国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

線粒體翻譯延伸因子Ts對(duì)心肌肥大的作用及機(jī)制

2023-08-26 01:34:10張德玉王菲高巖巖
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2023年3期
關(guān)鍵詞:肌細(xì)胞翻譯線粒體

張德玉 王菲 高巖巖

[摘要]目的探究線粒體翻譯延伸因子Ts(EF-Ts)通過(guò)影響線粒體損傷調(diào)控病理性心肌細(xì)胞肥大的分子機(jī)制。方法使用血管緊張素Ⅱ(AngⅡ)制備小鼠心肌肥大的細(xì)胞模型與動(dòng)物模型,采用蛋白免疫印跡(WB)方法檢測(cè)心肌肥大時(shí)EF-Ts的蛋白表達(dá)。用EF-Ts干擾慢病毒干擾小鼠原代心肌細(xì)胞中EF-Ts的表達(dá),同時(shí)用AngⅡ處理,借助四甲基羅丹明甲酯(TMRM)與鈣黃綠素乙酰氧基甲酯(Calcein AM)染色,應(yīng)用激光共聚焦顯微鏡觀察心肌細(xì)胞線粒體膜電位和線粒體通透性轉(zhuǎn)換孔(MPTP)水平,并采用WB法檢測(cè)心肌肥大標(biāo)志物心房鈉尿因子(ANF)和鈉尿肽B(NPPB)的變化情況。結(jié)果心肌肥大的細(xì)胞模型和動(dòng)物模型中EF-Ts蛋白表達(dá)量均明顯降低(t=2.95、14.93,P<0.05)。與對(duì)照組相比,AngⅡ誘導(dǎo)的心肌肥大細(xì)胞模型中TMRM和Calcein AM染色熒光強(qiáng)度均明顯減弱,在心肌肥大細(xì)胞模型中敲低EF-Ts后TMRM和Calcein AM染色熒光強(qiáng)度進(jìn)一步減弱(F=4.22~22.88,P<0.05),而心肌肥大標(biāo)志物ANF、NPPB蛋白表達(dá)量進(jìn)一步上升(F=6.52、20.96,P<0.05)。結(jié)論EF-Ts缺失可能引起線粒體功能損傷而導(dǎo)致心肌肥大,因此EF-Ts有可能成為干預(yù)心肌肥大的重要靶標(biāo)。

[關(guān)鍵詞]肽鏈延伸,翻譯;線粒體;肌細(xì)胞,心臟;肥大;小鼠

[中圖分類號(hào)]R394;R541[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0401-06

doi:10.11712/jms.2096-5532.2023.59.108[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20230809.1714.001;2023-08-1013:49:21

ROLE OF MITOCHONDRIAL TRANSLATION ELONGATION FACTOR TS IN CARDIAC HYPERTROPHY AND UNDERLYING MECHANISM ZHANG Deyu, WANG Fei, GAO Yanyan (Institute of Translational Medicine, Qingdao University, Qingdao 266071, China)

[ABSTRACT]ObjectiveTo explore the molecular mechanism of the mitochondrial translation elongation factor EF-Ts re-gulating pathological cardiomyocyte hypertrophy through affecting mitochondrial injury. MethodsAngiotensin Ⅱ (AngⅡ) was used to prepare cell and animal models of cardiac hypertrophy in mice. Western blot was used to measure the expression of EF-Ts protein in cardiac hypertrophy. EF-Ts-interfering lentivirus was used to interfere the expression of EF-Ts in mouse primary cardiomyocytes. After treatment with Ang Ⅱ and staining with tetramethylrhodamine methyl ester (TMRM) and calcein acetoxymethyl ester (Calcein AM), a laser confocal microscope was used to observe the mitochondrial membrane potential and mitochondrial permeability transition pore level of cardiomyocytes. Western blot was used to determine the changes of atrial natriuretic factor (ANF) and natriuretic peptide B (NPPB), which were the markers of cardiac hypertrophy. ResultsThe expression of EF-Ts protein in both the cell model and animal model of cardiac hypertrophy was decreased significantly (t=2.95,14.93;P<0.05). Compared with those in the control group, the fluorescence intensities of TMRM and Calcein AM were significantly decreased in Ang Ⅱ-induced cell model of cardiac hypertrophy, and were further significantly reduced after knocking down EF-Ts in the model of cardiac hypertrophy (F=4.22-22.88,P<0.05), while the expression of ANF and NPPB proteins was further significantly increased (F=6.52,20.96;P<0.05). ConclusionEF-Ts deletion may cause mitochondrial dysfunction, and thereby lead to cardiac hypertrophy. Therefore, EF-Ts may be a key target for the intervention of cardiac hypertrophy.

