談 強(qiáng),廖達(dá)秀,陽(yáng)濟(jì)章,李德念,袁浩然,
中藥渣制備超高比表面積活性炭及其甲苯吸附性能研究*
談 強(qiáng)1,廖達(dá)秀1,陽(yáng)濟(jì)章2,3,4,李德念2,3,4,袁浩然2,3,4,?
(1. 廣州環(huán)投永興集團(tuán)股份有限公司,廣州 510015;2. 中國(guó)科學(xué)院廣州能源研究所,廣州 510640;3. 中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州 510640;4. 廣東省新能源與可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣州 510640)
以中藥渣為碳源,采用KOH輔助活化制備了具有超高比表面積的中藥渣活性炭吸附劑。探索了堿炭質(zhì)量比(KOH/C)、活化溫度對(duì)吸附劑孔隙結(jié)構(gòu)及其對(duì)甲苯吸附行為的影響。在KOH/C為5、溫度為800 ℃的熱解條件下,活性炭的比表面積和總孔容分別達(dá)到了3 549 m2/g和2.12 cm3/g,微孔比表面積和微孔孔容分別為2 529 m2/g和1.33 cm3/g,微孔占比達(dá)到了62.7%。在25 ℃、相對(duì)壓力/0為0.9 ~ 1時(shí)的甲苯吸附量更是高達(dá)2 612 mg/g。該中藥渣活性炭吸附劑在揮發(fā)性有機(jī)物去除方面具有廣闊的應(yīng)用前景。
中藥渣;KOH;活性炭;甲苯吸附;揮發(fā)性有機(jī)物
在中國(guó),中藥被廣泛用于預(yù)防和治療疾病,大多數(shù)中藥是草本植物。中藥在生產(chǎn)與使用的過(guò)程中,會(huì)產(chǎn)生大量的中藥殘?jiān)黐1],其年產(chǎn)量高達(dá)6 000萬(wàn)t ~ 7 000萬(wàn)t,但這些中藥殘?jiān)](méi)有得到有效利用。如果將這些中藥殘?jiān)苯尤拥艋蜻M(jìn)行焚燒處理,將會(huì)帶來(lái)一定的環(huán)境問(wèn)題[2-4]。因此,如何實(shí)現(xiàn)中藥渣的資源化利用,被認(rèn)為是一個(gè)亟待解決的重大問(wèn)題[5]。
在眾多的處理技術(shù)中,熱解技術(shù)為中藥渣的工業(yè)化應(yīng)用提供了一條高效可靠的途徑[6]。生物炭是熱解過(guò)程中產(chǎn)生的固相產(chǎn)物,在土壤改良、碳質(zhì)吸附劑、功能復(fù)合材料的制備等方面具有廣闊的應(yīng)用前景[7-9]。例如,連翹、耳丁、金銀花等中草藥殘?jiān)恢苯佑米魈荚?,通過(guò)控制氧的濃度和溫度,制備出一種用于去除水中四環(huán)素的碳質(zhì)吸附劑[10]。通過(guò)尿素和KOH輔助炭化刺五加殘?jiān)?,可得到富微孔、氮摻雜的多孔炭材料,并用于鋰硫電池載體[11]。多孔炭在對(duì)揮發(fā)性有機(jī)物(volatile organic compounds, VOCs)的吸附和環(huán)境修復(fù)具有重要意義[12-16]。
甲苯是一種典型的VOCs[12,17],嚴(yán)重威脅人體健康[18]。目前,已發(fā)展出多種甲苯去除技術(shù),如吸收、吸附、膜分離、等離子體降解等[19-22]。其中,吸附法操作簡(jiǎn)單、效率高、能耗低,性價(jià)比最高。用于去除甲苯的吸附劑種類很多,包括活性炭[22]、碳納米管[23]、沸石[24]、金屬有機(jī)骨架(metal-organic framework, MOF)[25]等。比表面積和孔容是影響吸附劑吸附能力的關(guān)鍵因素?;钚蕴烤哂谐^(guò)1 000 m2/g的比表面積和發(fā)達(dá)的孔隙結(jié)構(gòu),因此活性炭成為最受歡迎的VOCs吸附劑[12-13]。
