国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

食品接觸材料中有害物質(zhì)遷移的研究進(jìn)展

2023-08-12 03:08:20曹瑜鐘澤輝唐聰
包裝工程 2023年15期
關(guān)鍵詞:化學(xué)物質(zhì)食品包裝油墨

曹瑜,鐘澤輝,唐聰

食品接觸材料中有害物質(zhì)遷移的研究進(jìn)展

曹瑜,鐘澤輝,唐聰

(湖南工業(yè)大學(xué) 包裝與材料工程學(xué)院,湖南 株洲 412000)

綜述目前食品接觸材料中幾種常用材料(紙、塑料、油墨)遷移與檢測的研究進(jìn)展,并指出幾種材料未來的發(fā)展趨勢,促使我國食品行業(yè)向著更綠色、更安全的方向發(fā)展。概述紙質(zhì)、塑料、油墨的發(fā)展趨勢和材料中有害物質(zhì)的來源;對比幾種材料的遷移規(guī)律及遷移模型;總結(jié)幾類常見有害物質(zhì)的檢測方法。綠色環(huán)保的生物基材料是食品接觸材料未來的發(fā)展方向,同時也需重視可持續(xù)性生物基食品接觸材料的化學(xué)安全性。因其產(chǎn)生的化學(xué)品對人體健康的影響不甚明朗,因此需多方面研究生物基食品接觸材料中化學(xué)物質(zhì)的存在和遷移到食品中的情況,并采取相應(yīng)措施減少包裝材料的使用,降低材料中有毒有害物質(zhì)對人體和環(huán)境的威脅。

食品接觸材料;紙基材料;塑料材料;印刷油墨;有害物質(zhì);遷移

隨著存儲運(yùn)輸加工食品需求的快速增長,食品接觸材料(Food Contact Materials, FCMs)以食品包裝、廚具、餐具等形式普遍應(yīng)用于人類社會生活中。食品包裝主要是為了保存食品或保護(hù)食品免受各種外部危害,但食物與包裝之間會發(fā)生“相互作用”,因而食物中難免會出現(xiàn)化學(xué)物質(zhì)的遷移、吸附或滲透現(xiàn)象,包裝中的低分子量物質(zhì)會因分子擴(kuò)散作用轉(zhuǎn)移到食品中,致使食品存在安全問題[1]。

依據(jù)第1935/2004/EC號法規(guī)[2]的原則,F(xiàn)CMs在傳輸一定數(shù)量食物過程中需對危害人體健康、改變食物結(jié)構(gòu)或者惡化其感官作用的物質(zhì)呈現(xiàn)充分的惰性反應(yīng)。為了改善FCMs的一些功能,或者滿足不同包裝產(chǎn)品的要求,在包裝材料的加工制造或運(yùn)輸處理過程中需加入不同作用的添加劑,如在紙基材料中常會加入一些鄰苯二甲酸酯類(Phthalie Acid Esters, PAEs)、印刷油墨、漂白劑及某些碳?xì)浠衔镂镔|(zhì),以滿足包裝環(huán)保需求,這些物質(zhì)會滲入食物鏈,從而影響人體健康[3]。

近年來,F(xiàn)CMs中有害物質(zhì)的遷移與檢測這一熱點(diǎn)備受國內(nèi)外學(xué)者的關(guān)注,F(xiàn)CMs主要應(yīng)用于抗菌、高阻隔、活性、可降解、智能包裝五大類食品包裝中[4],其中存在食品接觸用化學(xué)品數(shù)量較多的3種FCMs是印刷油墨、塑料和紙板[5]。為此,文中指出了近幾年來這幾種材料的發(fā)展方向,并簡要概述了其國內(nèi)外的遷移和檢測研究進(jìn)展,擬為建立幾種常見FCMs中有毒有害物質(zhì)的遷移限量標(biāo)準(zhǔn)及安全性評價提出建議,為我國未來食品產(chǎn)業(yè)的綠色、安全及穩(wěn)定發(fā)展提供參考。