[KEY WORDS]peptide chain elongation, translational; mitochondria; myocytes, cardiac; hypertrophy; mice

心肌肥厚是指心臟為適應(yīng)各類刺激而出現(xiàn)的心肌細(xì)胞體積和質(zhì)量增大的病癥[1]。心肌肥厚形成是一個(gè)慢性且復(fù)雜的過(guò)程,是許多心血管疾病的病理生理基礎(chǔ)[1-5],但其分子機(jī)制依然不明確。線粒體在心肌細(xì)胞中發(fā)揮重要功能,包括ATP生成、活性氧(ROS)產(chǎn)生、代謝調(diào)控、鈣平衡等。研究發(fā)現(xiàn),線粒體功能障礙(MD)與心肌肥厚、高血壓等諸多心血管疾病存在聯(lián)系[6]。線粒體代謝動(dòng)力學(xué)失衡、鈣穩(wěn)態(tài)失衡、ROS水平升高、線粒體DNA受損均對(duì)心肌肥厚的形成、發(fā)展起到一定影響[7],因此MD也是心肌肥厚形成、發(fā)展的一個(gè)關(guān)鍵影響因素[8-9]。而線粒體翻譯的正常有序進(jìn)行,是線粒體功能的重要保

402青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)59卷

證。線粒體翻譯是一個(gè)動(dòng)態(tài)平衡的過(guò)程,這一過(guò)程受到多種因子的調(diào)控。線粒體翻譯可以分為起始、延伸、終止3個(gè)階段[10],其中延伸階段在蛋白質(zhì)合成方面發(fā)揮著關(guān)鍵作用,被視作保守性最強(qiáng)的翻譯階段[11]。當(dāng)前已知的線粒體翻譯延伸因子(EF)包括EF-Tu、EF-Ts和EF-G1,通過(guò)其表達(dá)量的變化能夠掌握線粒體的功能與翻譯速度,同時(shí)能夠?qū)?xì)胞功能狀態(tài)做出有效評(píng)估,這些因子突變定然會(huì)引發(fā)線粒體病變[11-13]。EF-Ts是一種核編碼的線粒體蛋白。有研究采用全外顯子測(cè)序方法在嚴(yán)重的心肌病病人體內(nèi)鑒定了TSFM(EF-Ts的編碼基因)的突變[14-16]。這提示EF-Ts的正常表達(dá)對(duì)維持正常的心肌細(xì)胞功能有重要作用,然而關(guān)于EF-Ts在心肌肥厚中的作用迄今并無(wú)太多研究報(bào)道。因此,本研究從病理性心肌肥大的細(xì)胞與動(dòng)物模型入手,探討心肌細(xì)胞肥大對(duì)EF-Ts表達(dá)的影響,以及干預(yù)EF-Ts對(duì)線粒體功能的作用,為心肌肥厚的臨床研究提供新的靶點(diǎn)與思路。