本文以KOH輔助活化熱解中藥渣,制備出具有較大比表面積和豐富表面官能團(tuán)的分層多孔活性炭。通過(guò)設(shè)置正交試驗(yàn),詳細(xì)研究活化溫度和活化劑用量對(duì)活性炭孔隙結(jié)構(gòu)和表面官能團(tuán)的影響,以及對(duì)甲苯的吸附性能的影響,旨在為中藥渣的高值化利用提供一種新的路徑。
中藥渣來(lái)自廣東揭陽(yáng)某制藥廠,KOH(分析純)購(gòu)自上海麥克林生化有限公司,去離子水為實(shí)驗(yàn)室自行制備。
中藥渣活性炭的制備過(guò)程可分為三步。①將新鮮中藥渣放入溫度為105 ℃的烘箱中進(jìn)行烘干處理,烘干后用粉碎機(jī)將中藥渣粉碎成粉末,取60 g粉末放置于石英舟并轉(zhuǎn)入管式爐中進(jìn)行預(yù)炭化,以5 ℃/min的升溫速率升至450 ℃,并保持恒溫0.5 h,得到預(yù)炭化的中藥渣炭,記為PHRC-450;②取10 g PHRC-450,并與一定質(zhì)量的KOH混合均勻,轉(zhuǎn)入管式爐中進(jìn)行活化,以5 ℃/min 的升溫速率升至700 ~ 900 ℃,并保持恒溫1 h;③降至室溫后,先用稀鹽酸浸泡24 h,再用去離子水清洗至中性,最后于105 ℃下烘干,得到活化后的中藥渣炭,記為HRC-K-(其中為KOH與PHRC-450的質(zhì)量比,= 2,3,4,5,6;代表不同的活化溫度)。
掃描電子顯微鏡(scanning electron microscope, SEM)(日本,Hitachi,S-4800)和透射電子顯微鏡(transmission electron microscopy, TEM)(日本,JEOL JEM-2100F)用于表征材料的形貌結(jié)構(gòu)。X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)(美國(guó),Thermo Fisher Scientific,ESCALAB250xi)用于分析材料表面元素。X射線衍射(X-ray diffraction, XRD)圖譜通過(guò)X射線衍射儀(荷蘭,PANalytical,X’Pert Pro MPD)獲得。傅里葉變換紅外光譜儀(Fourier transform infrared spectrometer, FT-IR)(美國(guó),Thermo Fisher Scientific,Nicolet iS50/Nicolet iN10)用于分析材料表面官能團(tuán)。用氣體吸附儀(美國(guó),Quantachrome,Quadrasorb)分析氮?dú)馕摳角€,獲取甲苯吸附曲線,并用吸附儀自帶軟件進(jìn)行數(shù)據(jù)分析。
通過(guò)掃描電子顯微鏡和透射電子顯微鏡對(duì)材料的微觀形貌結(jié)構(gòu)進(jìn)行研究。圖1是HRC-5K-800的SEM和TEM圖,圖中可見HRC-5K-800含有大量的孔洞。
圖1 HRC-5K-800的SEM(a、b)圖和TEM(c、d)圖
此外,HRC-K-的微觀形貌也因的不同,發(fā)生了明顯的變化,由原來(lái)致密的塊狀固體,逐漸轉(zhuǎn)變?yōu)榫哂卸嗫捉Y(jié)構(gòu)的固體,如圖2和圖3所示。結(jié)果表明,隨著的增大與的升高,中藥渣炭與KOH之間的反應(yīng)也隨之加劇[26],但整體結(jié)構(gòu)并沒(méi)有發(fā)生變化。
