還有花甜香(苯甲醛、氧化芳樟醇、苯乙醛等)及發(fā)酵香、堅果香(戊醛、丁醛1-甲基-4-異丙烯基苯等)[21]。具備獨特呈香化合物的茶類均可作為即飲茶基底的優(yōu)良選擇,為產出風味口感融合性好、有獨特記憶點的茶飲料提供保障。
2? 即飲茶香氣的提取富集及分析方法
目前茶葉揮發(fā)性化合物提取方法有液液萃?。↙LE)、同步蒸餾萃?。⊿DE)、動態(tài)頂空萃?。―HS)、超臨界流體萃取(SFE)、超聲輔助萃?。║AE)、微波輔助萃?。∕AE)、固相萃取 / 微萃?。⊿PE/SPME)、溶劑輔助風味蒸發(fā)(SAFE)[22-24]和攪拌棒吸附萃取 (SBSE)[25]等常用方法 ,還有以SBSE結合冷凍濃縮(FC)的新型提取技術(ICECLES)[26]。Zhu等[27]以烘焙綠茶為研究對象,顯示不同提取方法的效率高低排序為:頂空吸附萃?。℉SSE)< SBSE< 頂空-攪拌棒吸附萃取(HS-SBSE)<順序頂空-攪拌棒吸附萃?。╯eq-HS-SBSE)。
結合揮發(fā)性化合物的篩選方法,定量數據和氣味檢測閾值準確的基礎上使用OAV值以更好地評估化合物的氣味活動。針對常見于提取分析果汁等液體飲料[28-30]的方法體系,目前可做如下概括:基于分子感官科學進行呈香屬性及整體風味輪廓的描述性研究,首先使用SPME提取富集待測液的揮發(fā)性物質;隨后,利用氣相色譜-質譜技術(GC-MS)和氣相色譜-嗅聞技術(GC-O)對浸提液中的揮發(fā)性化合物進行定性定量鑒定分析,并借助香氣提取物稀釋分析法 (AEDA)[31]對重要香氣物質進行篩選,同時結合OAV對芳香物質的貢獻性作出評價;最后,利用模擬體系進行香氣重組和遺漏試驗深入驗證呈香物質的貢獻性,實現樣品中特征香氣物質的準確鑒定。該方法體系可推廣應用于即飲茶的香氣品質成分研究分析。
即飲茶制作的第一道工序就是將干茶進行萃取或浸提,經一定時間后得到的茶湯(茶浸提液)即為茶飲料的基礎形態(tài)。近年來有部分學者以經過萃取或一定時長浸提所得的茶浸提液為研究對象,對其進行香氣成分分析。表1和表2列舉了近幾年有關報道中不同種類的干茶浸提液及部分即飲茶產品沖泡后特征性揮發(fā)物質的提取、分析方法及特征性香氣描述。表中結果及數據,可為即飲茶加工中茶基底的選用以及后續(xù)使用天然香精調配制作調味茶飲提供參考依據。
3? 即飲茶香氣互作效應研究
據前人研究,以茶湯中測出的單一香氣化合物與混合體系中的閾值變化為指標,揮發(fā)物質間的相互作用可劃分為無作用、掩蔽作用、累加作用和協同作用4種類型[45]。當結構相近的香氣化合物混合時,能產生協同作用和相加作用。反之,掩蔽效應或弱加成作用主要存在于由結構差異較大的化合物組成的混合物中[46]。即飲茶產品的最終風味特征可能更多地取決于各成分間的組合及比例,而非特定成分作用[47]。研究發(fā)現,茉莉花茶和烏龍茶浸泡液中亞閾值香氣化合物之間的協同效應對茶特征風味的形成起到重要作用[48-49]。速溶普洱茶中反式-β-紫羅蘭酮和芳樟醇及其氧化物產生的甜味、花香和綠草香氣能夠掩蓋來自甲氧基苯的陳舊氣味,并提高整體的香氣接受度[50]。針對紅茶中關鍵呈味酯類化合物和呈現花香的芳香化合物,通過Feller添加模型探討二者間的相互作用,發(fā)現浸提液中酯類濃度的增加會對花香類物質釋放起到掩蔽作用[51]。