1材料與方法

1.1實(shí)驗(yàn)材料

日齡1~2 d的C57小鼠乳鼠、C57小鼠(大任富城),血管緊張素Ⅱ(AngⅡ,Abmole),DMEM/F12(SparkJade),胎牛血清(BI),青鏈霉素(美侖生物),胰液素、Ⅱ型膠原酶和TRITC Phalloidin羅丹明標(biāo)記鬼筆環(huán)肽(翊圣生物),四甲基羅丹明甲酯(TMRM) Perchlorate(Abmole),線粒體通透性轉(zhuǎn)換孔(MPTP)檢測(cè)試劑盒(碧云天),EF-Ts干擾慢病毒和HitransG P(吉?jiǎng)P基因),冰臺(tái)、眼科剪、彎頭鑷、小燒杯、260目過(guò)濾網(wǎng)和生理鹽水(美侖生物),心房鈉尿因子(ANF)抗體和EF-Ts抗體(Abcam),鈉尿肽B(NPPB)抗體(Affinity),Gapdh抗體(CST)。

1.2實(shí)驗(yàn)方法

1.2.1小鼠原代心肌細(xì)胞的分離和培養(yǎng)于冰臺(tái)上準(zhǔn)備3個(gè)6 cm培養(yǎng)皿,各加入4 mL PBS。取雌雄不分的1~2 d日齡C57小鼠乳鼠放入一容器中,用體積分?jǐn)?shù)0.75的乙醇清洗小鼠1~2次。于超凈臺(tái)中用眼科剪將乳鼠心臟取出,放入盛有PBS的培養(yǎng)皿中,洗3次,用吸管吸掉PBS。將心臟剪碎后加入消化液,轉(zhuǎn)移到滅菌的50 mL離心管中。37 ℃搖動(dòng)水浴,每次5 min,將上層液體轉(zhuǎn)移至小燒杯中,再次加入消化液搖動(dòng)水浴,反復(fù)10次以上直到消化完畢。轉(zhuǎn)移燒杯內(nèi)液體到50 mL離心管內(nèi),接著再添加4 mL血清,使消化結(jié)束。收集消化產(chǎn)物,以800 r/min離心5 min,棄上清,收集沉淀,再用5 mL DMEM/F12輕輕將沉淀懸浮,再以800 r/min離心5 min,棄上清,收集沉淀。在沉淀中加入10 mL含有體積分?jǐn)?shù)0.05血清的DMEM/F12培養(yǎng)液充分重懸,用260目過(guò)濾網(wǎng)(先用1 mL培養(yǎng)液潤(rùn)濕)過(guò)濾,將過(guò)濾后的液體收集到10 cm培養(yǎng)皿中,置于細(xì)胞培養(yǎng)箱內(nèi)于37 ℃下進(jìn)行細(xì)胞培養(yǎng)。細(xì)胞差速貼壁1.0~1.5 h后,收集細(xì)胞懸液,此時(shí)沒(méi)有貼壁的細(xì)胞即為心肌細(xì)胞。最后將細(xì)胞接種于適合的細(xì)胞培養(yǎng)皿中,進(jìn)行后續(xù)實(shí)驗(yàn)。

1.2.2心肌肥大細(xì)胞模型的構(gòu)建與鑒定分離的小鼠原代心肌細(xì)胞培養(yǎng)24 h后,用DMEM/F12無(wú)血清培養(yǎng)液預(yù)處理24 h,將培養(yǎng)液更換為含體積分?jǐn)?shù)0.10血清的DMEM/F12培養(yǎng)液。實(shí)驗(yàn)分2組,其中實(shí)驗(yàn)組加入1.5 μmol/L的AngⅡ,對(duì)照組加入同等體積的PBS,處理48 h后提取細(xì)胞總蛋白,進(jìn)行WB檢測(cè)。

1.2.3心肌肥大動(dòng)物模型的構(gòu)建與鑒定將小鼠稱質(zhì)量后分為2組,每天于同一時(shí)間點(diǎn),實(shí)驗(yàn)組腹腔注射1.5 mg/kg的Ang Ⅱ(生理鹽水配制),對(duì)照組注射等體積的生理鹽水,2周后兩組腹腔注射30 g/L的水合氯醛,待小鼠徹底麻醉后斷頸處死取出心臟。取部分心臟組織加入RIPA裂解液(每20 mg組織加入150 μL)于組織研磨器中充分研磨后,在冰上裂解1 h(每10 min渦旋震蕩10 s),4 ℃下以12 000 r/min離心15 min,收集上清用于WB檢測(cè)。