1 食品接觸材料研究進(jìn)展

1.1 紙基材料

食品包裝材料是以可持續(xù)發(fā)展為基準(zhǔn),研究重點(diǎn)是可回收、可生物降解和可再生的綠色包裝。紙基材料在諸多食品包裝材料中最為突出,但其固有特質(zhì)(如結(jié)構(gòu)為多孔,存在極性羥基基團(tuán),使其阻油、阻水及阻隔小分子通過的能力較差)導(dǎo)致其在食品包裝中的應(yīng)用發(fā)展受到了較大限制。

多年來,學(xué)者們采用多種方法來提高紙制品的耐水性和耐油性,以增強(qiáng)它們的適用性。如采用紙張施膠、表面改性、化學(xué)改性,或?qū)⑵渑c鋁或塑料層壓來改善其性能[6-7],使用性能優(yōu)越的多氟烷基物質(zhì)(Per-and Polyfluoroalkyl Substances, PFASs)是提高其耐水性和耐油性的另外一種方法。由于PFASs是一種具有不同類型毒性的環(huán)境污染物[8],因此尋求具有防水、防油性能的綠色材料(諸如殼聚糖等)勢在必行。為了使紙張具有耐水、耐油的特性,Kansal等[9]在紙張襯底上涂上了殼聚糖?玉米醇溶蛋白雙層涂層,通過測定其表面結(jié)構(gòu)和力學(xué)性能,確定該雙層涂布紙材料具有良好的耐水性、耐油性、熱穩(wěn)定性和力學(xué)性能。Chungsiriporn等[10]采用蜂蠟?殼聚糖溶液涂布油棕纖維紙,并通過熱壓干燥,改善了纖維的黏接性和致密性,提高了其物理性能。纖維之間的孔隙被蜂蠟?殼聚糖溶液填充,經(jīng)壓縮封閉后,降低了纖維的水敏感性,提高了纖維的抗拉強(qiáng)度。

為了使天然生物基包裝產(chǎn)品獲得更綜合全面的效果,除了克服紙基食品包裝材料的防水防油性能缺陷外,還需在耐高溫等其他理化性能及其生產(chǎn)成本上進(jìn)行突破,從而使其在未來食品包裝中擁有更廣闊的發(fā)展前景。

1.2 塑料

目前,石油基塑料聚乙烯、聚丙烯和聚氯乙烯等材料是用于食品包裝中的主要材料,其難降解性及不可再生性是目前人們主要關(guān)注的問題[11]。鑒于石油儲量有限且面臨枯竭的事實,世界在促進(jìn)可持續(xù)包裝方面出現(xiàn)了新的發(fā)展趨勢,開發(fā)可代替?zhèn)鹘y(tǒng)塑料的可持續(xù)型材料、使用天然纖維和生物聚合物填充的復(fù)合材料是一個快速發(fā)展的領(lǐng)域。相關(guān)資料顯示[12],在具有低碳環(huán)保、可降解及可再生等優(yōu)勢的生物聚合物中,生物可降解塑料只占每年產(chǎn)量的1%,未來有巨大的發(fā)展?jié)摿Α?/p>

生物基材料在食品包裝薄膜和涂層的制備中受到了極大的重視,如在HDPE表面涂覆纖維素納米纖維可提高其抗?jié)櫥裕档推渫秆跣訹13],或?qū)⒉煌陌b材料與纖維素納米顆粒結(jié)合,可增強(qiáng)纖維的力學(xué)性能、阻隔性能和光學(xué)性能等[14]。也有采用納米纖維素和藻酸鹽聚合物制備納米復(fù)合薄膜,結(jié)果表明,該材料具有良好的抗拉強(qiáng)度[15]。由于天然生物聚合物的親水性較強(qiáng),其吸水量越高越能促進(jìn)食物的氧化[16],因此耐濕性是限制其在食品包裝中應(yīng)用的主要原因之一。近年來,各行業(yè)為了提高生物基聚合物材料的阻水、阻油等性能,將其與其他物質(zhì)共混[17-18]。此外,其他多功能的改性研究也是關(guān)注焦點(diǎn),Silveira等[19]采用納米銀、槐脂及溶菌酶等材料制備聚乳酸涂料,它對大腸桿菌、沙門氏菌、溶菌微球菌等具有預(yù)防作用,可延長易腐食品的保質(zhì)期,在食品包裝工業(yè)中擁有巨大的發(fā)展?jié)摿Α?/p>