目前針對飲品的香氣互作研究多集中在咖啡[52-54]和酒精飲料[55-57]上,很少有研究深入探討茶浸提液或即飲茶中香氣化合物之間的相互作用。在上述研究基礎上,探索即飲茶各種呈香化合物之間的感知相互作用,可為改善即飲茶風味以及后續(xù)風味創(chuàng)新提供更多理論支持。
4? 即飲茶香氣調控因素研究
4.1? 茶葉內含成分影響香氣呈現
即飲茶所含的香氣成分有醇、醛、酯、萜類等多種物質,揮發(fā)物的組成及含量在一定程度上決定著消費者的偏好性和購買欲。Lin等[58]發(fā)現烏龍茶沖泡過程中,浸提液中的非揮發(fā)性成分對吲哚、苯甲醇和 2-苯乙醇等揮發(fā)性物質的頂空釋放可產生抑制作用。另外在龍井茶湯中,游離氨基酸(甘氨酸)對 1-辛烯-3-酮的釋放和 2-丁基-2-辛烯醛的形成作用影響顯著[59]。加工烏龍茶飲料時,茶葉在浸提前先經烘烤可以增強風味特征,是因為茶氨酸和己糖或戊糖通過美拉德反應生成的糠醛和5-甲基糠醇構成了巖茶和陳年烏龍茶的重要香氣成分[60]。Guo等[61]通過體外加熱模擬試驗,證實了在熱加工過程中,茶氨酸與揮發(fā)性物質2,5-二甲基吡嗪的生成有所關聯。
即飲茶的香氣雖然在茶飲風味品質呈現中只占很小的一部分,但也在茶飲料的品質形成及消費者感官接受度方面起著極其重要的作用。Wang等[62]發(fā)現在高壓滅菌過程中和綠茶飲料的貨架期內,飲料中芳香化合物的變化也與茶葉中兒茶素氧化產生的過氧化氫有關。
4.2? 加工工藝影響香氣呈現
即飲茶加工制作過程香氣成分的動態(tài)變化,主要取決于浸提和滅菌兩大環(huán)節(jié)[4]。基底茶的香氣揮發(fā)性前體經過浸提進一步水解,使得浸提液中的一些風味物質如2-苯基乙醇、2-甲氧基-4-羥基苯甲醛等化合物與原葉中的含量相比顯著增加[63]。由于浸提時間和溫度對各類茶成分的影響不同,即使是由相同茶基底制成的飲品,呈香物質最終可能都會以不同的比例存在于冷泡或熱泡茶飲中,呈現不同的感官品質[64]。Dos 等[65]研究路易波士茶在不同沖泡條件下的香氣等感官特征,發(fā)現傳統(tǒng)熱沖泡的茶湯強度得分低于經過浸提的茶湯。目前市場上的罐裝茶飲料一般采用巴氏滅菌 (85 ℃,15 min) 或高溫滅菌 (121 °C,10 min)[66]處理。另外超高溫瞬時滅菌 (135 ℃,15 s)目前也有應用于聚對苯二甲酸乙二醇酯 (PET)瓶裝茶飲的滅菌處理。以上熱處理均會使即飲茶中大馬士酮的糖苷前體水解,對飲料的風味品質產生顯著影響[67]。相較于熱殺菌技術,常用于食品[68-72]、果汁[73-76]中的常溫或低溫冷滅菌技術同樣值得關注。Song等[77]發(fā)現經超聲技術結合高靜水壓(HHP)處理的冷泡茶,其茶多酚、pH 值、顏色、抗氧化能力和濁度能夠得到有效保留。若采用高壓脈沖電場(HPEF)對普洱茶進行催熟處理,可有效保證其“久藏好味”的特點[78]。Hemmati等[79]利用常壓冷等離子體(CAP)處理速溶綠茶粉,結果表明該技術在保證綠茶抗菌效力的同時能使產品微生物安全性有所提升。Mandal等[80]用脈沖紫外光(PL)處理紅茶浸提液,卻發(fā)現PL處理對樣品的總酚含量和抗氧化活性并無顯著影響,于是計劃結合溫和的熱加工方法對處理后茶湯的顏色和感官特性的變化進行研究。在前人的試驗基礎上,未來可將感應電場、冷等離子體等新型技術應用于即飲茶的滅菌處理,過程中茶飲料的呈香異化機制值得展開深入研究。
