田欣 裴彤 趙鴻飛 譚雯璐 劉盼盼 周宇
[摘要]目的探討胃促生長素(ghrelin)對條件性味覺厭惡(CTA)記憶的影響及其可能的分子機(jī)制。方法將成年SD大鼠隨機(jī)分為home cage組(未處理組)、對照組和實驗組,CTA訓(xùn)練前20 min實驗組大鼠雙側(cè)基底外側(cè)杏仁核(BLA)注射15 μmol/L的ghrelin每側(cè)0.5 μL,對照組大鼠BLA注射等量生理鹽水。CTA訓(xùn)練24 h后進(jìn)行記憶測試,用厭惡指數(shù)(AI)對CTA記憶進(jìn)行量化分析。CTA實驗結(jié)束30 min后取BLA組織,采用實時熒光定量PCR方法檢測電壓門控鉀通道1(Kcna1)和電壓門控鉀通道4(Kcna4)的轉(zhuǎn)錄水平。結(jié)果實驗組AI明顯低于對照組,差異具有統(tǒng)計學(xué)意義(t=3.052,P<0.05)。與home cage組相比,CTA訓(xùn)練后對照組大鼠Kcna1轉(zhuǎn)錄水平下調(diào)(F=3.743,P<0.05),Kcna4轉(zhuǎn)錄水平上調(diào)(F=18.300,P<0.001);而實驗組大鼠Kcna1和Kcna4的表達(dá)與home cage組比較差異均無顯著性(P>0.05)。結(jié)論CTA訓(xùn)練引起B(yǎng)LA腦區(qū)Kcna1和Kcna4表達(dá)的可塑性變化。BLA微量注射ghrelin抑制大鼠CTA記憶的獲取,這可能與ghrelin抑制BLA腦區(qū)Kcna1和Kcna4表達(dá)的可塑性變化有關(guān)。
[關(guān)鍵詞]胃促生長素;基底外側(cè)核;鉀通道,電壓門控;記憶;大鼠
[中圖分類號]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2023)03-0367-04
doi:10.11712/jms.2096-5532.2023.59.020[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms/detail/37.1517.R.20230302.1736.001.html;2023-03-0317:16:52
EFFECT OF MICROINJECTION OF GHRELIN IN THE BASOLATERAL AMYGDALA ON CONDITIONED TASTE AVERSION MEMORY IN RATS? TIAN Xin, PEI Tong, ZHAO Hongfei, TAN Wenlu, LIU Panpan, ZHOU Yu (State Key Discipline: Physioloy (in Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of ghrelin on conditioned taste aversion (CTA) memory and to explore the possible molecular mechanism. MethodsAdult Sprague Dawley rats were randomly divided into home cage group (untreated group), control group, and experimental group. Rats in the experimental group received a single dose of ghrelin (15 μmol/L, 0.5 μL each side) in the bilateral basolateral amygdala (BLA) 20 min before CTA training, and rats in the control group were administrated an equal volume of normal saline in the BLA. Memory was evaluated 24 h after CTA training and quantitatively analyzed by the aversive index (AI). BLA tissues were obtained 30 min after CTA training, and quantitative real-time polymerase chain reaction was done to measure the mRNA expression of voltage-gated potassium channel 1 (Kcna1) and voltage-gated potas-sium channel 4 (Kcna4). ResultsThe AI in the experimental group was significantly lower than that in the control group (t=3.052,P<0.05). Compared with the home cage group, the control group had significantly downregulated Kcna1 transcript (F=3.743,P<0.05) but significantly upregulated Kcna4 transcript (F=18.300,P<0.001) after CTA training. However, the expression of both Kcna1 and Kcna4 transcripts showed no significant differences between the experimental group and the home cage group (P>0.05). ConclusionCTA training triggers plasticity changes in Kcna1 and Kcna4 expression in the BLA brain region. Ghrelin microinjected into the BLA inhibits CTA memory acquisition in rats, which may be associated with the suppressive effect of ghrelin on plasticity changes in Kcna1 and Kcna4 expression in the BLA brain region.
