国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

雜化納米材料光熱治療腫瘤的研究進(jìn)展

2023-09-15 20:39:06黃小秀李虎楊松
貴州大學(xué)學(xué)報(bào)(自然科學(xué)版) 2023年5期
關(guān)鍵詞:癌細(xì)胞

黃小秀 李虎 楊松

摘 要:光熱治療(photothermal therapy,PTT)具有高效快速、侵入性小、無(wú)創(chuàng)等優(yōu)點(diǎn)。通常在光熱治療中采用單一的納米材料作為光熱劑,然而使用單一納米材料通常會(huì)面臨生物相溶性差、穩(wěn)定性差、毒性大、靶向性能差、缺少成像性等問(wèn)題。本文主要綜述了最近幾年開發(fā)的雜化納米材料,通過(guò)多種光熱材料的摻雜、包覆、表面修飾等方法開發(fā)了碳基雜化、無(wú)機(jī)雜化、有機(jī)-無(wú)機(jī)雜化等具有優(yōu)良光熱性能的光熱材料,解決了使用單一光熱材料面臨的問(wèn)題。此外,通過(guò)融合光熱材料、靶向材料、成像材料、化療材料和放射性材料等達(dá)到聯(lián)合協(xié)同治療的效果。雜化材料促進(jìn)高效治療癌癥技術(shù)的發(fā)展,為光熱協(xié)同治療提供材料支持。這些方法為進(jìn)一步開發(fā)新型雜化光熱材料提供了思路,有望基于當(dāng)前報(bào)道的各類具有光熱潛力的材料,開發(fā)出高光熱效率、高安全性的雜化光熱材料,使光熱雜化納米材料在腫瘤的治療臨床應(yīng)用具有廣闊的前景。

關(guān)鍵詞:光熱治療;光熱材料;靶向特異性;生物相容性;癌細(xì)胞

中圖分類號(hào):TB383.1;R730.5

文獻(xiàn)標(biāo)志碼:A

癌癥一直是威脅人類生命健康的主要疾病之一。目前,癌癥的治療方法主要依賴手術(shù)、化療、放療等傳統(tǒng)技術(shù)[1]。但這些原始的治療方案往往會(huì)對(duì)正常人體組織產(chǎn)生不可避免的損害,而且具有療效低、靶向特異性差、耐藥性等缺點(diǎn)[2]。近年來(lái),光熱療法(photothermal therapy,PTT)已成為治療癌癥的一種有效且重要的方法。其主要原因是治療時(shí)間短(約幾分鐘),侵入性小,療效顯著,副作用少(大多數(shù)光敏劑在低濃度下相對(duì)無(wú)害)等[3]。PTT是一種典型的光子觸發(fā)治療方式,它通過(guò)光熱劑(photothermal agents,PTAs)在可見光或近紅外光(near-infrared,NIR)(600~900 nm)的激發(fā)下產(chǎn)生的局部高溫殺死腫瘤細(xì)胞[4]。癌細(xì)胞對(duì)高熱的敏感性高于正常細(xì)胞,高溫會(huì)對(duì)癌細(xì)胞膜造成不可逆的損傷,促進(jìn)蛋白質(zhì)變性[5]。近紅外光因其具有較高的組織穿透能力,對(duì)皮膚的吸光度較低,并且能夠聚焦于特定的組織部位,被廣泛用作光熱治療的外部激光源[2]。因此,PTT是一種對(duì)傳統(tǒng)癌癥治療的補(bǔ)充,具有創(chuàng)傷性小、靶向性高、恢復(fù)速度快等特點(diǎn),被認(rèn)為是一種極具應(yīng)用前景的癌癥治療策略。PTAs是PTT應(yīng)用中的一個(gè)重要的組成部分,它能通過(guò)非輻射機(jī)制將光能直接轉(zhuǎn)變成熱能,高溫消融病變組織或細(xì)胞。光熱轉(zhuǎn)換效率(photothermal conversion efficiency,PCE)是PTAs的一個(gè)關(guān)鍵因素,它直接決定光熱治療過(guò)程中所需要的激發(fā)光強(qiáng)度。已經(jīng)報(bào)道了許多不同類型的光熱劑,包括無(wú)機(jī)納米材料(如貴金屬納米粒子、金屬硫化物納米粒子、碳基材料、過(guò)渡金屬納米粒子以及新興的二維納米材料等[1-2,6]),有機(jī)化合物納米材料(如吲哚菁綠[7]、聚苯胺[8]、卟啉環(huán)[9])。早期對(duì)PTAs的研究主要集中在貴金屬納米材料,這些貴金屬納米材料具有良好的光吸收能力,同時(shí)具有較高的光熱轉(zhuǎn)換效率[4]。但無(wú)機(jī)材料存在生物相容性低、不可降解等特點(diǎn),而有機(jī)材料具有良好的生物相容性。因此,雜化納米材料是一種由有機(jī)或無(wú)機(jī)物質(zhì)組成的混合物,它提供了每一組分的最佳特性,使雜化納米材料具有獨(dú)特的物理和化學(xué)性能[10],成為生物醫(yī)學(xué)研究的熱點(diǎn)領(lǐng)域之一。

隨著基因療法(gene therapy,GT)、免疫療法、光動(dòng)力療法(photodynamic therapy,PDT)等新興療法的相繼發(fā)展,利用光熱治療與其他治療方案聯(lián)合應(yīng)用,設(shè)計(jì)開發(fā)出多功能的雜化納米復(fù)合材料,實(shí)現(xiàn)多種具有協(xié)同效應(yīng)治療策略的集成,從而提高治療效果和優(yōu)化腫瘤治療方案[11]。在本綜述中,總結(jié)了不同雜化納米材料在光熱治療癌癥中的研究進(jìn)展,并詳細(xì)討論了光熱治療的機(jī)理和3種典型的雜化材料的制備策略,如多種光熱材料摻雜、包覆、表面修飾等方法,解決了使用單一材料面臨生物相溶性差、穩(wěn)定性差、毒性大、靶向性能差、缺少成像性等問(wèn)題。此外,雜化納米材料通過(guò)融合光熱材料、靶向材料、成像材料、化療材料和放射性材料等從而達(dá)到聯(lián)合協(xié)同治療的效果。光熱治療與化療、放療、光動(dòng)力治療的協(xié)同運(yùn)用為其在臨床的應(yīng)用提供可能。