4.3? 物料添加及微生物發(fā)酵影響香氣呈現
即飲茶香氣依賴于人體嗅覺的感官判斷,因此茶飲料在風味調配時常選擇額外添加一些促味劑增香,在不同的搭配組合下獲得較為舒適及均衡的風味特征[81]。茶葉中雖含有水解糖苷的關鍵酶,如β-葡萄糖苷酶、β-半乳糖苷酶和β-櫻草糖苷酶[82],但內源酶和糖苷香氣通常不易反應[83]。加工過程中糖苷香氣釋放有限,一般可通過添加外源性糖苷酶提高茶產品的香氣品質。β-葡萄糖苷酶處理可改善發(fā)酵紅茶汁的整體香氣,使“花香”風味得到加強,強化紅茶特有的“甜”香[84]。
微生物發(fā)酵技術常見于食品飲料的加工制作。國內茶飲市場中,發(fā)酵茶飲料因其獨特的風味品質和有益的生化活性功能,已成為現今的爆款產品。如目前在國內外市場推廣的康普茶,就是由紅茶或綠茶和蔗糖在細菌和酵母的共生培養(yǎng)環(huán)境下發(fā)酵而成[85]。研究表明,微生物發(fā)酵使茶飲料中的酚氨比下降、芳香物質增加,并積累大量初級或次級代謝產物,從而改善茶湯風味[86-87]。陳清愛等[88]對發(fā)酵過程中不同階段紅茶湯香氣成分和活性因子的生成及變化展開探討,發(fā)現復合乳酸菌發(fā)酵紅茶湯的風味層次更加豐富。隨發(fā)酵時間的延長,一些具有花香和水果甜香的揮發(fā)性醇、酮逐漸增加,而壬醛、松油醇等物質逐漸減少,降低了茶湯中的青草味。Rigling等[34]將可食用擔子菌添加到基底茶中生產出的新型綠茶飲料,在不添加糖和調味劑的條件下仍能表現出強烈的巧克力味和堅果香氣。另外還可以通過添加水果或花卉的天然香料提取物,使康普茶飲品香氣品質多元化[89]。
5? 總結與展望
即飲茶的香氣品質、揮發(fā)物與茶飲基底間的風味融合性,以及風味物質對消費者飲品接受度產生的影響等極具有研究前景和吸引力。盡管目前已明確茶飲中的各類呈香物質,但有關各揮發(fā)性成分單體的閾值及氣味組合間復雜的互作機制對即飲茶整體風味的影響還有待深入研究。今后應關注不同種類茶飲料的特征性香氣成分,重點放在各呈香物質間的互作機理上,結合感官組學明晰即飲茶香氣與滋味物質間的跨模態(tài)感官互作,為完善產品品控提供理論依據。使用代謝組學分析,揭示即飲茶貯藏期風味變化機理,結合動力學方程及數學模型預測茶飲料保質期,控制風味品質穩(wěn)定性。以期助力即飲茶市場高品質、智能化發(fā)展,進一步提高我國茶葉的資源利用率及經濟附加值。
參考文獻
[1] ZHU M Z, LI N, ZHAO M, et al. Metabolomic profiling delineate taste qualities of tea leaf pubescence[J]. Food Research International, 2017, 94: 36-44.
[2] KALE R, DESHMUKH R. Ready-to-drink (RTD) tea market[J/OL]. Allied Market Research: Portland, 2020, 299. https://www.futuremarketinsights.com/reports/ready-to-drink-rtd-tea-market.