基于生物基的一些特性(如生物降解性、無毒和抗氧化性等),人們逐漸認(rèn)識到利用可持續(xù)發(fā)展的FCMs是實現(xiàn)環(huán)境和健康效益的最佳方式。通過將生物基材料與多糖、添加劑及其他材料結(jié)合使用,使材料的各項性能皆得到明顯改善。雖然將生物基材料作為FCMs應(yīng)用于食品工業(yè)中越來越受歡迎,但是國內(nèi)外對生物基聚合物食品包裝材料的化學(xué)安全性知之甚少[20],且還需確定如何進(jìn)一步改進(jìn)和優(yōu)化這些材料,以提高貨架壽命,保持食品在不同運(yùn)輸和儲存條件下的安全性。

2 食品接觸材料中有毒有害物質(zhì)的遷移研究進(jìn)展

在供應(yīng)鏈的不同階段,食品中存在數(shù)量可觀的有毒有害污染物,F(xiàn)CMs中的化學(xué)物質(zhì)通過浸入、滲透和擴(kuò)散等方式進(jìn)入食品中的現(xiàn)象被稱為“遷移”[21]。FCMs中化合物及其污染物或降解產(chǎn)物的遷移存在嚴(yán)重安全風(fēng)險,如陶瓷中的離子交換和水解驅(qū)動[22]導(dǎo)致金屬的釋放,釉中含有的鉛、鎘及鎳等重金屬會遷移到食品中。下面列舉了一些常見的FCMs安全衛(wèi)生問題,見表1。

2.1 紙基材料

紙質(zhì)包裝材料中的纖維結(jié)構(gòu)使其擁有相應(yīng)的強(qiáng)度,但纖維結(jié)構(gòu)對空氣、水和油脂等小分子物質(zhì)的阻隔能力不夠,熱密封性和強(qiáng)度也不夠,所以化學(xué)物質(zhì)在紙中的遷移速率比在塑料中的遷移速率高。通常在紙和紙板內(nèi)施膠或?qū)⑻砑觿┩坎荚谄浔砻?,可增?qiáng)其印刷適性、力學(xué)性能和阻隔性能,或用鋁、塑料及其他材料在層壓紙上復(fù)合,以獲得所需性能[23]。復(fù)合紙包裝材料可能存在即使油墨和黏合劑不與食品直接接觸,一些有毒化學(xué)物質(zhì)(如聚氨酯等膠黏劑)也可通過擴(kuò)散作用遷移到食品或食物模擬物中的現(xiàn)象。

目前,關(guān)于紙和紙板包裝中化學(xué)物質(zhì)的實驗和遷移模型相當(dāng)有限,開發(fā)遷移建模方法和參數(shù)確定等方面的大部分研究都集中于聚合物材料的擴(kuò)散模型,專注于紙基材料遷移模型的研究較少。多數(shù)研究者通過Fick第二擴(kuò)散定律建立遷移模型[24],以研究遷移規(guī)律,見式(1)。Xue等[25]研究了印刷紙質(zhì)食品包裝材料有機(jī)污染物進(jìn)入食品的遷移現(xiàn)象,通過引入線性阻滯系數(shù)m來修正菲克定律,得到了擴(kuò)散方程,見式(2)。在擴(kuò)散理論不能完全解釋傳質(zhì)過程的情況下[26],數(shù)學(xué)模型(如Weibull分布模型,見式(3))可以簡單靈活地描述食品工程領(lǐng)域和食品包裝系統(tǒng)中的幾種傳質(zhì)過程[27]。目前,國內(nèi)外關(guān)于遷移模型的研究尚不多,未來Weibull分布模型可能會因其方法簡便、限制條件少等優(yōu)勢在遷移研究領(lǐng)域蓬勃發(fā)展。

表1 常見食品接觸材料分類及有害化學(xué)物質(zhì)

式中:為聚合物材料中遷移體的濃度,mg/g;為擴(kuò)散系數(shù),cm2/s;為擴(kuò)散發(fā)生的遷移時間,s;為包裝與食品之間的距離,cm;為系統(tǒng)時間常數(shù)或尺度參數(shù)(與工藝速率、擴(kuò)散系數(shù)和材料厚度有關(guān));為形狀參數(shù)。