通過(guò)氮?dú)獾葴匚摳綄?shí)驗(yàn),進(jìn)一步研究HRC-K-的孔隙分布情況。如圖4(a)所示,PHRC-450的吸脫附曲線幾乎是一條直線,表明在整個(gè)壓力范圍內(nèi),PHRC-450的氮?dú)馕搅靠梢院雎圆挥?jì),說(shuō)明PHRC-450的孔隙結(jié)構(gòu)不發(fā)達(dá)此外,隨著和的不同,HRC-K-的孔隙度發(fā)生了明顯的變化,如圖4(b)和4(d)所示。HRC-K-的吸脫附曲線為典型的I型等溫曲線,在相對(duì)壓力/0小于0.05時(shí),氮?dú)馕搅考眲≡黾?,且很快達(dá)到飽和。而在較高的相對(duì)壓力下,吸附能力幾乎沒(méi)有明顯的增加,說(shuō)明HRC-K-的結(jié)構(gòu)以微孔為主。有趣的是,對(duì)于HRC-6K-800而言,在相對(duì)壓力大于0.9時(shí),吸附能力開始增強(qiáng),說(shuō)明HRC-6K-800的孔隙變大,這可能是由于過(guò)量的氫氧化鉀和較高的活化溫度,使活化過(guò)程過(guò)于劇烈,進(jìn)而引起微孔坍塌成大孔,導(dǎo)致孔容降低[13,25,27],這與HRC的孔結(jié)構(gòu)特性參數(shù)和孔徑分布結(jié)果是一致的,詳見表1和圖4(b)。
表1 HRC的孔結(jié)構(gòu)特性參數(shù)
用X射線衍射儀分析活化溫度和活化劑量對(duì)HRC結(jié)晶度的影響,圖5展示了HRC-K-的XRD圖譜。由圖可見,在26°和44°附近有兩個(gè)寬峰,對(duì)應(yīng)的是石墨微晶(002)和(100)晶面的特征峰。其中,(002)表示石墨微晶層片的空間排列規(guī)則程度,(100)表示石墨微晶的晶面直徑大小[28]。結(jié)果表明,熱解溫度低,石墨化程度不明顯,得到的活性炭是無(wú)定形結(jié)構(gòu)[29]。然而,(100)的峰強(qiáng)度在不斷下降,說(shuō)明金屬鉀嵌入碳晶格中,不斷發(fā)生反應(yīng),從而導(dǎo)致晶面直徑減小[26]。對(duì)于HRC-K-800而言,保持溫度不變,增大活化劑量,活化程度加劇,(002)面的空間排列趨于無(wú)序,因此峰強(qiáng)度下降。對(duì)于HRC-5K-而言,保持活化劑量不變,升高溫度會(huì)促使孔結(jié)構(gòu)坍塌,空間排列規(guī)則程度降低,因此峰強(qiáng)度降低[28,30]。
圖5 HRC-nK-T的XRD衍射圖
X射線光電子能譜用于表征材料表面的化學(xué)結(jié)構(gòu),圖6和表2顯示HRC-5K-800含有C、N、O三種元素。由圖6(b)~ 6(d)和表3可知,C1s譜分裂成6個(gè)峰,表明C存在6種成鍵形式,分別為C=C(283.8 eV)、C—C(284.6 eV)、C—O(285.1 eV)、C—N(286.2 eV)、C=O(287.5 eV)、COOH(289.4 eV);O1s分裂成4個(gè)峰,分別為O=C(531.5 eV)、O—C(533.1 eV)、HO—C(534.4 eV)和COOH(537.1 eV);N1s則分裂成4個(gè)峰,分別為吡啶N(398.1 eV)、吡咯N(400.2 eV)、石墨化N(401.1 ~ 401.5 eV)和氧化型N(403.0 ~ 406.0 eV)[31-34]。
值得注意的是,隨著值增大到4,C=C和C—C含量逐漸降低,可能是C=C和C—C優(yōu)先參與活化過(guò)程,且在HRC-5K-800中的相對(duì)含量略微減少,而在HRC-5K-900中的含量卻有所增加。這是由于當(dāng)溫度高于700 ℃時(shí),金屬鉀嵌入碳晶格中并發(fā)生反應(yīng),導(dǎo)致含量降低。當(dāng)溫度為900 ℃時(shí),有利于提高石墨化進(jìn)程,進(jìn)而提高其含量[26-27]。當(dāng)= 4和5時(shí),C—O和C=O的相對(duì)含量因O的摻入而明顯增加[35]。
與HRC-5K-700相比,HRC-5K-800中的石墨化N和吡啶N的相對(duì)含量略有減少,這是由于800 ℃時(shí),N的類型發(fā)生了轉(zhuǎn)變。隨著溫度繼續(xù)升高,吡咯N和氧化型N因不穩(wěn)定而分解,導(dǎo)致其相對(duì)含量降低[15,36-38]。