[3] 尹軍峰, 許勇泉, 張建勇, 等. 茶飲料與茶食品加工研究“十三五”進展及“十四五”發(fā)展方向[J]. 中國茶葉, 2021, 43(10): 18-25.
[4] 李潔, 董昕陽, 馮瑛, 等. 液體茶飲料品質研究進展及發(fā)展展望[J]. 中國茶葉加工, 2018(2): 23-27, 30.
[5] BERTRAND B, BOULANGER R, DUSSERT S, et al. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality[J]. Food Chemistry, 2012, 135(4): 2575-2583.
[6] JOHNSON A J, HJELMELAND A K, HEYMANN H, et al. GC-Recomposition-Olfactometry (GC-R) and multivariate study of three terpenoid compounds in the aroma profile of Angostura bitters[J/OL]. Scientific Reports, 2019, 9: 7633. https://doi.org/10.1038/s41598-019-44064-y.
[7] 聶樅寧. 基于風味組學的茶葉香味與成分的映射關聯評價研究[D]. 雅安: 四川農業(yè)大學, 2020.
[8] 羅龍新. 新式茶飲產品及其茶葉原料的創(chuàng)新與啟示[J]. 中國茶葉, 2021, 43(9): 12-16.
[9] HANNUM M E, FRYER J A, SIMONS C T. Non-food odors and the duality of smell: Impact of odorant delivery pathway and? labeling convention on olfactory perception[J/OL]. Physiol Behav, 2021, 238: 113480. https://doi.org/10.1016/j.physbeh.
[10] RAVICHANDRAN R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma[J]. Food Chemistry, 2002, 78(1): 23-28.
[11] YUAN F, HE F, QIAN Y P, et al. Aroma stability of lemon-flavored hard iced tea assessed by chirality and aroma extract dilution analysis[J]. Journal of Agricultural and Food Chemistry, 2016, 64(28): 5717-5723.
[12] LIANG S, GAO Y, FU Y Q, et al. Innovative technologies in tea-beverage processing for quality improvement[J/OL]. Current Opinion in Food Science, 2022, 47(47): 100870. https://doi.org/10.1016/j.cofs.2022.100870.
[13] HO C T, ZHENG X, LI S M. Tea aroma formation[J]. Food Science & Human Wellness, 2015, 4(1): 9-27.
[14] SHEN S S, WU H, LI T H, et al. Formation of aroma characteristics driven by volatile components during long-term storage of An tea[J/OL]. Food Chemistry,? 2023, 411: 135487. https://doi.org/10.1016/j.foodchem.2023.135487.
[15] BABA R, KUMAZAWA K. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis[J]. Journal of Agricultural and Food Chemistry, 2014, 62(33): 8308-8313.
[16] SCHUH C, SCHIEBERLE P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.
[17]? GAO Y, WANG J Q, CHEN J X, et al. Effect of ferrous ion on heat-induced aroma deterioration of green tea infusion[J/OL]. Molecules, 2021, 26(14): 4255. https://doi.org/10.3390/molecules26144255.
[18] KUO P Q, LAI Y Y, CHEN Y J, et al. Changes in volatile compounds upon aging and drying in Oolong tea production[J]. Journal of the Science of Food and Agriculture, 2011, 91(2): 293-301.
[19] WU Q, ZHU W, WANG W, et al. Effect of yeast species on the terpenoids profile of Chinese light-style liquor[J]. Food Chemistry, 2015, 168: 390-395.
[20] XUE J J, GUO G Y, LIU P P, et al. Identification of aroma-active compounds responsible for the floral and sweet odors of Congou black teas using gas chromatography-mass spectrometry / olfactometry, odor activity value, and chemometrics[J]. Journal of the Science of Food and Agriculture, 2022, 102(12): 5399-5410.
[21] 王婧. 臺灣紅玉紅茶香氣成分分析[J]. 飲料工業(yè), 2022, 25(6): 5-9.