1.2.4肥大相關(guān)蛋白的WB檢測(cè)將處理好的細(xì)胞用冰冷的PBS漂洗2次,加入RIPA裂解液(含1×PMSF和1×cooktail)在冰上裂解30 min(每10 min渦旋震蕩10 s),4 ℃下以12 000 r/min離心15 min。收集上清,加入4×蛋白上樣緩沖液,98 ℃煮沸10 min。根據(jù)所需檢測(cè)的蛋白大小選擇適合濃度的SDS-PAGE凝膠分離蛋白并轉(zhuǎn)移到PVDF膜上,用50 g/L的脫脂牛奶封閉非特異性結(jié)合位點(diǎn)1 h后,將膜和按比例稀釋的一抗4 ℃孵育過(guò)夜,以TBST洗膜3次(每次10 min)后,用抗鼠或者抗兔二抗孵育1.5 h,再次以TBST洗膜3次(每次10 min),最后用ECL顯影液顯影并通過(guò)化學(xué)發(fā)光儀檢測(cè)信號(hào),以Gapdh為參照分析條帶灰度。實(shí)驗(yàn)重復(fù)3次。

1.2.5細(xì)胞病毒感染當(dāng)心肌細(xì)胞生長(zhǎng)到密度為70%~80%時(shí),即可以進(jìn)行EF-Ts慢病毒感染,以multiplicity of infection(MOI)=15的病毒量感染細(xì)胞,同時(shí)根據(jù)培養(yǎng)皿大小加入適量促感染試劑HitransG P,24 h后更換培養(yǎng)液。細(xì)胞感染72 h收集細(xì)胞用于后續(xù)實(shí)驗(yàn)。

1.2.6心肌細(xì)胞線粒體膜電位檢測(cè)將原代心肌細(xì)胞接種于35 mm玻底培養(yǎng)皿中,并將細(xì)胞分為空白對(duì)照組(A組)、Ang Ⅱ處理組(B組)、NC+Ang Ⅱ處理組(C組)和shEF-Ts+Ang Ⅱ處理組(D組)。病毒感染處理同1.2.5,Ang Ⅱ處理同1.2.2。將培養(yǎng)液吸除干凈,用PBS沿壁清洗細(xì)胞1或2次。在1 mL無(wú)血清培養(yǎng)液中加入150 nmol/L的TMRM,與細(xì)胞37 ℃共孵育60 min。用PBS溶液清洗1次,借助激光共聚焦顯微鏡觀察熒光強(qiáng)度的變化,TMRM的激發(fā)波長(zhǎng)和發(fā)射波長(zhǎng)分別為543、580 nm。實(shí)驗(yàn)重復(fù)3次。

1.2.7心肌細(xì)胞MPTP測(cè)定將原代心肌細(xì)胞接種于35 mm的玻底培養(yǎng)皿中,細(xì)胞分組及處理同1.2.6。MPTP測(cè)定嚴(yán)格按照MPTP試劑盒說(shuō)明書(shū)進(jìn)行操作。Calcein AM的激發(fā)波長(zhǎng)和發(fā)射波長(zhǎng)分別為494、517 nm。實(shí)驗(yàn)重復(fù)3次。

1.3統(tǒng)計(jì)學(xué)方法

應(yīng)用軟件GraphPad Prism 5進(jìn)行統(tǒng)計(jì)分析。計(jì)量數(shù)據(jù)結(jié)果以±s表示,兩組比較采用t檢驗(yàn),多組比較采用單因素方差分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

2結(jié)果

2.1心肌肥大模型的建立及EF-Ts蛋白表達(dá)

與對(duì)照組相比,心肌肥大細(xì)胞模型的指標(biāo)蛋白ANF、NPPB的表達(dá)量明顯升高,EF-Ts蛋白的表達(dá)量明顯降低(t=2.95~4.01,P<0.05)。在心肌肥大動(dòng)物模型中,同樣能檢測(cè)到ANF、NPPB的表達(dá)量明顯升高,EF-Ts的表達(dá)量明顯降低(t=3.90~14.93,P<0.05)。見(jiàn)圖1和表1、2。

