孫慧哲 劉翠 沈方帥 陳心怡 薛雁 陳蕾
[摘要]目的探究胰高血糖素樣肽-1(GLP-1)受體激動(dòng)劑Exendin-4及內(nèi)源性GLP-1對海馬CA3區(qū)神經(jīng)元自發(fā)放電的調(diào)控作用。方法利用在體細(xì)胞外單細(xì)胞電生理記錄方法,觀察三管微電極微壓力注射10 μmol/L Exendin-4和10 μmol/L Exendin-9-39(GLP-1受體阻斷劑)對大鼠海馬CA3區(qū)神經(jīng)元自發(fā)放電頻率的影響。結(jié)果在記錄到的22個(gè)海馬CA3區(qū)神經(jīng)元中,Exendin-4使17個(gè)神經(jīng)元放電頻率顯著增高(t=6.286,P<0.01),平均升高(149.67±18.94)%,與生理鹽水組相比差異有顯著性(Z=3.571,P<0.01)。在記錄到的14個(gè)海馬CA3區(qū)神經(jīng)元中,Exendin-9-39使10個(gè)神經(jīng)元放電頻率顯著降低(t=7.968,P<0.01),平均降低(61.90±6.10)%,與生理鹽水組相比差異有顯著性(Z=3.145,P<0.01)。結(jié)論Exendin-4興奮海馬CA3區(qū)神經(jīng)元,內(nèi)源性GLP-1參與調(diào)節(jié)海馬CA3區(qū)神經(jīng)元自發(fā)放電。
[關(guān)鍵詞]胰高血糖素樣肽1;艾塞那肽;CA3區(qū),海馬;電生理學(xué);大鼠
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0353-04
doi:10.11712/jms.2096-5532.2023.59.074[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230719.1612.002.html;2023-07-2014:53:18
ROLE OF EXENDIN-4 AND ENDOGENOUS GLUCAGON-LIKE PEPTIDE-1 IN REGULATING THE SPONTANEOUS DISCHARGE OF NEURONS IN THE HIPPOCAMPAL CA3 REGION OF RATS SUN Huizhe, LIU Cui, SHEN Fangshuai, CHEN Xinyi, XUE Yan, CHEN Lei (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the role of the glucagon-like peptide 1 (GLP-1) receptor agonist Exendin-4 and endogenous GLP-1 in regulating spontaneous discharge of neurons in the hippocampal CA3 region. MethodsIn vivo extracellular single-unit recordings were used to observe the effect of three-barrel glass micro-electrode micro-pressure injection of 10 μmol/L Exendin-4 versus 10 μmol/L Exendin-9-39 (a GLP-1 receptor antagonist) on the spontaneous discharge frequency of neurons in the hippocampal CA3 region. ResultsAmong the 22 neurons recorded in the hippocampal CA3 region, 17 showed a significant increase in spontaneous discharge frequency caused by Exendin-4 (t=6.286,P<0.01), with a mean increase of 149.67%±18.94%, which was significantly different from that in the saline group (Z=3.571,P<0.01). Among the 14 neurons recorded in the hip-pocampal CA3 region, 10 showed a significant reduction in spontaneous discharge frequency caused by Exendin-9-39 (t=7.968,P<0.01), with a mean reduction of (61.90±6.10)%, which was significantly different from that in the saline group (Z=3.145,P<0.01). ConclusionExendin-4 can excite neurons in the hippocampal CA3 region, and endogenous GLP-1 is involved in regulating the spontaneous discharge of neurons in the hippocampal CA3 region.