圖6 HRC-5K-800的XPS全譜(a)和C1s(b)、O1s(c)和N1s(d)的擬合圖
表2 HRC-nK-T中C、N和O的相對(duì)含量
表3 HRC-nK-T中C1s、N1s和O1s的各種成鍵形式的相對(duì)含量
圖7是HRC-K-的傅里葉變換紅外光譜。如圖7(a)所示,所有的樣品在3 450 cm?1附近均存在一個(gè)明顯的峰,這是由羥基(—OH)的拉伸振動(dòng)引起的。C=O從1 610 cm?1移動(dòng)至1 590 cm?1,出現(xiàn)了明顯的紅移現(xiàn)象,這種現(xiàn)象說(shuō)明因強(qiáng)烈的π-π疊加作用,引起了C=O偶極矩的變化[39-40]。
圖7(b)展示了在相同的活化劑量下,溫度對(duì)羥基的影響。與HRC-5K-700相比,在800 ℃的溫度下,氧更容易摻雜到碳骨架當(dāng)中,因此羥基的振動(dòng)信號(hào)由弱增強(qiáng)。當(dāng)溫度升高至900 ℃時(shí),羥基的振動(dòng)信號(hào)減弱,這可能是由于溫度升高,導(dǎo)致C—OH斷裂。
圖8(a)是HRC-K-的甲苯等溫吸附曲線。如圖8(a)和表4所示,當(dāng)≤ 5時(shí),HRC-K-800的吸附量呈現(xiàn)逐漸增加的趨勢(shì),而HRC-6K-800的吸附量卻急劇下降,這可能是由于HRC-6K-800的孔結(jié)構(gòu)坍塌,導(dǎo)致孔徑增大,微孔占比降低,不利于其對(duì)甲苯的吸附行為。對(duì)于HRC-5K-(= 700、800和900 ℃)來(lái)說(shuō),隨著溫度的升高,吸附量先升高后降低。這可能是由于溫度低于800 ℃時(shí),微孔結(jié)構(gòu)發(fā)育不完善,而高于800 ℃時(shí),微孔不穩(wěn)定,容易坍塌形成介孔。結(jié)合氮?dú)獾葴匚浇Y(jié)果,表明= 5、溫度為800 ℃是制備具有高比表面積、高甲苯吸附性能活性炭的最優(yōu)條件,且其甲苯吸附性能優(yōu)于大部分已報(bào)道的生物質(zhì)活性炭,如表5所示。
圖8 HRC-5K-800的甲苯等溫吸附曲線(a)和甲苯等溫吸附擬合結(jié)果(b)
表4 HRC-nK-T的甲苯吸附容量(P/P0 = 0 ~ 1,T = 25 ℃)
表5 HRC-5K-800與已報(bào)道的活性炭的甲苯吸附對(duì)比結(jié)果
為了理解HRC-5K-800的甲苯吸附行為,采用Freundlich模型和Langmuir模型對(duì)HRC-5K-800的吸附曲線進(jìn)行擬合,模型方程分別如式(1)和式(2)所示[27,45]:
式中:e為平衡吸附量,mg/g;F為Freundlich方程的吸附容量常數(shù),mg1?1/n?L1/n?g?1;為吸附強(qiáng)度系數(shù);e為平衡濃度,mg/L。
式中:m為飽和吸附量,mg/g;為L(zhǎng)angmuir常數(shù), L/mg。
由圖8(b)和表6中的等溫吸附曲線擬合結(jié)果可知,兩種模型都能較好地反映HRC-5K-800的吸附行為。
表6 HRC-5K-800的等溫吸附曲線擬合結(jié)果(P/P0 = 0.9 ~ 1,T = 25 ℃)
以中藥渣為原料,采用KOH為活化劑,通過(guò)輔助活化熱解法制備超高孔隙率的活性炭,探討了活化劑用量和活化溫度對(duì)活性炭孔隙結(jié)構(gòu)的影響,以及活性炭的結(jié)構(gòu)特性和表面性質(zhì)對(duì)其吸附甲苯性能的影響及其構(gòu)效關(guān)系。