[KEY WORDS]ghrelin; basolateral nuclear complex; potassium channels, voltage-gated; memory; rats
胃促生長素(ghrelin)是一種含有28個氨基酸的多肽激素,主要由哺乳動物的胃細(xì)胞分泌,對調(diào)節(jié)進(jìn)食、葡萄糖代謝和能量穩(wěn)態(tài)至關(guān)重要,對學(xué)習(xí)和記憶等多種腦功能也發(fā)揮著復(fù)雜的調(diào)控作用[1]。有研究發(fā)現(xiàn),ghrelin通過激活海馬中的內(nèi)源性生長激素促分泌素受體(GHS-R1a)來促進(jìn)學(xué)習(xí)和記憶[2-3]。而本團(tuán)隊的前期研究發(fā)現(xiàn),ghrelin通過激活GHS-R1a損害杏仁核相關(guān)的情緒記憶[4]。杏仁核是情緒學(xué)習(xí)和記憶最重要的腦結(jié)構(gòu),被認(rèn)為是整個情緒記憶神經(jīng)網(wǎng)絡(luò)的核心。條件性味覺厭惡(CTA)是用來研究厭惡記憶過程的常用行為學(xué)范式。已有研究表明,基底外側(cè)杏仁核(BLA)是CTA記憶環(huán)路形成的關(guān)鍵腦區(qū)[5-8]。而ghrelin能夠調(diào)節(jié)BLA腦區(qū)錐體神經(jīng)元的興奮性[9-15]。電壓門控鉀離子通道在調(diào)節(jié)神經(jīng)元興奮性中起著關(guān)鍵作用,并與阿爾茲海默病、帕金森病和精神障礙等神經(jīng)系統(tǒng)疾病密切相關(guān)[15-25]。電壓門控鉀通道1(Kcna1)和電壓門控鉀通道4(Kcna4)屬于電壓門控鉀通道的Shaker亞家族,對中樞和外周神經(jīng)系統(tǒng)的興奮性有重要調(diào)節(jié)作用。因此,本研究一方面觀察BLA微量注射ghrelin對CTA記憶獲取的影響,同時利用實時熒光定量PCR技術(shù)觀察ghrelin對Kcna1和Kcna4基因表達(dá)的影響,以初步探討ghrelin對CTA記憶獲取影響的可能分子機(jī)制。
1材料與方法
1.1動物及分組
成年SD大鼠,體質(zhì)量280~320 g,購自青島派特福德白鼠養(yǎng)殖專業(yè)合作社。飼養(yǎng)條件為21 ℃恒溫、50%恒濕、12 h/12 h晝夜等長循環(huán)光照,大鼠可自由進(jìn)食、飲水、活動。大鼠適應(yīng)實驗室環(huán)境至少1周后進(jìn)行實驗。將SD大鼠隨機(jī)分為home cage組(A組)、對照組(B組)和實驗組(C組),每組7只。實驗組大鼠雙側(cè)BLA注射15 μmol/L的ghrelin每側(cè)0.5 μL,對照組大鼠BLA注射等量的生理鹽水,home cage組大鼠不做任何處理。本研究得到青島大學(xué)動物倫理委員會批準(zhǔn)。
1.2杏仁核埋管
大鼠腹腔注射80 g/L水合氯醛溶液5 mL/kg,待麻醉后將大鼠俯臥位固定于腦立體定位儀上。碘附消毒皮膚后,于顱骨頂端正中開口,剝離骨膜,暴露前后囟。調(diào)節(jié)大鼠頭部,使其前囟和后囟位于同一水平面上。參照大鼠腦圖譜(Paxinos&Watson,2005)定位,于顱骨表面鉆孔,利用腦立體定位儀,將事先磨好并消毒的不銹鋼外導(dǎo)管(22 gauge,長度1.5 cm)置于雙側(cè)BLA區(qū)的上方(前囟后2.8 mm,旁開5.2 mm,深度7.5 mm),用416膠和自凝牙托粉固定套管,并用自制不銹鋼內(nèi)芯封閉套管,以免外部雜物堵塞套管。術(shù)后大鼠休息7 d。
1.3微量注射
CTA訓(xùn)練前20 min進(jìn)行BLA區(qū)給藥。將注射用內(nèi)管(28 gauge)連接到微量注射器上,注射用內(nèi)管在腦區(qū)的深度比外管長出0.8 mm,到達(dá)大鼠BLA區(qū)域。使用微量蠕動泵,將藥物以0.25 μL/min的恒定流量緩慢注射到BLA區(qū),給藥時間為2 min,給藥量為每側(cè)0.5 μL。藥物注射完畢,要將內(nèi)管保留在原位超過5 min,等藥物吸收后再緩慢移出,以防藥物溢出。
1.4CTA實驗