[KEY WORDS]glucagon-like peptide 1; exenatide; CA3 region, hippocampal; electrophysiology; rats
胰高血糖素樣肽-1(GLP-1)是一種腸道激素,由腸道L細(xì)胞合成并分泌,可通過血-腦脊液屏障。而腦內(nèi)GLP-1陽性神經(jīng)元主要位于孤束核,其纖維投射廣泛[1-3]。GLP-1受體是一種G蛋白耦聯(lián)受體,廣泛分布于包含海馬在內(nèi)的腦內(nèi)核團(tuán)[4]。有研究表明,激活腦內(nèi)GLP-1受體可起到調(diào)節(jié)攝食、神經(jīng)保護(hù)和抗炎作用,并參與調(diào)節(jié)突觸可塑性。海馬是學(xué)習(xí)記憶以及認(rèn)知功能的重要調(diào)節(jié)中樞[5]。根據(jù)神經(jīng)元形態(tài)及神經(jīng)纖維的構(gòu)成不同,海馬可以分為CA1、CA2、CA3和CA4等區(qū)域。CA3區(qū)神經(jīng)元的電活動(dòng)參與編碼空間工作相關(guān)記憶[5]。有形態(tài)學(xué)研究表明,海馬CA3區(qū)高度表達(dá)GLP-1受體[2,6]。然而,GLP-1是否能調(diào)控海馬CA3區(qū)神經(jīng)元自發(fā)放電尚不清楚。本研究旨在利用在體電生理記錄方法探討GLP-1受體激動(dòng)劑Exendin-4及內(nèi)源性GLP-1對大鼠海馬CA3區(qū)神經(jīng)元自發(fā)放電的影響。現(xiàn)將結(jié)果報(bào)告如下。
1材料與方法
1.1實(shí)驗(yàn)藥品
Exendin-4和Exendin-9-39(GLP-1受體阻斷劑)購于美國MedChemExpress公司,烏拉坦購于上海麥克林生化科技有限公司,乙酸鈉和滂胺天藍(lán)購于美國Sigma公司。
1.2動(dòng)物處理
實(shí)驗(yàn)用鼠為健康成年雄性Wistar大鼠,體質(zhì)量250~320 g,由濟(jì)南市朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司提供。大鼠飼養(yǎng)于(23±1)℃、12 h晝夜循環(huán)、濕度50%~60%的實(shí)驗(yàn)環(huán)境中,可自由進(jìn)食、飲水。在開始電生理實(shí)驗(yàn)前大鼠適應(yīng)環(huán)境1周。嚴(yán)格按照實(shí)驗(yàn)醫(yī)學(xué)倫理學(xué)要求,盡量減少動(dòng)物的使用數(shù)量及在實(shí)驗(yàn)過程中的痛苦。
1.3在體細(xì)胞外電生理記錄
腹腔注射烏拉坦1 g/kg麻醉大鼠,將大鼠放置在帶有加熱器的立體定位儀中,保持溫度在36~38 ℃。根據(jù)大鼠腦圖譜,在海馬CA3區(qū)背側(cè)部位進(jìn)行開顱手術(shù)(前囟后3.6~3.8 mm,旁開3.4~4.0 mm)。通過多管微電極拉制器拉制出三管微電極,其記錄電極中加入0.5 mol/L的乙酸鈉和20 g/L的滂胺天藍(lán)染料,另外兩個(gè)管為給藥電極,分別加入生理鹽水和Exendin-4,或生理鹽水和Exendin-9-39。生物電信號(hào)通過信號(hào)放大器和數(shù)模轉(zhuǎn)化器進(jìn)行擴(kuò)大,用Spike 2軟件記錄并分析神經(jīng)元放電數(shù)據(jù)。當(dāng)電極尖端到達(dá)海馬CA3區(qū)(顱骨外表面下2.5~3.2 mm)并且記錄到穩(wěn)定的神經(jīng)元自發(fā)放電5 min后,通過生物細(xì)胞納升注射器將上述藥物注射到神經(jīng)元表面,觀察藥物對神經(jīng)元放電頻率及放電模式的影響。神經(jīng)元的基礎(chǔ)放電頻率為給藥前120 s的平均頻率,加藥后的反應(yīng)頻率為加藥后反應(yīng)高峰處50 s的平均頻率。如果給藥后神經(jīng)元放電頻率的變化超過基礎(chǔ)放電頻率均數(shù)±2個(gè)標(biāo)準(zhǔn)差,則認(rèn)為該神經(jīng)元對該藥物有反應(yīng),否則認(rèn)為該神經(jīng)元為無反應(yīng)神經(jīng)元[7]。