“遷移”是擴(kuò)散、溶解和平衡等小分子物質(zhì)運(yùn)動的結(jié)果[28]。有機(jī)污染物的遷移量隨著脂肪含量的增大而增大,如難降解物PAEs的遷移量隨著時間的累積而逐漸增大。也有研究發(fā)現(xiàn)食品加工方法及其儲存條件會對FCMs中化學(xué)物質(zhì)的遷移產(chǎn)生影響,可增大其遷移速率,并影響其遷移行為[29-30]。為了抑制或減少遷移的發(fā)生,并控制遷移量,在食物與包裝之間增加一層特殊阻隔層是一種有效的方法[31],改變包裝層之間的順序也可達(dá)到不錯的效果,Aznar等[32]在采用多層材料(油墨/PET/鋁/聚乙烯)進(jìn)行遷移實驗時發(fā)現(xiàn),當(dāng)油墨放在PET層下時,遷移物的數(shù)量急劇減少。

近年來,因循環(huán)經(jīng)濟(jì)的原因,回收材料中非有意添加物(Non Intentionally Added Substances, NIAS)的數(shù)量越來越多,來源變得越加豐富。如在紙張回收過程中,用來漂白和強(qiáng)化紙張纖維的化學(xué)物質(zhì)可能會釋放到環(huán)境中,從而引發(fā)環(huán)境問題;用來改善紙基材料表面光學(xué)和印刷特性的染料、顏料和礦物產(chǎn)品可能存在鉛等重金屬安全問題[33]。重復(fù)利用包裝材料是減少開發(fā)自然資源的最佳方法,可以減少給人類帶來的安全隱患,因此未來應(yīng)該尋求更綠色、更安全的回收方式來減少FCMs中NIAS的數(shù)量和來源。

2.2 塑料

塑料食品接觸材料(Plastic Food Contact Materials, FCPs)因其優(yōu)異的性能被廣泛應(yīng)用于食品包裝中,但塑料在生產(chǎn)過程中可能會出現(xiàn)一些諸如增塑劑之類的有意添加物(Intentionally Added Substances, IAS)或其雜質(zhì),以及在材料制造過程中因降解而產(chǎn)生的污染物,或一些不完全反應(yīng)的產(chǎn)物(NIAS)。NIAS包括數(shù)千種化合物,其中絕大多數(shù)是未知的,但其中的有毒物質(zhì)(如著色劑、單體、增塑劑及印刷油墨等)會引發(fā)食品安全和環(huán)境污染問題[34]。有研究[35]分析了食品如何與包裝材料相互作用產(chǎn)生NIAS,目前關(guān)于FCPs中NIAS的遷移變化和檢測分析的研究還較少。

由于石油基塑料中有毒的PAEs和雙酚A(BPA)等物質(zhì)會給人體健康帶來巨大危害[36],因此學(xué)者們一直專注研究其遷移變化。FCMs向食品遷移的全過程受到眾多變量的影響,一方面,一些常規(guī)因素(如材料理化性質(zhì)、接觸時間和溫度)會影響FCPs的遷移。Liu等[37]證實了DIBP和DBP在聚乙烯薄膜上的遷移量會隨著時間和溫度的增加而增加。最近一項研究發(fā)現(xiàn),BPA的遷移路線一般從聚碳酸酯塑料包裝遷移到食品和飲料中,BPA的浸入量取決于包裝材料的類型[38]。另一方面,F(xiàn)CPs中化學(xué)物質(zhì)的初始濃度、表面結(jié)構(gòu)及結(jié)晶度等也是影響遷移速率的參數(shù),其化合物的遷移量會隨著某些影響因素的變化而發(fā)生動態(tài)變化。Wang等[39]評估了動物飼料包裝中雙酚化合物遷移到動物飼料中的量,此結(jié)果首次證實BPA會從塑料包裝中遷移到固體飼料中,發(fā)現(xiàn)包裝中BPA的初始濃度和接觸時間是影響其遷移行為的2個關(guān)鍵因素。