研究表明,KOH輔助活化熱解法可制備孔隙發(fā)達(dá)且具有較高微孔占比、表面氮氧雜原子含量高的活性炭,不同活化劑用量與溫度對(duì)活性炭的孔結(jié)構(gòu)和吸附性能有顯著影響。當(dāng)堿炭質(zhì)量比為5∶1、溫度為800 ℃時(shí),活性炭比表面積和總孔容分別達(dá)到了3 549 m2/g和2.12 cm3/g,微孔比表面積和孔容分別為2 529 m2/g和1.33 cm3/g,微孔占比達(dá)到了62.7%。發(fā)達(dá)的孔隙度、較高的微孔占比與氮氧含量,能為活性炭提供更多的有效吸附位點(diǎn),有利于提高其甲苯吸附性能。本研究為中藥渣的高值化利用提供了一種新的策略。
[1] LU Q, LI C L. Comprehensive utilization of Chinese medicine residues for industry and environment protection: turning waste into treasure[J]. Journal of cleaner production, 2021, 279: 123856. DOI: 10.1016/j. jclepro.2020.123856.
[2] WANG M H, LIU Y, WANG S Q, et al. Development of a compound microbial agent beneficial to the composting of Chinese medicinal herbal residues[J]. Bioresource technology, 2021, 330: 124948. DOI: 10.1016/j.biortech. 2021.124948.
[3] FERRONATO N, TORRETTA V. Waste mismanagement in developing countries: a review of global issues[J]. International journal of environmental research and public health, 2019, 16(6): 1060. DOI: 10.3390/ijerph16061060.
[4] 李俊, 陳夏, 李蘊(yùn)鈺, 等. 典型中藥渣的熱解特性研究[J]. 環(huán)境污染與防治, 2022, 44(12): 1601-1606. DOI: 10.15985/j.cnki.1001-3865.2022.12.009.
[5] GUO X Y, WANG S M, LI N, et al. Preparation of SnS nanosheet-loaded traditional Chinese medicine slag-derived carbon composite (SnS/NC) by one-pot hydrothermal method used as anodes for lithium-ion batteries[J]. Ionics, 2021, 27(11): 4721-4729. DOI: 10.1007/s11581-021-04230-7.
[6] 陳梅倩, 胡德豪, 黃友旺. 基于熱重分析法的生物質(zhì)變溫?zé)峤馓匦詫?shí)驗(yàn)研究[J]. 華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 46(6): 99-104. DOI: 10.3969/j.ISSN. 1007-2691.2019.06.13.
[7] GAO J, CHU X J, LU H B, et al. Efficient carbon-based electrocatalyst derived from biomass for hydrogen peroxide generation[J]. Materials today communications, 2021, 26: 102051. DOI: 10.1016/j.mtcomm.2021.102051.