1.4統(tǒng)計(jì)學(xué)分析
采用SPSS軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。所得計(jì)量數(shù)據(jù)以±s表示,神經(jīng)元加藥前后的放電頻率比較采用配對t檢驗(yàn),兩組神經(jīng)元自發(fā)放電頻率變化百分?jǐn)?shù)比較采用曼-惠特尼秩和檢驗(yàn);對藥物不同反應(yīng)神經(jīng)元放電模式的比較采用Fisher精確檢驗(yàn)。P<0.05認(rèn)為差異有顯著性。
2結(jié)果
2.1Exendin-4對大鼠海馬CA3區(qū)神經(jīng)元自發(fā)放電的影響
在記錄到的6個(gè)海馬CA3區(qū)神經(jīng)元中,微壓力注射生理鹽水后,其放電頻率由(1.78±0.44)Hz變?yōu)椋?.92±0.50)Hz,差異無統(tǒng)計(jì)學(xué)意義(t=1.277,P=0.274),放電頻率增加(11.59±7.47)%。微壓力注射10 μmol/L Exendin-4后,在所記錄到的22個(gè)海馬CA3區(qū)神經(jīng)元中,Exendin-4顯著興奮17個(gè)神經(jīng)元,其放電頻率由(1.74±1.49)Hz增加到了(3.83±2.60)Hz,差異具有統(tǒng)計(jì)學(xué)意義(t=6.286,P<0.01),放電頻率平均升高(149.67±18.94)%,與生理鹽水組相比差異有統(tǒng)計(jì)學(xué)意義(Z=3.571,P<0.01)。Exendin-4對另外5個(gè)海馬CA3區(qū)神經(jīng)元的放電頻率無明顯影響,其放電頻率由(1.77±0.48)Hz變?yōu)椋?.95±0.45)Hz,差異無統(tǒng)計(jì)學(xué)意義(t=2.221,P=0.091)。
此外,本實(shí)驗(yàn)通過放電間隔直方圖和自相關(guān)圖對CA3區(qū)神經(jīng)元的放電模式進(jìn)行分析。共記錄到兩種CA3區(qū)神經(jīng)元放電模式:簇狀放電和不規(guī)則放電。在Exendin-4產(chǎn)生興奮效應(yīng)的17個(gè)神經(jīng)元中,有11個(gè)神經(jīng)元(64.7%)為簇狀放電,6個(gè)神經(jīng)元(35.3%)為不規(guī)則放電;在對Exendin-4無反應(yīng)的5個(gè)神經(jīng)元中,有3個(gè)神經(jīng)元(60.0%)為簇狀放電,2個(gè)神經(jīng)元(40.0%)為不規(guī)則放電。CA3區(qū)神經(jīng)元對Exendin-4的反應(yīng)與神經(jīng)元放電模式之間無明顯相關(guān)性(P=0.833)。對每個(gè)神經(jīng)元放電間隔直方圖的自相關(guān)圖進(jìn)行分析,結(jié)果顯示Exendin-4不改變神經(jīng)元的放電模式。
2.2內(nèi)源性GLP-1對海馬CA3區(qū)神經(jīng)元自發(fā)放電的影響
微壓力注射生理鹽水使所記錄到的6個(gè)海馬CA3區(qū)神經(jīng)元放電頻率由(1.95±1.72)Hz變?yōu)椋?.09±2.22)Hz(t=0.497,P=0.674),平均變化(5.82±10.72)%。在所記錄的14個(gè)海馬CA3區(qū)神經(jīng)元中,10 μmol/L的Exendin-9-39顯著降低10個(gè)神經(jīng)元的放電頻率,其放電頻率由(1.92±0.75)Hz降低至(0.83±0.65)Hz(t=7.968,P<0.01),平均降低(61.90±6.10)%,與生理鹽水組相比差異有顯著性(Z=3.145,P<0.01)。Exendin-9-39對另外4個(gè)海馬CA3區(qū)神經(jīng)元的放電頻率無明顯影響,其放電頻率由(1.85±0.25)Hz變?yōu)椋?.80±0.36)Hz(t=0.515,P=0.176)。
3討論