[22] MIZUKAMI Y, YAMAGUCHI Y. Method for the analysis of tea aroma by using solvent-assisted flavor evaporation apparatus[J]. Tea Research Journal, 2010, 110: 105-112.
[23] KUMAZAWA K, WADA Y, MASUDA H. Characterization of epoxydecenal isomers as potent odorants in black tea (Dimbula) infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(13): 4795-4801.
[24] SCHUH C, SCHIEBERLE P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.
[25] YANG Z Y, SUSANNE B, NAOHARU W. Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599.
[26] ALLUHAYB A H, LOGUE B A. The analysis of aroma / flavor compounds in green tea using ice concentration linked with extractive stirrer[J]. Journal of Chromatography A, 2017, 1518: 8-14.
[27] ZHU Y, YAN H, ZHANG Z F, et al. Assessment of the contribution of chiral odorants to aroma property of baked green teas using an efficient sequential stir bar sorptive extraction approach[J/OL]. Food Chemistry, 2021, 365: 130615. https://doi.org/10.1016/j.foodchem.2021.130615.
[28] 劉斌善, 魏曉明, 邵丹青, 等. GC-MS-O結合OAV表征燒麥中關鍵香氣成分及其在儲存過程中的變化情況[J/OL]. 食品科學, 2022: 1-15. http://kns.cnki.net/kcms/detail/11.2206.TS.20221020.1420.042.html.
[29] LIU C, YANG P, WANG H L, et al. Identification of odor compounds and odor - active compounds of yogurt using DHS , SPME , SAFE, and SBSE / GC-O-MS[J/OL]. LWT-Food Science and Technology, 2022, 154: 112689. https://doi.org/10.1016/j.lwt.2021.112689.
[30] FLAIG M, QI S, WEI G D, et al. Characterization of the key odorants in a high-grade Chinese green tea beverage (Camellia sinensis ; Jingshan cha) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5168-5179.
[31] SELLAMI I, MALL V, SCHIEBERLE P. Changes in the key odorants and aroma profiles of Hamlin and Valencia orange? juices not from concentrate (NFC) during chilled storage[J]. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7428-7440.
[32] ZHU J C, CHEN F, WANG L Y, et al. Comparison of aroma-active volatiles in Oolong tea infusions using GC-Olfactometry, GC-FPD, and GC-MS[J]. Journal of Agricultural and Food Chemistry, 2015, 63(34): 7499-7510.
[33] YU J Y, LIU Y, ZHANG S R, et al. Effect of brewing conditions on phytochemicals and sensory profiles of black tea infusions: A primary study on the effects of geraniol and β-ionone on taste perception of black tea infusions[J/OL]. Food Chemistry, 2021, 354: 129504. https://doi.org/10.1016/j.foodchem.2021.129504.
[34] RIGLING M, Yadav M, Yagishita M, et al. Biosynthesis of pleasant aroma by enokitake (Flammulina velutipes) with a potential use in a novel tea drink[J/OL]. LWT, 2021, 140 (11): 64. https://doi.org/10.1016/j.lwt.2020.110646.
[35] WANG J, LI M R, WANG H. Decoding the specific roasty aroma Wuyi Rock Tea (Camellia sinensis: Dahongpao) by the sensomics approach[J/OL]. Journal of Agricultural and Food Chemistry, 2022, 70(34): 10571-10583.
[36] 李春美, 竇宏亮, 黨美珠, 等. 綠茶茶湯香氣成分提取方法的比較研究[J]. 食品科技, 2009, 34(10): 99-103.
[37] CHEN J Y, YANG Y Q, DENG Y L, et al. Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis[J/OL]. LWT, 2022, 153: 112496. https://doi.org/10.1016/j.lwt.2021.112496.
[38] SUN L T, DONG X, REN YBL, et al. Profiling real-time aroma from green tea infusion during brewing[J]. Foods, 2022, 11(5): 684. https://doi.org/10.3390/foods11050684.