[8] SHEN Q B, WANG Z Y, YU Q, et al. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues[J]. Environmental research, 2020, 183: 109195. DOI: 10.1016/j.envres.2020.109195.
[9] LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical engineering journal, 2014, 248: 128-134. DOI: 10.1016/j. cej.2014.03.021.
[10] ZHANG S N, WANG J H. Removal of chlortetracycline from water byimmobilized on Chinese medicine residues biochar[J]. Environmental technology & innovation, 2021, 24: 101930. DOI: 10.1016/j.eti. 2021.101930.
[11] LIANG J F, XU Y Q, LI C, et al. Traditional Chinese medicine residue-derived micropore-rich porous carbon frameworks as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Dalton transactions, 2022, 51(1): 129-135. DOI: 10.1039/D1DT02595C.
[12] SHI R, LIU K K, LIU B G, et al. New insight into toluene adsorption mechanism of melamine urea-formaldehyde resin based porous carbon: experiment and theory calculation[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2022, 632: 127600. DOI: 10.1016/j.colsurfa.2021.127600.
[13] YAN M, RONG Y, WU F, et al. Micro-mesoporous graphitized carbon fiber as hydrophobic adsorbent that removes volatile organic compounds from air[J]. Chemical engineering journal, 2023, 452: 139184. DOI: 10.1016/j.cej.2022.139184.
[14] HE S, SHI G B, XIAO H, et al. Self S-doping activated carbon derived from lignin -based pitch for removal of gaseous benzene[J]. Chemical engineering journal, 2021, 410: 128286. DOI: 10.1016/j.cej.2020.128286.
[15] XU X, GUO Y, SHI R, et al. Natural honeycomb-like structure cork carbon with hierarchical micro-mesopores and N-containing functional groups for VOCs adsorption[J]. Applied surface science, 2021, 565: 150550. DOI: 10.1016/j.apsusc.2021.150550.
[16] JALILOV A S, LI Y L, TIAN J, et al. Ultra-high surface area activated porous asphalt for CO2capture through competitive adsorption at high pressures[J]. Advanced energy materials, 2017, 7(1): 1600693. DOI: 10.1002/ aenm.201600693.
[17] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical reviews, 2019, 119(7): 4471-4568. DOI: 10.1021/acs. chemrev.8b00408.
[18] HIROTA K, SAKAI H, WASHIO M, et al. Application of electron beams for the treatment of VOC streams[J]. Industrial & engineering chemistry research, 2004, 43(5): 1185-1191. DOI: 10.1021/ie0340746.
[19] ZOU W X, GAO B, OK Y S, et al. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review[J]. Chemosphere, 2019, 218: 845-859. DOI: 10.1016/j.chemosphere.2018.11.175.
[20] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review[J]. Separation and purification technology, 2020, 235: 116213. DOI: 10.1016/j.seppur.2019.116213.
[21] YAN X R, ANGUILLE S, BENDAHAN M, et al. Ionic liquids combined with membrane separation processes: a review[J]. Separation and purification technology, 2019, 222: 230-253. DOI: 10.1016/j.seppur.2019.03.103.
[22] CHANG T, WANG Y, WANG Y Q, et al. A critical review on plasma-catalytic removal of VOCs: catalyst development, process parameters and synergetic reaction mechanism[J]. Science of the total environment, 2022, 828: 154290. DOI: 10.1016/j.scitotenv.2022.154290.
[23] SHI W B, PLATA D L. Vertically aligned carbon nanotubes: production and applications for environmental sustainability[J]. Green chemistry, 2018, 20(23): 5245-5260. DOI: 10.1039/C8GC02195C.