海馬在記憶形成過程中占有核心地位,為信息的最初獲取和儲(chǔ)存提供了神經(jīng)基礎(chǔ)[8]。CA3區(qū)神經(jīng)元是海馬初級(jí)神經(jīng)環(huán)路的重要組成部分,參與學(xué)習(xí)和記憶過程,尤其在突觸傳遞調(diào)節(jié)及認(rèn)知功能中發(fā)揮重要作用[6,9]。當(dāng)海馬CA3區(qū)錐體神經(jīng)元發(fā)生變性及退變時(shí),會(huì)引發(fā)神經(jīng)退行性疾病,如阿爾茨海默?。ˋD)等。
GLP-1及其受體在大腦、胰腺、心臟、肌肉、腎臟中均有表達(dá),具有廣泛的生理功能。在人類和小鼠中GLP-1生理濃度下,GLP-1受體可以激活G-蛋白Gαs,進(jìn)而激活腺苷酸環(huán)化酶,導(dǎo)致細(xì)胞內(nèi)環(huán)磷酸腺苷水平增加[10-11]。GLP-1/GLP-1受體也可以激活Gαi/O和Gαq/1,導(dǎo)致磷脂酶C的激活以及二酰甘油和蛋白激酶C活性的增加[10,12]。人體臨床試驗(yàn)和動(dòng)物模型實(shí)驗(yàn)均表明,GLP-1參與能量代謝和攝食的調(diào)節(jié),外周或中樞內(nèi)的GLP-1可抑制攝食行為[13-14]。此外,在帕金森?。≒D)動(dòng)物模型中,GLP-1受體激動(dòng)劑,如利西拉肽和利拉魯肽,發(fā)揮明顯的保護(hù)作用,可以改善PD模型小鼠運(yùn)動(dòng)能力[15]。另有研究報(bào)道,GLP-1受體激動(dòng)劑利拉魯肽可以抑制AD模型小鼠β淀粉樣蛋白斑塊的沉積,改善莫里斯水迷宮測試的認(rèn)知功能,改善認(rèn)知障礙[16-17]。此外,F(xiàn)ARKAS等[18]近期研究發(fā)現(xiàn),激活小鼠下丘腦GLP-1受體可增加促性腺激素釋放激素神經(jīng)元的放電頻率,提示GLP-1可能通過調(diào)節(jié)神經(jīng)元自發(fā)放電而參與調(diào)控?cái)z食行為。形態(tài)學(xué)研究表明,GLP-1受體在CA3區(qū)有高水平的表達(dá),然而Exendin-4對于海馬CA3區(qū)神經(jīng)元的直接電生理效應(yīng)目前尚未見報(bào)道。本研究通過在體電生理實(shí)驗(yàn)觀察到,微量注射Exendin-4可增強(qiáng)大鼠海馬CA3區(qū)神經(jīng)元的自發(fā)放電活動(dòng),這為腦內(nèi)海馬GLP-1/GLP-1受體系統(tǒng)提供了直接的功能性證據(jù)。
雖然沒有形態(tài)學(xué)證據(jù)揭示孤束核GLP-1纖維直接投射至海馬,但本研究觀察到微量注射GLP-1受體阻斷劑Exendin-9-39可以降低海馬CA3區(qū)神經(jīng)元的自發(fā)放電頻率,這提示海馬CA3區(qū)的內(nèi)源性GLP-1參與調(diào)控神經(jīng)元的興奮性,增加其自發(fā)放電。以往也有報(bào)道稱內(nèi)源性GLP-1發(fā)揮重要功能。例如,有研究顯示,攝食行為完成后,再次給予食物圖片可以明顯抑制參與食欲調(diào)節(jié)核團(tuán)的活動(dòng),這種效應(yīng)在很大程度上可以通過外周給予Exendin-9-39來阻斷,這表明內(nèi)源性GLP-1在攝食行為中起關(guān)鍵作用[19]。此外,有研究發(fā)現(xiàn),內(nèi)源性GLP-1可以調(diào)節(jié)十二指腸運(yùn)動(dòng)和胰腺分泌,減少骨吸收[20-21]。有電生理實(shí)驗(yàn)顯示,GLP-1受體阻斷劑Exendin-5-39可降低場興奮性突觸后電位衰減時(shí)間,抑制海馬齒狀回長時(shí)程抑制,調(diào)節(jié)海馬的突觸傳遞與突觸可塑性,進(jìn)一步揭示了內(nèi)源性GLP-1的緊張性作用[22]。由上述研究可見,內(nèi)源性GLP-1與神經(jīng)元自發(fā)放電、食物攝取行為、突觸傳遞和記憶形成都有著密切的聯(lián)系,其重要性不可忽視。