[39] FENG T, SUN J Q, WANG K, et al. Variation in volatile compounds of raw Pu-erh tea upon steeping process by gas chromatography-ion mobility spectrometry and characterization of the aroma-active compounds in tea infusion using gas chromatography-olfactometry-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2022, 70(42): 13741-13753.
[40] YU J Y, HO C T, LIN Z, et al. Sensomics-assisted characterization of key flowery aroma compounds in Lu'an Guapian green tea infusion (Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2023, 71(15): 6120-6132.
[41] NI H, JIANG Q X, LIN Q, et al. Enzymatic hydrolysis and auto-isomerization during beta-glucosidase treatment? improve the aroma of instant white tea infusion[J/OL]. Food Chemistry, 2021, 342: 128565. https://doi.org/10.1016/j.foodchem.2020.128565.
[42] XU Y Q, CHEN J X, DU Q Z, et al. Improving the quality of fermented black tea juice with Oolong tea infusion[J]. Journal of Food Science and Technology-Mysore, 2017, 54(12): 3908-3916.
[43] ALLUHAYB A H, LOGUE B A. The analysis of aroma/flavor compounds in green tea using ice concentration linked with extractive stirrer[J]. Journal of Chromatography A, 2017, 1518: 8-14.
[44] JIANG Q X, LI L J, CHEN F, et al. β-Glucosidase improve the aroma of the tea infusion made from a spray-dried Oolong tea instant[J/OL]. LWT, 2022, 159: 113175. https://doi.org/10.1016/j.lwt.2022.113175.
[45] SAISON D, De SCHUTTER D P, UYTTENHOVE B, et al. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds[J]. Food Chemistry, 2009, 114(4): 1206-1215.
[46] MAIER J X, BLANKENSHIP M L, LI J X, et al. A multisensory network for olfactory processing[J]. Current Biology, 2015, 25(20): 2642-2650.
[47] 馬園園, 曹青青, 高一舟, 等. 綠茶苦味研究進展[J]. 茶葉科學, 2023, 43(1): 1-16.
[48] ITO Y, KUBOTA K. Sensory evaluation of the synergism among odorants present in concentrations below their odor threshold in a Chinese jasmine green tea infusion[J]. Molecular Nutrition & Food Research, 2005, 49(1): 61-68.
[49] ZHU J K, CHEN F, WANG L Y, et al. Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose[J]. Food Chemistry, 2017, 221: 1484-1490.
[50] ZHANG T, NI H, QIU X J, et al. Suppressive interaction approach for masking stale note of instant ripened Pu-erh tea products[J/OL]. Molecules, 2019, 24(24) : 4473. https://doi.org/10.3390/molecules
24244473.
[51] NIU Y W, MA Y W, XIAO Z B, et al. Characterization of the key aroma compounds of three kinds of Chinese representative black tea and elucidation of the perceptual interactions of methyl salicylate and floral odorants[J/OL]. Molecules, 2022, 27(5): 1631. https://doi.org/10.3390/molecules27051631.
[52] GIGL M, FRANK O, GABLER A, et al. Key odorant melanoidin interactions in aroma staling of coffee beverages[J/OL]. Food Chemistry, 2022, 392: 133291. https://doi.org/10.1016/j.foodchem.
2022.133291.
[53] GIGL M, HOFMANN T, FRANK O. NMR-Based studies on odorant-melanoidin interactions in coffee beverages[J/OL]. Journal of Agricultural and Food Chemistry, 2021, 69(50): 15334. https://doi.org/10.1021/acs.jafc.1c06163.
[54] CHIN X H, HO S, CHAN G, et al. Aromatic yeasts: Interactions and implications in coffee fermentation aroma profiles[J]. Journal of Agricultural and Food Chemistry, 2023, 71(25): 9677-9686.
[55] NIU Y W, ZHU Q, XIAO Z B. Characterization of perceptual interactions among ester aroma compounds found in Chinese Moutai Baijiu by gas chromatography-olfactometry, odor Intensity, olfactory threshold and odor activity value[J/OL]. Food Research International, 2020, 131: 108986. https://doi.org/10.1016/j.foodres.2020.108986.