1 碳基雜化納米材料

近年來(lái),碳納米材料由于具有優(yōu)異的熱學(xué)和光學(xué)性質(zhì)被廣泛應(yīng)用于生物醫(yī)學(xué)領(lǐng)域。碳基納米材料晶格中的雜化形式有利于分子中的電子在近紅外激光照射下從低軌道態(tài)激發(fā)到高軌道態(tài)。隨后,通過(guò)非輻射弛豫的方式將吸收的激光能量從被激發(fā)的電子傳遞到整個(gè)晶格的振動(dòng)中,進(jìn)而產(chǎn)生熱能[12]。因此,在近紅外波段具有較高的光熱轉(zhuǎn)換效率。其次,碳納米材料具有較低的細(xì)胞毒性,可在腫瘤環(huán)境中被過(guò)氧化物酶降解[13]。再者,碳納米材料具有較大的比表面積和孔體積[14],可作為藥物載體,用于化療和熱療協(xié)同治療腫瘤。

目前,癌癥發(fā)病率不斷上升,但傳統(tǒng)的給藥系統(tǒng)受到低生物利用度的限制,導(dǎo)致腫瘤部位藥物積累很少,循環(huán)時(shí)間短[15],缺乏選擇性[16]。此外,由于光散射的原因,單一的PTT技術(shù)難以治愈腫瘤。傳統(tǒng)藥物療效顯著,但副作用和耐藥性較大。與單獨(dú)PTT或化療相比,兩者聯(lián)合應(yīng)用可協(xié)同治療腫瘤,達(dá)到藥物可控釋放,增強(qiáng)療效[17-19]。據(jù)此,Liu等[20]設(shè)計(jì)并合成了一種多孔核殼結(jié)構(gòu)、且具有良好生物相容性的多功能納米載體Fe3O4@C/ZnO-DOX-FA。碳和ZnO均由ZIF-8于適當(dāng)?shù)臏囟认?,在Ar或空氣氛中煅燒獲得(圖1)。通過(guò)體外和體內(nèi)實(shí)驗(yàn)證實(shí),復(fù)合材料中的介孔碳不僅可以作為光熱劑,還可與ZnO一起作為有效的藥物載體。Fe3O4和ZnO同時(shí)存在,可以實(shí)現(xiàn)藥物靶向細(xì)胞給藥和pH控制釋放,并且葉酸分子實(shí)現(xiàn)了癌細(xì)胞的特異性靶向[20]。Wang等[16]通過(guò)吸附-還原方法制備了一種金/碳納米球(PG/CNSs)材料(制備過(guò)程如圖2所示),其斑片狀金的形成主要是一個(gè)熱力學(xué)驅(qū)動(dòng)的自發(fā)過(guò)程。通過(guò)葡萄糖水熱碳化法合成碳納米球,然后使用聚乙烯亞胺(polyethyleneimine,PEI)接枝到CNSs表面,將改性后的碳納米球移入HAuCl4溶液中,AuCl-4離子吸附在主粒子表面,最后使用抗壞血酸(ascorbic acid,AA)弱還原劑將AuCl-4離子還原為Au,獲得斑片狀金/碳納米球(PG/CNSs)。向體內(nèi)注射一定量的PG/CNSs顆粒(0.2 mg),在激光照射下,腫瘤局部溫度迅速達(dá)到64.4 ℃,足以消融惡性細(xì)胞。結(jié)果表明,PG/CNSs納米材料以Janus結(jié)構(gòu)的形式存在時(shí),暴露在表面的斑片狀金和碳的組合吸收NIR,從而增加NIR吸收系數(shù)。與單獨(dú)的金納米棒相比,由于對(duì)碳的保護(hù),這種薄金貼片的熱穩(wěn)定性有望更高,所得的納米復(fù)合材料不僅具有更高的光熱轉(zhuǎn)換效率,而且具有更高的熱穩(wěn)定性。

碳納米管(carbon nanotube,CNT)包括單壁碳納米管 (single-walled carbon nanotube,SWCNT)和多壁碳納米管(multi-walled carbon nanotube,MWCNT),在NIR區(qū)域有強(qiáng)光吸收和高光熱轉(zhuǎn)換效率[21-22]。此外,碳納米管具有高比表面積和體積,是核酸、蛋白質(zhì)和藥物分子等細(xì)胞內(nèi)轉(zhuǎn)運(yùn)的潛在載體[23]。利用碳納米管可有效地將化療和光熱治療結(jié)合起來(lái),Dong等[24]開發(fā)了一種新型的基于TAT-殼聚糖功能化多壁納米管(MWCNTs/TC)的阿霉素(DOX)給藥體系,并初步研究了抗腫瘤作用,探討了MWCNTs/DOX/TC在化學(xué)光熱聯(lián)合治療中的應(yīng)用潛力,并評(píng)估藥物體外釋放、光熱效應(yīng)、細(xì)胞攝取和細(xì)胞毒性。結(jié)果表明,該新型給藥體系不僅實(shí)現(xiàn)了DOX的顯著緩釋,而且保留了MWCNTs的光學(xué)特性,在近紅外照射下具有較高的光熱效應(yīng);同時(shí),通過(guò)化療和光熱消融的協(xié)同作用,表現(xiàn)出顯著增強(qiáng)的抗腫瘤療效。