2.2各組心肌細(xì)胞線粒體膜電位比較

與空白對(duì)照組比較,Ang Ⅱ處理組熒光強(qiáng)度大幅減弱,表明線粒體膜電位下降,線粒體膜出現(xiàn)損傷,傷及線粒體膜功能;敲低EF-Ts后線粒體膜電位進(jìn)一步降低,表明線粒體膜功能受損更加嚴(yán)重。見(jiàn)圖2??瞻讓?duì)照組、Ang Ⅱ處理組、NC+Ang Ⅱ處理組和shEF-Ts+Ang Ⅱ處理組的平均熒光強(qiáng)度分別為124.200±4.575、92.580±3.868、94.130±5.152和74.520±3.400(n=3),差異具有統(tǒng)計(jì)學(xué)意義(F=22.88,P<0.05)。

2.3各組心肌細(xì)胞MPTP的比較

與空白對(duì)照組相比,Ang Ⅱ處理組的熒光強(qiáng)度在5和10 min時(shí)均有所減弱,敲低EF-Ts后,熒光強(qiáng)度降低更加明顯(F=4.22、14.03,P<0.05)。表明敲低EF-Ts加重了Ang Ⅱ所造成的MPTP開(kāi)放和線粒體膜通透性增強(qiáng)。見(jiàn)圖3、表3。

2.4EF-Ts敲低后肥大心肌細(xì)胞中肥大標(biāo)記物ANF和NPPB的變化

與空白對(duì)照組比較,Ang Ⅱ處理組心肌細(xì)胞中心肌肥大標(biāo)記物ANF和NPPB的蛋白表達(dá)量明顯升高,使用慢病毒敲低EF-Ts后其表達(dá)量進(jìn)一步上升(F=6.52、20.96,P<0.05),表明敲低EF-Ts有一定的促心肌肥大的作用。見(jiàn)圖4、表4。

3討論

肥厚型心肌病被發(fā)現(xiàn)已有60多年,該病是具有高猝死風(fēng)險(xiǎn)的遺傳性疾病,其臨床表型多樣[17-20]。心肌肥厚的發(fā)生發(fā)展涉及多種化學(xué)物質(zhì)和信號(hào)通路[20]。心臟作為機(jī)體代謝最活躍的器官,線粒體的密度非常高,它參與心肌細(xì)胞代謝過(guò)程中的能量生成、信號(hào)傳導(dǎo)、ROS生成、細(xì)胞凋亡等活動(dòng),在維持正常的心臟功能中發(fā)揮著重要作用[21-26]。有研究發(fā)現(xiàn),在心肌肥厚的發(fā)生發(fā)展進(jìn)程中,線粒體呼吸鏈復(fù)合體的活性降低、ATP合成能力下降[27-28]、鈣穩(wěn)態(tài)失衡以及ROS水平升高都是線粒體功能紊亂的重要表現(xiàn)[8]。既往有文獻(xiàn)報(bào)道,MD與心肌肥大、高血壓以及心肌缺血灌注損傷有關(guān)[29-30]。線粒體能量代謝、氧化應(yīng)激以及線粒體參與的鈣穩(wěn)態(tài)等都與心肌肥大的發(fā)生和發(fā)展有著密切關(guān)聯(lián),越來(lái)越多的證據(jù)表明MD可能是心肌肥厚過(guò)程中的一個(gè)關(guān)鍵的因素[31]。所以,將MD作為心肌肥厚治療及預(yù)防的靶點(diǎn)具有極高的價(jià)值。