大鼠禁水24 h,準(zhǔn)備2支都裝有15 mL自來水的相同吸管,讓大鼠飲用10 min。然后互換位置,再讓大鼠飲用10 min。每天定時進(jìn)行適應(yīng),共適應(yīng)4 d。第5天進(jìn)行訓(xùn)練,準(zhǔn)備2支都裝有15 mL 2 g/L甜味劑(Saccharin sodium salt hydrate,Sigma,美國)的相同吸管,讓大鼠飲用10 min,20 min后腹腔注射100 mmol/L氯化鋰20 mL/kg,24 h后測試。測試方法:在鼠籠中放6支吸管,3支裝有5 mL自來水,另3支裝有同體積的2 g/L甜味劑,交叉放置,讓大鼠自由飲用20 min,然后測量吸管內(nèi)剩余的液體量。用厭惡指數(shù)(AI)作為評價指標(biāo),AI=消耗的水的量/消耗的水和甜味劑的總量×100%。以50%作為隨機(jī)臨界點,AI比50%高的越多說明味覺厭惡記憶越好,反之,AI越接近50%說明味覺厭惡記憶越差。
1.5實時熒光定量PCR法檢測Kcna1和Kcna4 mRNA表達(dá)
CTA實驗完成30 min后,將3組小鼠斷頸處死,取出兩側(cè)杏仁核。實時熒光定量PCR方法檢測Kcna1和Kcna4 mRNA表達(dá):用RNA提取試劑盒(Invitrogen 1404690)提取細(xì)胞總RNA,用RNA逆轉(zhuǎn)錄試劑盒(Invitrogen 18080-051)將mRNA逆轉(zhuǎn)錄成cDNA,采用SYBR Green染料法定量檢測目的基因Kcna1和Kcna4 及內(nèi)參照基因GAPDH表達(dá),按照熒光定量PCR說明書配制PCR反應(yīng)體系,采用兩步法經(jīng)過40個循環(huán)完成擴(kuò)增,采用2-△△CT法計算目的基因相對表達(dá)量。PCR擴(kuò)增引物及其序列見表1。
1.6統(tǒng)計學(xué)分析
應(yīng)用Graph Pad Prism 6軟件進(jìn)行統(tǒng)計學(xué)分析。實驗結(jié)果以±s表示,兩組比較采用雙尾t檢驗,與隨機(jī)值50%相比較采用單樣本t檢驗;多組比較采用單因素方差分析(One-way ANOVA),繼以Turkey法進(jìn)行組間兩兩比較。P<0.05表示差異具有統(tǒng)計學(xué)意義。
2結(jié)果
2.1訓(xùn)練前微量注射ghrelin對大鼠CTA記憶獲取的影響
CTA測試結(jié)果顯示,對照組和實驗組大鼠AI分別為(87.69±9.50)%和(40.92±11.58)%(n=7),實驗組大鼠AI與對照組相比較明顯降低(t=3.052,P<0.05)。對照組大鼠AI顯著高于隨機(jī)值50%(t=9.180,P<0.001),實驗組大鼠AI接近隨機(jī)值50%(t=3.489,P<0.05)。表明實驗組大鼠味覺厭惡記憶差于對照組,提示訓(xùn)練前BLA微量注射ghrelin可抑制大鼠CTA記憶的獲取。
2.2ghrelin對CTA訓(xùn)練大鼠BLA腦區(qū)Kcna1和Kcna4轉(zhuǎn)錄的影響
與home cage組相比,CTA訓(xùn)練后對照組大鼠BLA腦區(qū)Kcna1的轉(zhuǎn)錄水平明顯下調(diào)(F=3.743,P<0.05),Kcna4轉(zhuǎn)錄水平明顯上調(diào)(F=18.300,P<0.001);而實驗組大鼠Kcna1和Kcna4的表達(dá)與home cage組比較差異均無顯著性(P>0.05)。見表2。
3討論
本文研究結(jié)果表明,經(jīng)BLA注射15 μmol/L的ghrelin(每側(cè)0.5 μL)可以抑制大鼠味覺條件性厭惡記憶的獲取。這一研究結(jié)果與以往ghrelin及GHS-R1a促進(jìn)學(xué)習(xí)和記憶的報道不一致[1-5]。推測可能的原因為,研究的腦區(qū)、藥物劑量、采用的行為范式以及動物的年齡和遺傳背景等均不同。值得注意的是,先前的許多研究中g(shù)hrelin的用量均較大(100 ng~100 μg),這可能遠(yuǎn)遠(yuǎn)超出了其生理值范圍[6-9]。而本研究中僅向BLA腦區(qū)注射了低劑量的ghrelin(12 ng)。有文獻(xiàn)報道,在中樞神經(jīng)系統(tǒng)中只有下丘腦中少量細(xì)胞能夠產(chǎn)生ghrelin,而外周循環(huán)中的ghrelin也只有少量能夠通過血-腦脊液屏障到達(dá)杏仁核等深部腦區(qū)[10-11]。因此,本研究中g(shù)hrelin的作用可能更接近其生理作用,而不是藥理作用。本研究結(jié)果與部分人體研究結(jié)果一致,這些研究表明血清ghrelin水平與健康個體和輕度認(rèn)知障礙病人的認(rèn)知功能呈負(fù)相關(guān)[12-15]。