[56] MA Y,? B?NO N, TANG K, et al. Assessing the contribution of odor - active compounds in icewine considering odor mixture-induced interactions through gas chromatography - olfactometry and olfactoscan[J/OL]. Food Chemistry, 2022, 388: 132911. https://doi.org/10.1016/j.foodchem.2022.132991.
[57] FERREIRA V, DE-LA-FUENTE-BLANCO A, SAENZ-NAVAJAS M. A new classification of perceptual interactions between odorants to interpret complex aroma systems. application to model wine aroma[J/OL]. Foods, 2021, 10(7): 1627. https://doi.org/10.3390/foods100
71627.
[58] LIN J, SHI Y X, DONG C W, et al. Headspace volatiles influenced by infusion matrix and their release persistence: A case study of Oolong tea[J]. Food Science and Biotechnology, 2019, 28(5): 1349-1358.
[59] CHENG Y, HUYNH-BA T, BLANK I, et al. Temporal changes in aroma release of Longjing tea infusion: Interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging[J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2160-2169.
[60] GUO X Y, SONG C K, HO C T , et al. Contribution of L-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes[J]. Food Chemistry, 2018, 263: 18-28.
[61] GUO X Y, HO C, SCHWAB W, et al. Aroma compositions of large-leaf yellow tea and potential effect of theanine on volatile formation in tea[J]. Food Chemistry, 2019, 280: 73-82.
[62] WANG J Q, GAO Y, LONG D, et al. Effects of hydrogen peroxide produced by catechins on the aroma of tea beverages[J/OL]. Foods, 2022, 11(9): 1273. https://doi.org/10.3390/foods11091273.
[63] SCHUH C, SCHIEBERLE P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.
[64] LEE J, CHAMBERS D, CHAMBERS E. Sensory and instrumental flavor changes in green tea brewed multiple times[J]. Foods, 2013, 2(4): 554-571.
[65] DOS A, AYHAN Z, SUMNU G. Effects of different factors on sensory attributes, overall acceptance and preference of Rooibos (Aspalathus linearis) tea[J]. Journal of Sensory Studies, 2005, 20(3): 228-242.
[66] KUMAZAWA K. Flavor chemistry of tea and coffee drinks[J]. Food Science and Technology Research, 2006, 12(2): 71-84.
[67]? MASUDA H. Tea and tea products: Chemistry and health-promoting properties[M]. Boca Raton, FL: CRC Press,? 2008: 275-300.
[68] CHEN Y Q, CHENG J H, SUN D W. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(16): 2676-2690.
[69] ZHANG B, TAN C M, ZOU F L, et al. Impacts of cold plasma technology on sensory, nutritional and safety quality of food: A review[J/OL]. Foods, 2022, 11(18): 2818. https://doi.org/ 10.3390/foods
11182818.
[70] DING Y X, MO W X, DENG Z L, et al. Storage quality variation of mushrooms (Flammulina velutipes) after cold plasma treatment[J/OL]. Life-basel, 2023, 13(1): 70. https://doi.org/10.3390/life13010070.
[71] ZHAO N, GE L H, HUANG Y L, et al. Impact of cold plasma processing on quality parameters of packaged fermented vegetable (radish paocai) in comparison with pasteurization processing: Insight into safety and storage stability of products[J/OL]. Innovative Food Science & Emerging Technologies, 2020, 60: 102300. https://doi.org/10.1016/j.ifset.2020.102300.
[72] 顏心怡, 李錦晶, 李赤翎, 等. 冷等離子體技術對食品組分的影響及其作用機制[J]. 食品工業(yè)科技, 2023, 44(12): 445-454.
[73] 王小媛, 牛涵, 靳學遠, 等. 杜仲籽油蘋果汁飲料低溫等離子體和熱殺菌的比較分析[J]. 現代食品科技, 2022, 38(9): 206-214.