正常心肌產(chǎn)生的ATP中95%以上來(lái)自線粒體的氧化磷酸化。有研究表明,在心肌肥大過(guò)程中,線粒體最大氧化能力下降的部分原因是呼吸鏈復(fù)合物的活性降低,線粒體膜電位下降和ATP合成酶活性降低影響ATP的產(chǎn)生[32]。心肌肥大向心力衰竭轉(zhuǎn)變過(guò)程中便伴隨著線粒體功能的衰退及氧化磷酸化能力的降低。EF-Ts參與線粒體基因組編碼的13個(gè)多肽的翻譯[33-34],這13個(gè)多肽都是線粒體呼吸鏈復(fù)合體中的核心組分[35-36]。EF-Ts的正常表達(dá)對(duì)維持線粒體電子傳遞鏈功能和氧化磷酸化水平的正常至關(guān)重要[11,37]。有研究顯示,TMSF突變?cè)斐傻腅F-Ts缺陷會(huì)導(dǎo)致肥厚型、擴(kuò)張型心肌病和腦心肌病的發(fā)生,部分肥厚型心肌病病人線粒體復(fù)合體Ⅰ、Ⅳ和Ⅴ活性顯著降低,線粒體翻譯障礙、功能受損,這表明EF-Ts缺陷有可能是通過(guò)影響線粒體功能導(dǎo)致心肌肥大[14,16,38]。近年有研究報(bào)告了1例TSFM基因中新的復(fù)合雜合子變體,病人的組織樣本中EF-Ts蛋白大量減少,線粒體復(fù)合體Ⅰ和Ⅳ活性降低,線粒體翻譯功能受損,造成嚴(yán)重的線粒體功能紊亂,導(dǎo)致線粒體心肌病[15],從而確認(rèn)TSFM是心臟功能障礙的主要靶點(diǎn)。

本研究結(jié)果顯示,Ang Ⅱ誘導(dǎo)的心肌肥大的細(xì)胞與動(dòng)物模型中,EF-Ts蛋白表達(dá)量明顯降低,而在心肌肥大細(xì)胞模型中干擾EF-Ts表達(dá),線粒體膜電位受損和MPTP開(kāi)放程度以及肥大標(biāo)志物ANF、NPPB的表達(dá)量進(jìn)一步增加。這表明EF-Ts通過(guò)影響線粒體功能對(duì)心肌細(xì)胞的肥大過(guò)程造成影響,EF-Ts缺失可能引起線粒體功能損傷而導(dǎo)致心肌肥大。在后續(xù)工作中我們將進(jìn)一步探究EF-Ts在心肌細(xì)胞肥大過(guò)程中的具體調(diào)控通路,從而為心血管疾病的預(yù)防和治療提供新的思路和靶標(biāo)。

[參考文獻(xiàn)]

[1]NAKAMURA M, SADOSHIMA J. Mechanisms of physiolo-gical and pathological cardiac hypertrophy[J].? Nature Reviews Cardiology, 2018,15(7):387-407.

[2]GIBB A A, HILL B G. Metabolic coordination of physiological and pathological cardiac remodeling[J].? Circulation Research, 2018,123(1):107-128.

[3]LI Y Q, LIANG Y J, ZHU Y J, et al. Noncoding RNAs in cardiac hypertrophy[J].? Journal of Cardiovascular Translatio-nal Research, 2018,11(6):439-449.

[4]MCMULLEN J R, JENNINGS G L. Differences between pathological and physiological cardiac hypertrophy: novel the-rapeutic strategies to treat heart failure[J].? Clinical and Expe-rimental Pharmacology & Physiology, 2007,34(4):255-262.

[5]THAM Y K, BERNARDO B C, OOI J Y, et al. Pathophy-siology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets[J].? Archives of Toxicology, 2015,89(9):1401-1438.

[6]惠汝太. 肥厚型心肌病是一個(gè)最早能夠看見(jiàn)解決答案的心血管疾病[J]?? 中國(guó)分子心臟病學(xué)雜志, 2018,18(2):2393-2395.

[7]WALTERS J W, AMOS D, RAY K, et al. Mitochondrial re-dox status as a target for cardiovascular disease[J].? Current Opinion in Pharmacology, 2016,27:50-55.