[24] JAFARI S, GHORBANI-SHAHNA F, BAHRAMI A, et al. Adsorptive removal of toluene and carbon tetrachloride from gas phase using zeolitic imidazolate Framework-8: effects of synthesis method, particle size, and pretreatment of the adsorbent[J]. Microporous and mesoporous materials, 2018, 268: 58-68. DOI: 10.1016/j.micromeso. 2018.04.013.
[25] MENG X M, YANG L, JIANG W J, et al. Adsorption of acetone and toluene by N-functionalized porous carbon derived from ZIF-8[J]. Journal of industrial and engineering chemistry, 2022, 111: 137-146. DOI: 10.1016/j.jiec.2022.03.046.
[26] OTOWA T, TANIBATA, R, ITOH M. Production and adsorption characteristics of MAXSORB: high-surface-area active carbon[J]. Gas separation & purification, 1993, 7(4): 241-245. DOI: 10.1016/0950-4214(93)80024-Q.
[27] LI D N, YANG J Z, ZHAO Y, et al. Ultra-highly porous carbon from wasted soybean residue with tailored porosity and doped structure as renewable multi-purpose absorbent for efficient CO2, toluene and water vapor capture[J]. Journal of cleaner production, 2022, 337: 130283. DOI: 10.1016/j.jclepro.2021.130283.
[28] 汪樹軍. X射線衍射法對(duì)樹脂炭微觀結(jié)構(gòu)測(cè)試分析[J]. 炭素技術(shù), 2000(6): 8-12. DOI: 10.14078/j.cnki.1001-3741.2000.06.003.
[29] LIU S N, ZHAO T Q, TAN X H, et al. 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li-S batteries[J]. Nano energy, 2019, 63: 103894. DOI: 10.1016/j.nanoen. 2019.103894.
[30] 陳軼賢. 炭黑基多孔碳材料制備及甲苯吸附性能研究[D]. 重慶:重慶工商大學(xué), 2022.
[31] GUO D, WEI H, CHEN X, et al. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries[J]. Journal of materials chemistry A, 2017, 5(34): 18193-18206. DOI: 10.1039/C7TA04728B.
[32] LIU J H, LI W F, DUAN L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano letters, 2015, 15(8): 5137-5142. DOI: 10.1021/acs.nanolett.5b01919.
[33] PANG Q, TANG J T, HUANG H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium-sulfur batteries[J]. Advanced materials, 2015, 27(39): 6021-6028. DOI: 10.1002/adma.201502467.
[34] HOU T Z, XU W T, CHEN X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte chemie international edition, 2017, 56(28): 8178-8182. DOI: 10.1002/anie.201704324.
[35] WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of materials chemistry, 2012, 22(45): 23710-23725. DOI: 10.1039/ c2jm34066f.
[36] PELS J R, KAPTEIJN F, MOULIJN J A, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon, 1995, 33(11): 1641-1653. DOI: 10.1016/0008-6223(95)00154-6.
[37] ZHOU X S, QIU L L, FAN R Q, et al. Metal-organic framework-derived n-rich porous carbon as an auxiliary additive of hole transport layers for highly efficient and long-term stable perovskite solar cells[J]. Solar RRL, 2020, 4(3): 1900380. DOI: 10.1002/solr.201900380.
[38] JI Y X, WANG S S, DONG Y H, et al. Tuning nitrogen species on natural biomass derived porous carbon for efficient acetone adsorption[J]. Materials chemistry and physics, 2020, 253: 123338. DOI: 10.1016/j. matchemphys.2020.123338.
[39] MEHTA A, RAO J R, FATHIMA N N. Electrostatic forces mediated by choline dihydrogen phosphate stabilize collagen[J]. The journal of physical chemistry B, 2015, 119(40): 12816-12827. DOI: 10.1021/acs.jpcb. 5b07055.
[40] 王林萍. 基于(4-二茂鐵乙炔基)苯胺/石墨烯復(fù)合物的電化學(xué)傳感器研究[D]. 長(zhǎng)沙:湖南師范大學(xué), 2013. DOI: 10.7666/d.Y2325606.