[74] RODRIGUES S, FERNANDES F A N. Effect of dielectric barrier discharge plasma treatment in pasteurized orange juice: Changes in volatile composition, aroma, and mitigation of off-flavors[J]. Food and Bioprocess Technology, 2023, 16(4): 930-939.
[75] FILHO E G A, SILVA L M A, de BRITO E S, et al. Effect of glow and dielectric barrier discharges plasma on volatile and non - volatile chemical profiling of Camu-Camu juice[J]. Food and Bioprocess Technology, 2021, 14(7): 1275-1286.
[76] STAREK-WOJCICKA A, SAGAN A, TEREBUN P, et al. Quality of tomato juice as influenced by non-thermal air plasma treatment[J/OL]. Applied Sciences-basel, 2023, 13(1): 578. https://doi.org/10.3390/app13010578.
[77] SONG Y C, BI X, ZHOU M, et al. Effect of combined treatments of ultrasound and high hydrostatic pressure processing on the physicochemical properties, microbial quality and shelf - life of cold brew tea[J]. International Journal of Food Science and Technology, 2021, 56(11): 5977-5988.
[78] CHEN T, ZHAO Y, WANG L, et al. Study on ripening process of Pu'er fermented tea by high voltage pulsed electric field technique[J]. Agro Food Industry HI-TECH, 2016, 27(4): 68-71.
[79] HEMMATI V, GARAVAND F, KHORSHIDIAN N, et al. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder[J/OL]. Food Bioscience, 2021,44: 101348. https://doi.org/10.1016/j.fbio.2021.101348.
[80] MANDAL R, WIKTOR A, MOHAMMADI X, et al. Pulsed UV light irradiation processing of black tea infusions: Effect on color, phenolic content, and antioxidant capacity[J]. Food and Bioprocess Technology, 2022, 15(1): 92-104.
[81] 付娜, 王錫昌. 滋味物質間相互作用的研究進展[J]. 食品科學, 2014, 35(3): 269-275.
[82] OGAWA K, IJIMA Y, GUO W F, et al. Purification of a beta-primeverosidase concerned with alcoholic aroma formation in tea leaves (cv. Shuixian) to be processed to Oolong tea[J]. Journal of Agricultural and Food Chemistry,1997, 45(3): 877-882.
[83] GUI J D, FU X M, ZHOU Y, et al. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the Oolong tea manufacturing process?[J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905-6914.
[84] LIANG S, WANG F, GRANATO D, et al. Effect of β-glucosidase on the aroma of liquid-fermented black tea juice as an ingredient for tea-based beverages[J/OL]. Food Chemistry, 2023, 402: 134201. https://doi.org/10.1016/j.foodchem.2022.134201.
[85] KITWETCHAROEN H, PHUNG L T, KLANRIT P, et al. Kombucha healthy drink - recent advances in production, chemical composition and health benefits[J/OL]. Fermentation-basel, 2023, 9(1): 48. https://doi.org/10.3390/fermentation9010048.
[86] 馬存強, 楊超, 周斌星, 等. 微生物對茶葉中嘌呤生物堿代謝的研究進展[J]. 食品科學, 2014, 35(21): 292-296.
[87] SAIMAITI A, HUANG S Y, XIONG R G, et al. Antioxidant capacities and polyphenol contents of Kombucha beverages based on vine tea and sweet tea[J/OL]. Antioxidants, 2022, 11(9) : 1655. https://doi.org/10.3390/antiox11091655.
[88] 陳清愛, 林湘旋, 陳馳, 等. 復合乳酸菌發(fā)酵紅茶湯香氣成分及活性因子變化規(guī)律[J]. 福建農林大學學報(自然科學版), 2022, 51(6): 835-842.
[89] JUYOUNG K, KOUSHIK A. Current trends in Kombucha: Marketing perspectives and the need for improved sensory research[J/OL]. Beverages, 2020, 6(1): 15. https://doi.org/10.3390/beverages6010015.