研究發(fā)現(xiàn),ghrelin可增加樹突棘密度并促進(jìn)長時程增強(qiáng)的誘導(dǎo)和維持,這被認(rèn)為是海馬腦區(qū)ghrelin調(diào)節(jié)長期記憶鞏固和維持的重要突觸機(jī)制。ghrelin調(diào)節(jié)記憶獲取的機(jī)制尚未明確。除了學(xué)習(xí)誘導(dǎo)的突觸強(qiáng)度的可塑性變化外,神經(jīng)元內(nèi)在興奮性的可塑性變化也被認(rèn)為是學(xué)習(xí)和記憶的關(guān)鍵細(xì)胞機(jī)制[16-21]。我們的前期研究結(jié)果表明,ghrelin可調(diào)節(jié)外側(cè)杏仁核神經(jīng)元的興奮性。電壓門控鉀通道對神經(jīng)元興奮性起著至關(guān)重要的調(diào)控作用[22-25]。有研究發(fā)現(xiàn),Kcna1通道在杏仁核微環(huán)路中的興奮性和前饋抑制中起重要的調(diào)控作用,并且與癲癇發(fā)作有關(guān)[25]。本研究結(jié)果顯示,CTA記憶獲取時BLA腦區(qū)Kcna1基因表達(dá)下調(diào),而Kcna4基因表達(dá)上調(diào)。表明BLA區(qū)ghrelin微量注射阻斷了記憶獲取過程中Kcna1和Kcna4表達(dá)的可塑性變化,這一作用可能與ghrelin所致BLA神經(jīng)元的興奮性異常以及味覺厭惡記憶無法正常形成有關(guān)。
綜上所述,BLA腦區(qū)微量注射ghrelin可抑制CTA記憶獲取,這一過程可能與ghrelin阻礙記憶編碼過程中特定鉀通道的可塑性變化從而影響神經(jīng)元興奮性相關(guān)。本研究結(jié)果為深入探討ghrelin及GHS-R1a調(diào)控學(xué)習(xí)記憶的分子機(jī)制提供了新的實驗依據(jù)。
[參考文獻(xiàn)]
[1]ANDREWS Z B. The extra-hypothalamic actions of ghrelin on neuronal function[J].? Trends in Neurosciences, 2011,34(1):31-40.
[2]DIANO S, FARR S A, BENOIT S C, et al. Ghrelin controls hippocampal spine synapse density and memory performance[J].? Nature Neuroscience, 2006,9(3):381-388.
[3]RIBEIRO L F, CATARINO T, SANTOS S D, et al. Ghrelin triggers the synaptic incorporation of AMPA receptors in the Hippocampus[J].? Proceedings of the National Academy of Sciences of the United States of America, 2014,111(1):E149-E158.
[4]朱倩倩. Ghrelin/GHS-R1a通路對大鼠味覺厭惡情緒記憶的調(diào)控作用及分子機(jī)制探討[D].? 青島:青島大學(xué), 2014.
[5]CHEN L, XING T R, WANG M, et al. Local infusion of ghrelin enhanced hippocampal synaptic plasticity and spatial memory through activation of phosphoinositide 3-kinase in the dentate gyrus of adult rats[J].? European Journal of Neuroscience, 2011,33(2):266-275.