PTT與GT的聯(lián)合應(yīng)用在協(xié)同抗腫瘤方面同樣具有很大潛力。光熱轉(zhuǎn)換材料作為基因傳遞載體,可以有效結(jié)合帶負(fù)電荷的基因[25]。目前,碳納米管被用作藥物載體和生物成像探針[26]。Zhao等[27]采用肽脂質(zhì)和月桂酸蔗糖包裹單壁碳納米管(SWCNTs)和多壁碳納米管(MWCNTs)(圖3),形成了具有溫度敏感性和光熱性能的雙功能傳遞體系(分別為SWCNT-PS和MWCNT-PS),并將siRNA加載到碳納米管上,形成siRNA可控釋放的載體CNT-PS/siRNA。結(jié)果表明,CNT/siRNA能抑制腫瘤的生長(zhǎng),同時(shí)在NIR光照下表現(xiàn)出光熱效應(yīng)。相較于MWCNT-PS/siRNA,SWCNT-PS/siRNA表現(xiàn)出非常高的抗腫瘤活性,可完全抑制部分腫瘤生長(zhǎng)。

氮摻雜石墨烯量子點(diǎn)(N-GQDs)具有強(qiáng)電子供體基團(tuán)[28]、較佳的生物相容性和光熱穩(wěn)定性,是良好的光熱轉(zhuǎn)換劑(photothermal conversion agents,PTCAs)。Zhang等[29]通過(guò)在核殼氮摻雜石墨烯量子點(diǎn)(N-GQD)@中空介孔二氧化硅納米球(HMSN)上包覆介孔氮化碳(C3N4)層,并用P-PEG-RGD聚合物裝飾,構(gòu)建了一種智能納米調(diào)節(jié)器R-NCNP(圖4)。N-GQDs使得R-NCNP納米調(diào)控器對(duì)高溫具有光熱效應(yīng),表現(xiàn)出較強(qiáng)的光熱效應(yīng)和紅外熱成像(IRT)。

2 無(wú)機(jī)雜化納米材料

貴金屬納米材料具有較強(qiáng)表面等離子體共振效應(yīng)(surface plasmon resonance effect,SPR)和可調(diào)諧性[30],特別是金顆粒(Au NPs),由于具有粒徑小、光熱轉(zhuǎn)換率高、增強(qiáng)滲透性和保留效果(enhanced permeability and retention,EPR)等優(yōu)點(diǎn),成為PTT的主要介質(zhì)[31]。氧化石墨烯(graphene oxide,GO)具有良好的水相分散性、易于表面改性[32]、具有良好的生物相容性、無(wú)毒性和穩(wěn)定性,以及大型離域π-電子系統(tǒng)有助于氧化石墨烯在可見光和近紅外區(qū)域獲得良好的吸附能力。球形金納米殼和石墨烯基納米材料是兩種主要的NIR熱療劑,已被報(bào)道用于癌癥的光熱治療?;趦煞N材料的特征,He等[33]通過(guò)在氧化石墨烯涂上一層介孔二氧化硅,利用種子生長(zhǎng)法構(gòu)建了一層金納米片,形成GO@SiO2@AuNS材料(圖5)。氧化石墨烯上的二維結(jié)構(gòu)和介孔二氧化硅層不僅為錨定金種子和金殼生長(zhǎng)提供了模板,而且提高了氧化石墨烯的生物相容性和穩(wěn)定性。GO@SiO2@AuNS雜化材料在近紅外區(qū)域具有較強(qiáng)的吸收能力和光熱轉(zhuǎn)換效率,在低激光劑量(0.3 W/cm2)下表現(xiàn)出良好的光熱穩(wěn)定性,對(duì)癌細(xì)胞具有顯著的光消融作用。與GO@SiO2相比,GO@SiO2@AuNS雜化物在808 nm處的吸光度提高了近40倍。GO@SiO2@AuNS雜化物的光熱轉(zhuǎn)換效率約為30%,高于金納米棒(21.0%)。結(jié)果表明,GO@SiO2@AuNS雜化納米材料具有突出的癌癥光熱治療前景。

Liu等[34]通過(guò)DNA與稀土-金雜化納米粒子(UCNP-Au NPS)的靜電絡(luò)合,制備了一種新型的近紅外光響應(yīng)的、可注射性的DNA雜化水凝膠DNA-UCNP-Au。采用溶劑熱法制備了Yb3+和Er3+共摻雜的單分散NaYF4納米粒子,并以其為核與NaYF4∶Nd形成雜化物。以聚醚酰亞胺(polyetherimide,PEI)為表面包覆劑將NaYF4∶Yb和Er@NaYF4∶Nd(UCNP)轉(zhuǎn)化為親水性的UCNP-PEI。接著,PEI與HAuCl4發(fā)生氧化還原反應(yīng)生成UCNP-Au NPS(圖6)。與原始無(wú)機(jī)納米材料相比,DNA-UCNP-Au水凝膠具有較低的細(xì)胞毒性;同時(shí),在相同的近紅外光輻照下,表現(xiàn)出較快的加熱速率,PTT可有效抑制腫瘤復(fù)發(fā)。

在各種捕光劑中,二元Cu基半導(dǎo)體(即Cu2-xS、Cu2-xSe和Cu2-xTe)由于無(wú)毒、成本低和銅空位在NIR區(qū)域表現(xiàn)出局域表面等離子體共振(localized surface plasmon resonance,LSPR)而具有較高的光熱轉(zhuǎn)換效率,近年來(lái)受到了廣泛關(guān)注[35]。為了提高光療效果,將PDT和PTT整合到一個(gè)系統(tǒng)中被認(rèn)為是一種有效的策略[36]。Chen等[37]提出了由Cu-In-S(CIS)異質(zhì)結(jié)納米棒(HS-rod)、氯素e6(Ce6)和透明質(zhì)酸(HA)組成的Ce6-HA-CIS光熱治療納米雜化體(圖7),用于靶向PDT/PTT。雜化體中CIS-HS-rod作為PTT劑將光能轉(zhuǎn)化為熱能,Ce6作為PDT劑產(chǎn)生單線態(tài)氧(1O2)。HA包裹CIS-HS納米棒表面,并實(shí)現(xiàn)CIS-HS納米棒的水溶性。制備的Ce6-HA-CIS納米雜化體表現(xiàn)出較高的光熱轉(zhuǎn)換效率、良好的光穩(wěn)定性和光動(dòng)力活性。且體外和體內(nèi)實(shí)驗(yàn)表明,與單獨(dú)的PTT或PDT相比,Ce6-HA-CIS具有較低的細(xì)胞毒性和良好的協(xié)同光動(dòng)力和光熱殺傷癌細(xì)胞的作用。