有功能學(xué)實(shí)驗(yàn)研究結(jié)果表明,腦內(nèi)直接給予Exendin-4可改善大鼠的空間記憶和工作記憶能力,抑制神經(jīng)炎癥的發(fā)生和Tau蛋白過度磷酸化,進(jìn)而改善AD[23-24]。近期有研究表明,Exendin-4可以逆轉(zhuǎn)PD模型小鼠黑質(zhì)多巴胺能神經(jīng)元的損傷,改善運(yùn)動(dòng)行為[25-26]。最近有研究指出,通過給予神經(jīng)元溫和的光遺傳刺激或者興奮性神經(jīng)遞質(zhì)刺激,可以增加神經(jīng)元興奮性,起到保護(hù)神經(jīng)元延緩神經(jīng)元死亡的作用[27]。本研究結(jié)果顯示,給予Exendin-4可直接興奮海馬CA3區(qū)神經(jīng)元,提示腦內(nèi)GLP-1對海馬CA3區(qū)神經(jīng)元的直接興奮效應(yīng)可能是其保護(hù)神經(jīng)元及抗AD的途徑之一。
綜上所述,給予GLP-1受體激動(dòng)劑Exendin-4可以增加海馬CA3區(qū)神經(jīng)元的自發(fā)放電頻率,且內(nèi)源性GLP-1亦參與調(diào)節(jié)海馬CA3區(qū)神經(jīng)元的興奮性。本實(shí)驗(yàn)結(jié)果為進(jìn)一步探究GLP-1/GLP-1受體系統(tǒng)可能作為學(xué)習(xí)與記憶相關(guān)疾病的潛在靶點(diǎn)提供了一定的理論基礎(chǔ)和實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]MERCHENTHALER I, LANE M, SHUGHRUE P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system[J].? The Journal of Comparative Neurology, 1999,403(2):261-280.
[2]HOLST J J. The physiology of glucagon-like peptide 1[J].? Physiological Reviews, 2007,87(4):1409-1439.
[3]BRIERLEY D I, HOLT M K, SINGH A, et al. Central and peripheral GLP-1 systems independently suppress eating[J].? Nature Metabolism, 2021,3(2):258-273.
[4]ALVAREZ E, RONCERO I, CHOWEN J A, et al. Expression of the glucagon-like peptide-1 receptor gene in rat brain[J].? Journal of Neurochemistry, 1996,66(3):920-927.
[5]OLIVA A, FERNNDEZ-RUIZ A, BUZSKI G, et al. Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions[J].? Hippocampus, 2016,26(12):1593-1607.
[6]LATHE R. Hormones and the hippocampus[J].? The Journal of Endocrinology, 2001,169(2):205-231.
[7]康楠偉,薛雁,劉翠,等. 內(nèi)源性apelin對大鼠丘腦底核神經(jīng)元興奮性影響[J].? 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2022,58(3):357-360.
[8]LOGUE S F, PAYLOR R, WEHNER J M. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task[J].? Behavioral Neuroscience, 1997,111(1):104-113.
[9]RISOLD P Y, SWANSON L W. Structural evidence for functional domains in the rat hippocampus[J].? Science, 1996,272(5267):1484-1486.