[8]胡歡,李萍,程曉曙. 線粒體功能障礙與心肌肥厚的研究進(jìn)展[J].? 重慶醫(yī)學(xué), 2018,47(23):3081-3083.

[9]ZHOU L Y, LIU J P, WANG K, et al. Mitochondrial function in cardiac hypertrophy[J].? International Journal of Car-diology, 2013,167(4):1118-1125.

[10]DESAI N, YANG H T, CHANDRASEKARAN V, et al. Elongational stalling activates mitoribosome-associated quality control[J].? Science (New York, N Y), 2020,370(6520):1105-1110.

[11]OTT M, AMUNTS A, BROWN A. Organization and regulation of mitochondrial protein synthesis[J].? Annual Review of Biochemistry, 2016,85:77-101.

[12]SCHULZ C, SCHENDZIELORZ A, REHLING P. Unlocking the presequence import pathway[J].? Trends in Cell Biology, 2015,25(5):265-275.

[13]MAI N, CHRZANOWSKA-LIGHTOWLERS Z M A, LIGHTOWLERS R N. The process of mammalian mitochondrial protein synthesis[J].? Cell and Tissue Research, 2017,367(1):5-20.

[14]SMEITINK J A, ELPELEG O, ANTONICKA H, et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs[J].? American Journal of Human Genetics, 2006,79(5):869-877.

[15]PERLI E, PISANO A, GLASGOW R I C, et al. Novel compound mutations in the mitochondrial translation elongation factor (TSFM) gene cause severe cardiomyopathy with myo-cardial fibro-adipose replacement[J].? Scientific Reports, 2019,9(1):5108.

[16]EMPERADOR S, BAYONA-BAFALUY M P, FERNN-DEZ-MARMIESSE A, et al. Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy[J].? European Journal of Human Genetics, 2017,25(1):153-156.

[17]TEARE D. Asymmetrical hypertrophy of the heart in young adults[J].? British Heart Journal, 1958,20(1):1-8.

[18]HERSHBERGER R E, GIVERTZ M M, HO C Y, et al. Correction: Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG)[J].? Genetics in Medicine: Official Journal of the American College of Medical Genetics, 2019,21(10):2406-2409.

[19]MARIAN A J, BRAUNWALD E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J].? Circulation Research, 2017,121(7):749-770.

[20]MARIAN A J. Molecular genetic basis of hypertrophic cardiomyopathy[J].? Circulation Research, 2021,128(10):1533-1553.

[21]GOFFART S, VON KLEIST-RETZOW J C, WIESNER R J. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy[J].? Cardiovascular Research, 2004,64(2):198-207.

[22]JIANG D S, WEI X, ZHANG X F, et al. IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling[J].? Nature Communications, 2014,5:3303.

[23]PUTINSKI C, ABDUL-GHANI M, STILES R, et al. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy[J].? Proceedings of the National Academy of Sciences of the United States of America, 2013,110(43):E4079-E4087.

[24]WENDE A R, ONEILL B T, BUGGER H, et al. Enhanced cardiac Akt/protein kinase B signaling contributes to patholo-gical cardiac hypertrophy in part by impairing mitochondrial function via transcriptional repression of mitochondrion-targeted nuclear genes[J].? Molecular and Cellular Biology, 2015,35(5):831-846.

[25]DWORATZEK E, MAHMOODZADEH S, SCHUBERT C, et al. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta[J].? Cardiovascular Research, 2014,102(3):418-428.

[26]ANDERSSON D C, FAUCONNIER J, YAMADA T, et al. Mitochondrial production of reactive oxygen species contri-butes to the β-adrenergic stimulation of mouse cardiomycytes[J].? The Journal of Physiology, 2011,589(Pt 7):1791-1801.

[27]SPERL W, JESINA P, ZEMAN J, et al. Deficiency of mitochondrial ATP synthase of nuclear genetic origin[J].? Neuromuscular Disorders, 2006,16(12):821-829.