Yang等[38]設(shè)計(jì)并合成了空心結(jié)構(gòu)的hCu2-xS@Au納米殼復(fù)合材料。通過(guò)在HCu2-xS@Au納米顆粒表面修飾二硫鍵橋接Au納米殼和多羧基石墨烯量子點(diǎn)(MC-GODs),實(shí)現(xiàn)可控給藥、監(jiān)測(cè)和高光熱轉(zhuǎn)換效率的多模式治療。結(jié)果表明,在808 nm近紅外光照射下,hCu2-xS@Au@MC-GODs的光熱轉(zhuǎn)換效率為32%。

在臨床醫(yī)學(xué)應(yīng)用中,由于血液和軟組織的吸收和散射,PTT需要具有相當(dāng)深穿透力的近紅外光[39]。先前的大量研究主要集中在近紅外第一窗口(NIR-I ,750~1 000 nm),相比之下,近紅外第二窗口(NIR-II, 1 000~1 350 nm)具有更深的組織穿透、更低的光散射和更大的最大允許曝光量(maximum permissible exposure,MPE)[40]。窄帶隙的p型納米半導(dǎo)體和具有LSPR的納米金屬都有良好的NIR光響應(yīng)特性[41-45],將等離子體金屬和窄帶隙半導(dǎo)體集成到異質(zhì)結(jié)構(gòu)單元中,可促進(jìn)高效的PTT。金納米粒子作為最常用的等離子體納米材料,在光催化[46]、生物成像、光熱治療等領(lǐng)域得到了廣泛的應(yīng)用[47]。傳統(tǒng)的研究主要集中在納米結(jié)構(gòu)的形狀和尺寸上。當(dāng)相同的物質(zhì)在種子上生長(zhǎng)(同金屬生長(zhǎng))時(shí),界面完美匹配,生長(zhǎng)材料將形成一個(gè)保形層,類似于液體層的潤(rùn)濕性。由于其中有強(qiáng)鍵合,很少有方法可以調(diào)整同金屬界面?;诖?,Jia等[48]報(bào)道了一種Au-on-AuNR雜化納米珊瑚結(jié)構(gòu)材料,通過(guò)嵌入小的有機(jī)硫醇分子增加生長(zhǎng)材料與底層種子之間的界面能,導(dǎo)致典型的潤(rùn)濕生長(zhǎng)轉(zhuǎn)變?yōu)閸u狀非潤(rùn)濕生長(zhǎng)模式,成功獲得了一系列Au-on-AuNR雜化結(jié)構(gòu)。金納米棒上Au的生長(zhǎng)情況可經(jīng)優(yōu)化結(jié)合界面能和反應(yīng)動(dòng)力學(xué)得到調(diào)節(jié)。通過(guò)改變AuNR上出現(xiàn)的Au域,可以在可見NIR光譜范圍內(nèi)有效且連續(xù)地微調(diào),結(jié)合對(duì)AuNRs的尺寸和長(zhǎng)寬比的常規(guī)控制,進(jìn)而有利于功能材料的結(jié)構(gòu)精細(xì)化調(diào)控。通過(guò)體外和體內(nèi)實(shí)驗(yàn)得出材料在NIR-II區(qū)域具有強(qiáng)烈吸收和出色的光熱轉(zhuǎn)換行為,表明納米珊瑚結(jié)構(gòu)具有較好光熱療法和光聲顯像劑。Li等[49]制備了超薄層狀雙氫氧化物(layered double hydroxides,LDHs)負(fù)載的Ag@Ag2O核殼納米顆粒(Ag@Ag2O/LDHs-U),極大地提高了NIR-II光熱性能,在1 064 nm激光下光熱效率高達(dá)76.9%。研究表明,超細(xì)Ag@Ag2O核殼納米顆粒(約3.8 nm)高度分散并固定在超薄LDHs納米片內(nèi),而Ag2O外殼具有豐富的空位型缺陷。此外,體內(nèi)外活性測(cè)試進(jìn)一步證實(shí)了Ag@Ag2O/LDHs-U在NIR-II區(qū)域具有良好的生物相容性和突出的PTT治療效果。

3 有機(jī)-無(wú)機(jī)雜化納米材料

近年來(lái),開發(fā)的近紅外光熱材料可分為有機(jī)材料和無(wú)機(jī)材料兩大類。然而,現(xiàn)有的有機(jī)近紅外光熱材料往往存在光穩(wěn)定性差、光熱轉(zhuǎn)換效率低、血液清除速率快等問(wèn)題[50],而無(wú)機(jī)光熱材料通常存在生物相容性差、不可降解性、毒性大等缺點(diǎn)[51]。近紅外有機(jī)/無(wú)機(jī)納米雜化材料不僅可以結(jié)合有機(jī)和無(wú)機(jī)部分的原始性能,而且通過(guò)單個(gè)成分的協(xié)同作用(如理想的光學(xué)、生物和藥物特性等)[52-53],有望產(chǎn)生新的特性,在PTT領(lǐng)域引起了廣泛關(guān)注。通過(guò)無(wú)機(jī)納米活性結(jié)構(gòu)與功能有機(jī)分子的偶聯(lián)和/或組裝,不僅可以提高NIR治療癌癥的療效,還可以增強(qiáng)NIR光熱治療劑的生物相容性和穩(wěn)定性。