FCPs的遷移一般基于式(1)或式(3)展開,且已研究多年。Paraskevopoulou等[40]利用威布爾模型對菲克定律生成的數(shù)據(jù)進(jìn)行回歸分析后發(fā)現(xiàn),時間常數(shù)、擴(kuò)散系數(shù)和材料厚度為相關(guān)影響因素。目前,此類研究模型的普適性不高。為了突破一些桎梏,Douziech等[41]開發(fā)了一種線性混合效應(yīng)模型,發(fā)現(xiàn)摩爾質(zhì)量()與食品中的化學(xué)物質(zhì)呈負(fù)相關(guān),與食物中的脂肪含量呈正相關(guān)。較大的化學(xué)物質(zhì)(w>400 g/mol)從結(jié)晶度低(45%)的包裝材料中遷移的程度高于結(jié)晶度高(65%)的包裝材料。

目前,關(guān)于新型生物可降解聚合物材料遷移的研究較少,人們對它在與食物接觸過程中的變化不甚清楚。有研究人員[42]發(fā)現(xiàn),傳統(tǒng)塑料、生物塑料和植物基材料具有相似的毒性。也有研究人員在與食品接觸的生物基材料中引入納米填料時發(fā)現(xiàn)[43],即使在動態(tài)應(yīng)力條件下,從聚合物基質(zhì)中釋放出的納米硼鎂石在納米形態(tài)下也不會污染食品。總之,目前尚缺乏確切結(jié)論來證明生物基食品包裝材料的安全性。

2.3 印刷油墨

近年來,因食品接觸用油墨造成的食品安全問題頻繁出現(xiàn)。Selin等[44]對由紙和紙板制成的餅干、蛋糕及嬰兒配方奶粉等食品包裝盒的毒性進(jìn)行了評估,發(fā)現(xiàn)這些被測試印刷包裝盒油墨中含有具有基因毒性且可誘導(dǎo)氧化應(yīng)激反應(yīng)的物質(zhì),因而必須研究油墨組分在食品中的遷移。

油墨的種類繁多,因有機(jī)顏料在色彩強(qiáng)度、透明度和耐蝕性等方面具有卓越性能,因而比傳統(tǒng)礦物顏料更受歡迎,且其污染物導(dǎo)致的安全隱患也較多。印刷油墨中的各類功能型添加劑是發(fā)生遷移現(xiàn)象最主要的污染源頭,學(xué)者們近幾年也一直專注于光引發(fā)劑、增塑劑[45],以及有基因毒性和致癌性的初級芳香胺[46-47]等添加劑的研究。廣泛存在于印刷油墨中的礦物油碳?xì)浠衔镆蚱湓搭^復(fù)雜、定量分析困難及可能使人患癌等特性,受到人們的重視[48]。目前,關(guān)于印刷油墨從FCMs遷移的研究主要集中在紙、紙板原材料、涂層紙或再生紙上[49-51]。此外,一些原材料雜質(zhì)、降解物,以及因材料各組分之間發(fā)生化學(xué)反應(yīng)等變化而產(chǎn)生的一些NIAS,可通過氣相傳播或包裝材料的印刷面與非印刷面的堆疊現(xiàn)象而進(jìn)入食物,但相關(guān)研究不多。

遷移量為零的油墨尚不存在,使油墨的遷移量無限接近于零、降低油墨遷移的危害、尋找油墨的替代品已成為世界各國發(fā)展綠色包裝的重要任務(wù)。為了實現(xiàn)降低印刷油墨物質(zhì)的遷移含量及減少其危害的目的,目前已有相關(guān)油墨研發(fā)專家開發(fā)并生產(chǎn)了一些低遷移油墨(如水性油墨、UV油墨等環(huán)保型油墨),低遷移性UV印刷油墨成分(如光引發(fā)劑)在食品中的遷移受到了特別關(guān)注[52],但UV油墨中的低分子量游離未反應(yīng)單體或添加劑往往會通過基質(zhì)遷移。研究人員還發(fā)現(xiàn),印刷技術(shù)對遷移量有著較大的影響。Kurek等[53]發(fā)現(xiàn),與其他印刷技術(shù)相比,使用膠印技術(shù)生產(chǎn)的印刷品的水蒸氣透過率極低。此外,有研發(fā)機(jī)構(gòu)在尋找油墨替代品上發(fā)軔,如巴斯夫公司研發(fā)了一些具有近零VOC等諸多特點(diǎn)的生物基天然涂料,以降低印刷油墨中有毒化學(xué)物質(zhì)的遷移風(fēng)險。