[28]ODONNELL J M, FIELDS A, XU X Y, et al. Limited functional and metabolic improvements in hypertrophic and healthy rat heart overexpressing the skeletal muscle isoform of SERCA1 by adenoviral gene transfer in vivo[J].? American Journal of Physiology Heart and Circulatory Physiology, 2008,295(6):H2483-H2494.

[29]FU Y L, TAO L, PENG F H, et al. GJA1-20k attenuates Ang Ⅱ-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function[J].? Acta Pharmacologica Sinica, 2021,42(4):536-549.

[30]MCDERMOTT-ROE C, YE J M, AHMED R, et al. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function[J].? Nature, 2011,478(7367):114-118.

[31]WST R C I, DE VRIES H J, WINTJES L T, et al. Mitochondrial complex I dysfunction and altered NAD(P)H kine-tics in rat myocardium in cardiac right ventricular hypertrophy and failure[J].? Cardiovascular Research, 2016,111(4):362-372.

[32]MANN D L, ZIPES D P, LIBBY P, et al. Braunwalds heart disease: a textbook of cardiovascular medicine[M].? Amsterdam: Elsevier, 2015.

[33]LEE D E, BROWN J L, ROSA M E, et al. Translational machinery of mitochondrial mRNA is promoted by physical activity in Western diet-induced obese mice[J].? Acta Physiologica, 2016,218(3):167-177.

[34]MERCER T R, NEPH S, DINGER M E, et al. The human mitochondrial transcriptome[J].? Cell, 2011,146(4):645-658.

[35]YOKOKAWA T, MORI R, SUGA T, et al. Muscle denervation reduces mitochondrial biogenesis and mitochondrial translation factor expression in mice[J].? Biochemical and Biophysical Research Communications, 2020,527(1):146-152.

[36]YOKOKAWA T, KIDO K, SUGA T, et al. Exercise-induced mitochondrial biogenesis coincides with the expression of mitochondrial translation factors in murine skeletal muscle[J].? Physiological Reports, 2018,6(20):e13893.

[37]LIN Y Y, LI F J, HUANG L L, et al. eIF3 associates with 80S ribosomes to promote translation elongation, mitochon-drial homeostasis, and muscle health[J].? Molecular Cell, 2020,79(4):575-587.e7.

[38]SCALA M, BRIGATI G, FIORILLO C, et al. Novel homozygous TSFM pathogenic variant associated with encephalocardiomyopathy with sensorineural hearing loss and peculiar neuroradiologic findings[J].? Neurogenetics, 2019,20(3):165-172.

(本文編輯馬偉平)

猜你喜歡
肌細(xì)胞翻譯線粒體
棘皮動(dòng)物線粒體基因組研究進(jìn)展
線粒體自噬與帕金森病的研究進(jìn)展
商務(wù)英語(yǔ)翻譯在國(guó)際貿(mào)易中的重要性及其應(yīng)用
小議翻譯活動(dòng)中的等值理論
考試周刊(2016年77期)2016-10-09 10:36:47
Caspase12在糖尿病大鼠逼尿肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激中的表達(dá)
豚鼠乳鼠心房肌細(xì)胞體外培養(yǎng)的探討*
NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
缺氧易化快速起搏引起的心室肌細(xì)胞鈣瞬變交替*
成肌性標(biāo)志物在人骨髓間充質(zhì)干細(xì)胞分化為肌細(xì)胞過(guò)程中的表達(dá)
線粒體研究方法探討
宾阳县| 新宁县| 汪清县| 兴化市| 宜君县| 高密市| 柏乡县| 泸溪县| 平陆县| 沁阳市| 南木林县| 建昌县| 醴陵市| 揭阳市| 安多县| 抚宁县| 肥东县| 宁晋县| 馆陶县| 乌恰县| 微博| 双江| 泽普县| 白河县| 连州市| 临江市| 固原市| 靖州| 桂平市| 南通市| 隆昌县| 图片| 来宾市| 黔东| 涿鹿县| 仁化县| 白玉县| 资中县| 六枝特区| 彰化县| 临夏县|