LDHs作為一種二維陰離子插層功能納米材料或前驅(qū)體,因其在物理化學(xué)性質(zhì)和結(jié)構(gòu)上的可變性而受到納米材料領(lǐng)域的廣泛關(guān)注[54]。Zhang等[55]報(bào)道了一種低帶隙的電子給體-受體效應(yīng)誘導(dǎo)的有機(jī)/無(wú)機(jī)納米雜化物(ICG/Ag/LDHs)。將Ag納米粒子原位沉積到CoAl-LDHs表面(Ag/LDHs),然后將ICG耦合到Ag/LDHs上。結(jié)果表明,在808 nm激光照射下,ICG/Ag/LDHs的光熱轉(zhuǎn)換效率(~45.5%)比ICG(~28.4%)提高了1.6倍。且體外和體內(nèi)實(shí)驗(yàn)結(jié)果均證實(shí)了ICG/Ag/LDHs在NIR引發(fā)的癌癥治療中具有良好的生物相容性。

此外,Sun等[56]將金納米棒(gold nanorods,GNRs)封裝在聚吡咯(polypyrrole,PPy)外殼中,并通過(guò)修改SiO2硬模板來(lái)控制它們之間的空隙空間,形成具有可調(diào)諧的空隙空間(GNRs@Void@PPy)。雙NIR吸收的組分提供了協(xié)同增強(qiáng)光熱性能的作用,并通過(guò)體外和體內(nèi)實(shí)驗(yàn)證實(shí)了該雜化物具有較高的抗腫瘤活性。

目前,在NIR-II生物窗中已經(jīng)開發(fā)了一系列用于腫瘤PTT和成像的PTAs,如WO3-x納米點(diǎn)(NDs)、Bi2S3-Ag2S-DATS@BSA-N3納米系統(tǒng)、Au NDs和TeO2/(NH4)xWO3NCs[57-60]等。此外,據(jù)報(bào)道,Cu2Se比Cu2S或Cu2SSe具有更好的光熱效應(yīng)[61],可能是由Se2-最外層的電子產(chǎn)生的,比S2-更容易吸收光子并被激光激發(fā)?;诖耍琀u等[62]報(bào)道了一種新型的NIR-II響應(yīng)納米平臺(tái)(硒化鎳@聚多巴胺納米復(fù)合材料,NiSe@PDA NCs),用于雙模型成像引導(dǎo)光熱治療,在NIR-II激光(1 064 nm)照射下,NiSe@PDA NCs的光熱轉(zhuǎn)換效率可達(dá)48.4%,光熱轉(zhuǎn)換效率高于單個(gè)NiSe NPs。

無(wú)機(jī)納米材料二硫化鉬(MoS2[63 ]作為PTT納米劑或放射增敏劑得到了廣泛的研究。由于無(wú)機(jī)納米級(jí)材料不能被生物降解,通常會(huì)在體內(nèi)停留很長(zhǎng)時(shí)間,造成潛在的長(zhǎng)期毒性。聚苯胺(polyaniline,PANI)具有良好的光熱轉(zhuǎn)換效率、顯著的生物相容性和良好的光穩(wěn)定性等特征。鑒于此,Wang等[64]通過(guò)靜電作用采用溶劑熱法制備了二硫化鉬量子點(diǎn)@聚苯胺(MoS2@PANI)雜化多功能納米材料。聚苯胺作為可生物降解和無(wú)毒的有機(jī)材料,可有效降低無(wú)機(jī)材料的治療濃度,進(jìn)而降低MoS2在體內(nèi)的保留量。通過(guò)與偶聯(lián)劑形成穩(wěn)定的酰胺鍵,得到可溶性良好和穩(wěn)定高的MoS2@PANI雜化納米材料,其具有較強(qiáng)的X射線衰減和較高的NIR吸收效率,可作為腫瘤X射線計(jì)算機(jī)斷層掃描(X-ray computed tomography,X-CT)和光聲(photoacoustic,PA)成像的造影劑。二硫化鉬納米量子點(diǎn)能產(chǎn)生強(qiáng)烈的熒光,有望作為體外和體內(nèi)成像的探針或放射增敏劑。由于PTT誘導(dǎo)的適當(dāng)水平的熱療可以增加腫瘤內(nèi)血流,進(jìn)而增強(qiáng)腫瘤微環(huán)境中的氧條件,導(dǎo)致細(xì)胞對(duì)放射治療(radiation therapy,RT)更加敏感[65]。簡(jiǎn)言之,MoS2@PANI雜化納米材料可實(shí)現(xiàn)同步CT/PA成像和協(xié)同PTT/RT聯(lián)合治療癌癥。

霍氏小組報(bào)道了鎢氧化物納米顆粒(WO NPs)可以在NIR-II范圍內(nèi)吸收光,并且具有良好的光熱轉(zhuǎn)換效果和穩(wěn)定性。一些光熱劑,如PANI細(xì)胞毒性低,不僅具有優(yōu)異的光熱轉(zhuǎn)化性能,而且可作為表面涂層材料,與其他光熱劑[66-68]形成復(fù)合光熱納米載體。鑒于PANI和W18O49在光熱治療中的優(yōu)勢(shì),Yang等[69]制備PANI@W18O49@Fe3O4(PWF)和PANI@W18O49(PW)的有機(jī)-無(wú)機(jī)雜化納米顆粒。不同波長(zhǎng)(808和1 064 nm)下的納米顆粒的吸光度和光熱測(cè)量結(jié)果表明,其光熱性能是穩(wěn)定的。PANI@W18O49在808和1 064 nm激光照射下的光熱轉(zhuǎn)換效率可分別達(dá)到50.43%和30.69%,PANI@W18O49@Fe3O4的光熱轉(zhuǎn)換效率也可達(dá)到63.9%和32.55%。藥物釋放實(shí)驗(yàn)證明,混合納米顆??梢栽陔p刺激反應(yīng)(pH和溫度)條件下控制DOX的釋放,從而減少生理?xiàng)l件下藥物不受控制釋放引起的副作用。研究結(jié)果表明,制備的雜化納米顆粒具有應(yīng)用于光熱和化療聯(lián)合治療的潛力;同時(shí),雜化納米顆粒不僅不影響W18O49的光熱性能,而且提高了其抗氧化性能。