[6]CARLINI V P, VARAS M M, CRAGNOLINI A B, et al. Differential role of the Hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin[J].? Biochemical and Biophysical Research Communications, 2004,313(3):635-641.
[7]CARLINI V P, MONZN M E, VARAS M M, et al. Ghrelin increases anxiety-like behavior and memory retention in rats[J].? Biochemical and Biophysical Research Communications, 2002,299(5):739-743.
[8]GOSHADROU F, RONAGHI A. Attenuating the effect of Ghrelin on memory storage via bilateral reversible inactivation of the basolateral amygdale[J].? Behavioural Brain Research, 2012,232(2):391-394.
[9]SONG L G, ZHU Q Q, LIU T W, et al. Ghrelin modulates lateral amygdala neuronal firing and blocks acquisition for conditioned taste aversion[J].? PLoS One, 2013,8(6):e65422.
[10]ZHU Q Q, XIAO K W, YU M, et al. Ghrelin but not nesfatin-1 affects certain forms of learning and memory in both rats and mice[J].? Brain Research, 2013,1541:42-51.
[11]CABRAL A, LPEZ SOTO E J, EPELBAUM J, et al. Is ghrelin synthesized in the central nervous system[J]? International Journal of Molecular Sciences, 2017,18(3):638.
[12]KERN A, MAVRIKAKI M, ULLRICH C, et al. Hippocampal dopamine/DRD1 signaling dependent on the ghrelin receptor[J].? Cell, 2015,163(5):1176-1190.
[13]SPITZNAGEL M B, BENITEZ A, UPDEGRAFF J, et al. Serum ghrelin is inversely associated with cognitive function in a sample of non-demented elderly[J].? Psychiatry and Clinical Neurosciences, 2010,64(6):608-611.
[14]BELLAR D, GLICKMAN E L, JUDGE L W, et al. Serum ghrelin is associated with verbal learning and adiposity in a sample of healthy, fit older adults[J].? BioMed Research International, 2013,2013:202757.
[15]YOSHINO Y, FUNAHASHI Y, NAKATA S, et al. Ghrelin cascade changes in the peripheral blood of Japanese patients with Alzheimer's disease[J].? Journal of Psychiatric Research, 2018,107:79-85.
[16]CAO X, ZHU M, HE Y, et al. Increased serum acylated ghrelin levels in patients with mild cognitive impairment[J].? Journal of Alzheimer's Disease: JAD, 2018,61(2):545-552.
[17]DAOUDAL G, DEBANNE D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms[J].? Learning & Memory (Cold Spring Harbor, N Y), 2003,10(6):456-465.
[18]ZHANG W, LINDEN D J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability[J].? Nature Reviews Neuroscience, 2003,4(11):885-900.
[19]DISTERHOFT J F, OH M M. Learning, aging and intrinsic neuronal plasticity[J].? Trends in Neurosciences, 2006,29(10):587-599.
[20]MATTHEWS E A, LINARDAKIS J M, DISTERHOFT J F. The fast and slow afterhyperpolarizations are differentially modulated in hippocampal neurons by aging and learning[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2009,29(15):4750-4755.
[21]OH M M, OLIVEIRA F A, DISTERHOFT J F. Learning and aging related changes in intrinsic neuronal excitability[J].? Frontiers in Aging Neuroscience, 2010,2:2.
[22]OH M M, DISTERHOFT J F. Increased excitability of both principal neurons and interneurons during associative learning[J].? The Neuroscientist, 2015,21(4):372-384.
[23]YASOSHIMA Y, YAMAMOTO T. Short-term and long-term excitability changes of the insular cortical neurons after the acquisition of taste aversion learning in behaving rats[J].? Neuroscience, 1998,84(1):1-5.
[24]KIM M J, MIZUMORI S J Y, BERNSTEIN I L. Neuronal representation of conditioned taste in the basolateral amygdala of rats[J].? Neurobiology of Learning and Memory, 2010,93(3):406-414.
[25]CHEN L X, CUMMINGS K A, MAU W, et al. The role of intrinsic excitability in the evolution of memory: significance in memory allocation, consolidation, and updating[J].? Neuro-biology of Learning and Memory, 2020,173:107266.
(本文編輯馬偉平)
青島大學(xué)學(xué)報(醫(yī)學(xué)版)2023年3期