[41] DU Y K, CHEN H Y, XU X, et al. Surface modification of biomass derived toluene adsorbent: hierarchically porous characterization and heteroatom doped effect[J]. Microporous and mesoporous materials, 2020, 293: 109831. DOI: 10.1016/j.micromeso.2019.109831.
[42] CHENG H R, SUN Y H, WANG X H, et al. Hierarchical porous carbon fabricated from cellulose-degrading fungus modified rice husks: ultrahigh surface area and impressive improvement in toluene adsorption[J]. Journal of hazardous materials, 2020, 392: 122298. DOI: 10.1016/j.jhazmat.2020.122298.
[43] JIN Z H, WANG B D, MA L, et al. Air pre-oxidation induced high yield N-doped porous biochar for improving toluene adsorption[J]. Chemical engineering journal, 2020, 385: 123843. DOI: 10.1016/j.cej.2019.123843.
[44] 劉培慧, 劉宇喆, 李琳, 等. 具有多級(jí)孔道結(jié)構(gòu)的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工進(jìn)展, 2022, 41(S1): 613-621. DOI: 10.16085/j.issn.1000-6613.2022-0647.
[45] SAHA D, MIRANDO N, LEVCHENKO A. Liquid and vapor phase adsorption of BTX in lignin derived activated carbon: equilibrium and kinetics study[J]. Journal of cleaner production, 2018, 182: 372-378. DOI: 10.1016/j.jclepro.2018.02.076.
Ultra-High-Specific-Area Activated Carbon from Herb Residue as Excellent Absorbent for Toluene Adsorption
TAN Qiang1, LIAO Daxiu1, YANG Jizhang2,3,4, LI Denian2,3,4, YUAN Haoran2,3,4,?
(1. Grandtop Yongxing Group Co., Ltd., Guangzhou 510015, China;2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China)
Potassium hydroxide (KOH) was used as a coactivator to produce activated carbon with an ultra-high specific area, and herb residue was used as a carbon source. The effects of alkali carbon mass ratio (KOH/C) and activation temperature on the pore structure of activated carbon were explored, while the adsorption behavior of toluene was also investigated. The total specific surface area and total pore volume of activated carbon increased up to 3 549 m2/g and 2.12 cm3/g when theKOH/Cand the temperature were 5 and 800 °C, respectively. The proportion of micropores reached 62.7%, while the specific surface area and pore volume of the micropores were 2 529 m2/g and 1.33 cm3/g, respectively. Moreover, the toluene adsorption capacity was reached at 2 612 mg/g when the temperature and relative pressure/0were 25 °C and around 0.9 to 1, respectively. It should be noted that activated carbon produced from herb residue can be used to effectively remove volatile organic compounds in the future.
herb residue; KOH; activated carbon; toluene adsorption; volatile organic compounds
2095-560X(2023)04-0365-09
TK6
A
10.3969/j.issn.2095-560X.2023.04.009
2023-03-10
2023-04-11
廣州市科技計(jì)劃項(xiàng)目(202201010687);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金資助項(xiàng)目(2022A1515011653);中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目
袁浩然,E-mail:yuanhr@ms.giec.ac.cn
談強(qiáng), 廖達(dá)秀, 陽(yáng)濟(jì)章, 等. 中藥渣制備超高比表面積活性炭及其甲苯吸附性能研究[J]. 新能源進(jìn)展, 2023, 11(4): 365-373.
: TAN Qiang, LIAO Daxiu, YANG Jizhang, et al. Ultra-high-specific-area activated carbon from herb residue as excellent absorbent for toluene adsorption[J]. Advances in new and renewable energy, 2023, 11(4): 365-373.
談 強(qiáng)(1972-),男,碩士,高級(jí)工程師,主要從事固體廢棄物能源化與資源化利用研究。
袁浩然(1981-),男,博士,研究員,主要從事固體廢棄物能源化與資源化利用研究。