4 總結(jié)與展望

光熱治療由于具有高效快速、侵入性小、無(wú)創(chuàng)等優(yōu)點(diǎn),被廣泛開發(fā)用于治療惡性腫瘤、消炎、抗菌等生物醫(yī)學(xué)應(yīng)用領(lǐng)域。本文總結(jié)了最近幾年光熱雜化材料的制備方法及其功能活性。隨著無(wú)機(jī)、有機(jī)光熱材料的發(fā)展,通過(guò)多種光熱材料的摻雜、包覆、表面修飾等方法開發(fā)雜化納米材料(包括碳基雜化材料、無(wú)機(jī)雜化材料、有機(jī)-無(wú)機(jī)雜化材料等)解決了使用單一材料面臨的生物相溶性差、穩(wěn)定性差、毒性大、靶向性能差、缺少成像性等問(wèn)題。雜化納米材料通過(guò)融合光熱材料、靶向材料、成像材料、化療材料和放射性材料等達(dá)到聯(lián)合協(xié)同治療的效果。同時(shí),光熱治療與化療、放療、光動(dòng)力治療的協(xié)同運(yùn)用為其在臨床上的應(yīng)用提供了可能。這些方法為進(jìn)一步開發(fā)高光熱效率、高安全性的新型雜化光熱材料提供了思路,促進(jìn)高效治療癌癥技術(shù)的發(fā)展,為光熱協(xié)同治療提供材料支持,使得光熱雜化納米材料在腫瘤的治療臨床應(yīng)用具有廣闊的前景。

參考文獻(xiàn):

[1] LV Z Q, HE S J, WANG Y F, et al. Noble metal nanomaterials for NIR-triggered photothermal therapy in cancer[J]. Advanced Healthcare Materials, 2021, 10(6): 2001806.

[2] BAO Z H, LIU X R, LIU Y D, et al. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy[J]. Asian Journal of Pharmaceutical Sciences, 2016, 11(3): 349-364.

[3] ZOU Y, LI M L, XIONG T, et al. A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy[J]. Small, 2020, 16(18): 1907677.

[4] ZHAO R X, ZHU Y L, ZHOU J L, et al. Dual glutathione depletion enhanced enzyme catalytic activity for hyperthermia assisted tumor therapy on semi-metallic VSe2/Mn-CS[J]. ACS Nano, 2022, 16(7): 10904-10917.

[5] BIAN W Q, WANG Y K, PAN Z X, et al. Review of functionalized nanomaterials for photothermal therapy of cancers[J]. ACS Applied Nano Materials, 2021, 4(11): 11353-11385.

[6] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[7] YU J, JAVIER D, YASEEN M A, et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules[J]. Journal of the American Chemical Society, 2010, 132(6): 1929-1938.

[8] YANG J, CHOI J, BANG D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie-International Edition, 2011, 123(2): 461-464.

[9] LOVELL J F, JIN C S, HUYNH E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 2011, 10(4): 324-332.

[10]ALAMDARI S G, AMINI M, JALILZADEH N, et al. Recent advances in nanoparticle-based photothermal therapy for breast cancer[J]. Journal of Controlled Release, 2022, 349: 269-303.

[11]WANG J, WU X, SHEN P, et al. Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment[J]. International Journal of Nanomedicine, 2020, 15: 1903.

[12]HUANG J S, WANG J Q, HUANG Z C, et al. Photothermal technique-enabled ambient production of microalgae biodiesel: mechanism and life cycle assessment[J]. Bioresource Technology, 2023,369: 128390.

[13]KOTCHEY G P, ALLEN B L, VEDALA H, et al. The enzymatic oxidation of graphene oxide[J]. ACS Nano, 2011, 5(3): 2098-2108.

[14]CHENG L, RUAN W M, ZOU B F, et al. Chemical template-assisted synthesis of monodisperse rattle-type Fe3O4@C hollow microspheres as drug carrier[J]. Acta Biomaterialia, 2017, 58: 432-441.

[15]ZHANG Y L, LIU G N, WEI J Y, et al. Platelet membrane-based and tumor-associated platelettargeted drug delivery systems for cancer therapy[J]. Frontiers of Medicine, 2018, 12(6): 667-677.

[16]WANG J H, LI D, FAN Y, et al. Core-shell tecto dendrimers formed via host-guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery[J]. Nanoscale, 2019, 11(46): 22343-22350.

[17]ZHANG M Y, LIU X J, LUO Q, et al. Tumor environment responsive degradable CuS@mSiO2@MnO2/DOX for MRI guided synergistic chemo-photothermal therapy and chemodynamic therapy[J]. Chemical Engineering Journal, 2020, 389: 124450.

[18]WANG Y Y, LIU X J, DENG G Y, et al. Se@SiO2-FA-CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy[J]. Nanoscale, 2018, 10(6): 2866-2875.

[19]LEE J H, GIBSON K J, CHEN G, et al. Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals[J]. Nature Communications, 2015, 6: 1-9.

[20]LIU X, WANG C, WANG X Y, et al. A dual-targeting Fe3O4@C/ZnO-DOX-FA nanoplatform with pH-responsive drug release and synergetic chemo-photothermal antitumor in vitro and in vivo[J]. Materials Science & Engineering C-Materials for Biological Applications, 2021, 118: 111455.