[10]SHIGETO M, RAMRACHEYA R, TARASOV A I, et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation[J].? The Journal of Clinical Investigation, 2015,125(12):4714-4728.
[11]ROED S N, WISMANN P, UNDERWOOD C R, et al. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor[J].? Molecular and Cellular Endocrinology, 2014,382(2):938-949.
[12]HLLBRINK M, HOLMQVIST T, OLSSON M, et al. Different domains in the third intracellular loop of the GLP-1 receptor are responsible for Galpha(s) and Galpha(i)/Galpha(o) activation[J].? Biochimica et Biophysica Acta, 2001,1546(1):79-86.
[13]HEPPNER K M, PEREZ-TILVE D. GLP-1 based therapeutics: simultaneously combating T2DM and obesity[J].? Frontiers in Neuroscience, 2015,9:92.
[14]HAYES M R, LEICHNER T M, ZHAO S R, et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation[J].? Cell Metabolism, 2016,23(4):745.
[15]LIU W, JALEWA J, SHARMA M, et al. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinsons di-sease[J].? Neuroscience, 2015,303:42-50.
[16]GEJL M, GJEDDE A, EGEFJORD L, et al. In Alzheimers disease,6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial[J].? Frontiers in Aging Neuroscience, 2016,8:108.
[17]AN J J, ZHOU Y, ZHANG M J, et al. Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5×FAD mouse model of Alzheimers disease[J].? Behavioural Brain Research, 2019,370:111932.
[18]FARKAS I, VASTAGH C, FARKAS E, et al. Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs) in gonadotropin-releasing hormone (GnRH) neurons of the male mice via activation of nitric oxide (NO) and suppression of endocannabinoid signaling pathways[J].? Frontiers in Cellular Neuroscience, 2016,10:214.
[19]MEYER-GERSPACH A C, LY H G, BORGWARDT S, et al. Endogenous GLP-1 alters postprandial functional connecti-vity between homeostatic and reward-related brain regions involved in regulation of appetite in healthy lean males: a pilotstudy[J].? Diabetes, Obesity & Metabolism, 2018,20(10):2330-2338.
[20]SALEHI M, AULINGER B, PRIGEON R L, et al. Effect of endogenous GLP-1 on insulin secretion in type 2 diabetes[J].? Diabetes, 2010,59(6):1330-1337.
[21]HELSTED M M, GASBJERG L S, LANNG A R, et al. The role of endogenous GIP and GLP-1 in postprandial bone ho-meostasis[J].? Bone, 2020,140:115553.
[22]KOBAYASHI K, IWAI T, SASAKI-HAMADA S, et al. Exendin (5-39), an antagonist of GLP-1 receptor, modulates synaptic transmission via glutamate uptake in the dentate gyrus[J].? Brain Research, 2013,1505:1-10.
[23]WANG X H, WANG L, JIANG R R, et al. Exendin-4 anta-gonizes Aβ1-42-induced attenuation of spatial learning and memory ability[J].? Experimental and Therapeutic Medicine, 2016,12(5):2885-2892.
[24]ZHOU Y J, LI Z, CAO X Z, et al. Exendin-4 improves behaviorial deficits via GLP-1/GLP-1R signaling following partial hepatectomy[J].? Brain Research, 2019,1706:116-124.
[25]CHEN S C, YU S J, LI Y Z, et al. Post-treatment with PT302, a long-acting Exendin-4 sustained release formulation, reduces dopaminergic neurodegeneration in a 6-Hydroxydopamine rat model of Parkinsons disease[J].? Scientific Reports, 2018,8(1):10722.
[26]MULVANEY C A, DUARTE G S, HANDLEY J, et al. GLP-1 receptor agonists for Parkinsons disease[J].? The Cochrane Database of Systematic Reviews, 2020,7(7):CD012990.
[27]LIU C, XUE Y, LIU M F, et al. Orexin and Parkinsons di-sease: a protective neuropeptide with therapeutic potential[J].? Neurochemistry International, 2020,138:104754.
(本文編輯馬偉平)