[21]BAO Z H, LIU X R, LIU Y D, et al. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy[J]. Asian Journal of Pharmaceutical Sciences, 2016, 11(3): 349-364.

[22]HUANG J S, JIAN Y M, LI H, et al.Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of Jatropha oil to biodiesel[J]. Catalysis Today, 2022, 404: 35-48.

[23]QI X L, RUI Y, FAN Y C, et al. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo[J]. Colloids and Surfaces B-Biointerfaces, 2015, 133: 314-322.

[24]DONG X, SUN Z T, WANG X X, et al. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2017, 13(7): 2271-2280.

[25]KIM J H, KIM J H, JEONG C, et al. Synergistic nanomedicine by combined gene and photothermal therapy[J]. Advanced Drug Delivery Reviews, 2016, 98: 99-112.

[26]LIU Z, SUN X M, NAKAYAMA-RATCHFORD N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery[J]. ACS Nano, 2007, 1(1): 50-56.

[27]ZHAO Y A, ZHAO T Y, CAO Y N, et al. Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy[J]. ACS Nano, 2021,15(4): 6517-6529.

[28]LIU Q, GUO B D, RAO Z Y, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters, 2013, 13(6): 2436-2441.

[29]ZHANG X, ONGACHWA MACHUKI J, PAN W Z, et al Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy[J]. ACS Nano, 2020, 14(4): 4045-4060.

[30]LV Z Q, HE S J, WANG Y F, et al. Noble metal nanomaterials for NIR-triggered photothermal therapy in cancer[J]. Advanced Healthcare Materials, 2021, 10(6): 2001806.

[31]CHEN H J, SHAO L, MING T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small, 2010, 6(20): 2272-2280.

[32]MACKEY M A, ALI M R K, AUSTIN L A, et al. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments[J]. The Journal of Physical Chemistry B, 2014, 118: 131326.

[33]HE S Y, LI J Y, CHEN M J, et al. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy[J]. International Journal of Nanomedicine, 2020, 15: 8451.

[34]LIU B, SUN J, ZHU J J, et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy[J]. Advanced Materials, 2020, 32(39): 2004460.

[35]ALONSO M I, WAKITA K, PASCUAL J, et al. Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2[J]. Physical Review B, 2001, 63(7): 075203.

[36]LI Q, HONG L, LI H G, et al. Graphene oxide-fullerene C60(GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light[J]. Biosensors & Bioelectronics, 2017, 89: 477-482.

[37]CHEN S H, HUANG W W, DEHVARI K, et al. Photosensitizer-conjugated Cu-In-S heterostructured nanorods for cancer targeted photothermal/photodynamic synergistic therapy[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 97: 793-802.

[38]YANG L, HU B, LIU A H, et al. A hollow-structured nanohybrid: intelligent and visible drug delivery and photothermal therapy for cancer[J]. Talanta, 2020, 215: 120893.

[39]LIU Y J, BHATTARAI P, DAI Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 2019, 48(7): 2053-2108.

[40]LIN H, GAO S S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 2017, 139(45): 16235-16247.

[41]JI M W, XU M, ZHANG W, et al. Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency[J]. Advanced Materials, 2016,28(16), 3094-3101.

[42]LI H, LI Y, FANG Z, et al. Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids[J]. Catalysis Today, 2019, 319: 84-92.

[43]HUANG J S, JIAN Y M, ZHU P, et al. Research progress on the photo-driven catalytic production of biodiesel[J]. Frontiers in Chemistry, 2022, 10: 904251.

[44]ZHOU Z, LI B, SHEN C, et al. Metallic 1T phase enabling MoS2nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-ii window[J]. Small, 2020, 16(43): 2004173.

[45]LI H, ZHAO W F, RIISAGER A, et al. A Pd-catalyzed in situ domino process for mild and quantitative production of 2, 5-dimethylfuran directly from carbohydrates[J]. Green Chemistry, 2017,19(9): 2101-2106.

[46]JIA H L, DU A X, ZHANG H, et al. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation[J]. Journal of the American Chemical Society, 2019, 141: 5083-5086.

[47]LIU Y J, BHATTARAI P, DAI Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 2019, 48: 2053-2108.

[48]JIA J, LIU G Y, XU W J, et al. Fine-tuning the homometallic interface of au-on-au nanorods and their photothermal therapy in the NIR-II window[J]. Angewandte Chemie, 2020, 132: 14551-14556.

[49]LI K L, MA X T, HE S, et al. Ultrathin nanosheet-supported Ag@Ag2O core-shell nanoparticles with vastly enhanced photothermal conversion efficiency for NIR-II-triggered photothermal therapy[J]. ACS Biomaterials Science & Engineering, 2022, 8(2): 540-550.

[50]FORGACS E, CSERHTI T, OROS G. Removal of synthetic dyes from wastewaters: a review[J]. Environment International, 2004, 30(7): 953-971.

[51]LIU Z, FAN A C, RAKHRA K, et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy[J]. Angewandte Chemie-International Edition, 2009, 48(41): 7668-7672.

[52]ZHAO N N, YAN L M, ZHAO X Y, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications[J]. Chemical Reviews, 2018, 119(3): 1666-1762.

[53]LI H, ZHAO W F, FANG Z. Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures[J]. Applied Catalysis B: Environmental, 2017, 215: 18-27.

[54]GUAN S Y, WENG Y Z, LI M N, et al. An NIR-sensitive layered supramolecular nanovehicle for combined dual-modal imaging and synergistic therapy[J]. Nanoscale, 2017, 9(29): 10367-10374.

[55]ZHANG G J, LI K, HE S, et al. Electron donor-acceptor effect-induced organic/inorganic nanohybrids with low energy gap for highly efficient photothermal therapy[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17920-17930.

[56]SUN X H, WANG J, WANG Z Y, et al. Gold nanorod@void@ polypyrrole yolk@shell nanostructures: synchronous regulation of photothermal and drug delivery performance for synergistic cancer therapy[J]. Journal of Colloid and Interface Science, 2022, 610: 89-97.

[57]ZHENG Z L, CHEN Q, DAI R, et al. A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy[J]. Nanoscale, 2020, 12(21): 11562-11572.

[58]CHENG Y R, YANG F, XIANG G L, et al. Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy[J]. Nano Letters, 2019, 19(2): 1179-1189.

[59]YIN C, LI X Z, WANG Y, et al. Organic semiconducting macromolecular dyes for NIR-II photoacoustic imaging and photothermal therapy[J]. Advanced Functional Materials, 2021, 31(37): 2104650.

[60]LI J, JIANG R C, WANG Q, et al. Semiconducting polymer nanotheranostics for NIR-II/photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy[J]. Biomaterials, 2019, 217: 119304.

[61]WANG X W, ZHONG X Y, LEI H L, et al. xHollow Cu2Se nanozymes for tumor photothermal-catalytic therapy[J]. Chemistry of Materials, 2019, 31(16): 6174-6186.

[62]HU W X, ZHEN W Y, ZHANG M C, et al. Development of nickel selenide@polydopamine nanocomposites for magnetic resonance imaging guided NIR-II photothermal therapy[J]. Advanced Healthcare Materials, 2021, 10(23): 2101542.

[63]YIN W Y, YAN L, YU J, et al. High-throughput synthesis of single-layer MoS2nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy[J]. ACS Nano, 2014, 8: 6922-6933.

[64]WANG J P, TAN X X, PANG X J, et al. MoS2quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy[J]. ACS Applied Materials & Interfaces, 2016, 8: 24331-24338.

[65]YONG Y, CHENG X J, BAO T, et al. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy[J]. ACS Nano, 2015, 9: 12451-12463.

[66]LI H, GUO H X, SU Y Q, et al. N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks[J]. Nature Communications, 2019,10(1): 699.

[67]YU C C, XU L J, ZHANG Y Y, et al. Polymer-based nanomaterials for noninvasive cancer photothermal therapy[J]. ACS Applied Polymer Materials, 2020, 2: 4289-4305.

[68]LI H, ZHANG Q S, BHADURY P S, et al. Furan-type compounds from carbohydrates via heterogeneous catalysis[J]. Current Organic Chemistry, 2014 18(5): 547-597.

[69]YANG S S, YANG P F, XIE Y L, et al. Organic-inorganic hybrid photothermal nanomaterials for combined photothermal and chemotherapy therapy of tumors under the dual biological window[J]. Journal of Materials Science, 2021, 56: 18219-18232.

(責(zé)任編輯:曾 晶)

Advances in Photothermal Therapy of Tumors

Using Hybrid Nanomaterials

HUANG Xiaoxiu1,2, LI Hu*2, YANG Song2

(1.Panzhou Peoples Hospital, Liupanshui 553500, China; 2.Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang 550025, China)

Abstract: Photothermal therapy (PTT) is an efficient, rapid, less invasive or even non-invasive technique. A single nanomaterial is usually used as a photothermal agent in the photothermal therapy, which, however, is affected by problems such as poor biocompatibility, poor stability, high toxicity, poor targeting performance, and lack of imaging. Therefore, the author mainly reviews the hybrid nanomaterials developed in recent years. Through a variety of photothermal materials doping, coating, surface modification and other methods, carbon-based hybrid, inorganic hybrid, organic-inorganic hybrid and other photothermal materials with excellent photothermal properties have been developed to solve the problems faced by using single photothermal materials.In addition, the fusion of photothermal materials, targeting materials, imaging materials, chemotherapy materials and radioactive materials are used to achieve the effect of joint synergistic therapy. Hybrid materials promote the development of efficient cancer treatment technology and supply material support for photothermal synergistic therapy. These methods provide ideas for the further development of new hybrid photothermal materials. It is expected to develop hybrid photothermal materials with high photothermal efficiency and high safety based on the currently reported materials with photothermal potential, which makes photothermal hybrid nanomaterials have broad prospects in the clinical photothermal therapy of tumors.

Key words: photothermal therapy; photothermal materials; targeting specificity; biocompatibility; cancer cell

猜你喜歡
癌細(xì)胞
癌細(xì)胞最怕LOVE
假如吃下癌細(xì)胞
美麗療法打敗癌細(xì)胞
特別健康(2018年3期)2018-07-04 00:40:10
癌細(xì)胞最怕Love
奧秘(2017年5期)2017-07-05 11:09:30
放射對(duì)口腔鱗癌細(xì)胞DNA損傷和糖酵解的影響
正常細(xì)胞為何會(huì)“叛變”? 一管血可測(cè)出早期癌細(xì)胞
miR-139在結(jié)直腸癌組織中的表達(dá)及其對(duì)癌細(xì)胞生長(zhǎng)的影響
電離輻射促進(jìn)食管鱗癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化及遷移
C-Met蛋白與HGF蛋白在舌鱗癌細(xì)胞中的表達(dá)及臨床意義
C-Met蛋白與HGF蛋白在舌鱗癌細(xì)胞中的表達(dá)及臨床意義
镇赉县| 鄯善县| 天峨县| 岳西县| 洛扎县| 古田县| 商南县| 霍山县| 鲁甸县| 周至县| 左云县| 金门县| 泗阳县| 巴东县| 商城县| 临湘市| 贵阳市| 得荣县| 永州市| 名山县| 井研县| 安仁县| 冷水江市| 旌德县| 神木县| 赣州市| 清苑县| 双峰县| 马鞍山市| 察哈| 全南县| 巴彦淖尔市| 大足县| 崇信县| 樟树市| 会理县| 乌恰县| 长治县| 瑞丽市| 内黄县| 营口市|