目前,國內(nèi)外較少研究印刷油墨的遷移模型。早期有人[54]基于滲透過程和菲克第二定律建立了預(yù)測遷移模型,發(fā)現(xiàn)油墨滲透后紙張的厚度會影響污染物在紙層的分布。近幾年來,國內(nèi)外在油墨遷移模型上尚無較大創(chuàng)新,因此建立油墨的遷移模型、預(yù)測化學(xué)物質(zhì)的遷移量仍是首要問題。

3 食品接觸材料中有毒有害物質(zhì)的檢測方法研究進(jìn)展

目前,在FCMs(包括可持續(xù)包裝材料)中難免存在一些IAS或NIAS,因而開發(fā)一項全面、可靠的化合物色譜分析技術(shù)對有毒有害物質(zhì)進(jìn)行檢測至關(guān)重要。

FCMs遷移具有濃度低、成分復(fù)雜等特點(diǎn),在實際應(yīng)用中,一般根據(jù)分析物的揮發(fā)性來選擇前處理方法。如對醇類、醛類及酯類等具有揮發(fā)性或半揮發(fā)性物質(zhì)的前處理方法一般采用頂空萃取法。頂空萃取法在樣品前處理過程中顯示出有機(jī)溶劑少、前處理步驟簡單快速、在線分析方便等優(yōu)點(diǎn),但僅限于高揮發(fā)性物質(zhì)分析中。對于FCMs中的非揮發(fā)性物質(zhì)(如全氟化合物、BPA和PAEs),常使用固液萃?。⊿olid-Liquid Extraction, SLE)和場來輔助提取目標(biāo)物質(zhì),低濃度的目標(biāo)物質(zhì)可通過固相萃?。⊿olid-Phase Extraction, SPE)、液液萃?。↙iquid-Liquid Extraction, LLE)和固相微萃?。⊿olid Phase Micro-Extraction, SPME)對提取的目標(biāo)分析物進(jìn)行濃縮和純化,之后再采用液相色譜(Liquid Chromatograph, LC)或液相色譜質(zhì)譜(Liquid Chromatograph-Mass Spectrometer, LC-MS)等方法進(jìn)行分析檢測[55],但這些前處理方式存在程序較復(fù)雜、耗時長、精度較低等缺陷。為了克服萃取效率低、成本高昂和時間長等問題,開發(fā)新型快速的在線自動化裝置及專用吸附劑是FCMs樣品前處理的新研究方向。

在FCMs有毒有害物質(zhì)的檢測過程中,有機(jī)物檢測一般采用氣相色譜?質(zhì)譜聯(lián)用(Gas Chromatography-Mass Spectrometry, GC-MS)、GC、LC、LC-MS等技術(shù),如PAEs及有機(jī)揮發(fā)物可以通過GC-MS進(jìn)行檢測。近年來已有幾種方法用于PAEs的預(yù)處理,如SPE、LLE、微波提取、加速溶劑提?。ˋccelerated Solvent Extraction, ASE)等[56],其中ASE因具有快速、高效、易于操作等優(yōu)點(diǎn),具有較好的應(yīng)用前景。PAEs樣品檢測方法包括高效液相色譜(High Performance Liquid Chromatography,HPLC)、GC、GC-MS等。由于PAEs的沸點(diǎn)較高,因而在大多數(shù)情況下采用GC-MS技術(shù)。此外,對于可能會遷移到食物中并被腸道吸收的塑料單體、低聚物和揮發(fā)性物質(zhì)[57-58](如雙酚A、甲醛和乙醛等低聚物),可以通過LC-MS技術(shù)檢測,一般聚酯低聚物通常通過高效液相色譜質(zhì)譜聯(lián)用(High Performance Liquid Chromatography-Mass Spectrometry, HPLC-MS)技術(shù)進(jìn)行鑒定分析。

近年來,對一些痕量元素污染物(如重金屬離子)的前處理方式一般采用無須過濾和離心的磁固相萃取技術(shù)[59],主要通過原子熒光法、電感耦合等離子體原子發(fā)射光譜法及電感耦合等離子體?質(zhì)譜法進(jìn)行分析鑒別[60]。近期也報道了室溫離子液體和特異性同位素稀釋質(zhì)譜技術(shù)[61],該檢測方法具有較高的準(zhǔn)確性、特異性和敏感性等優(yōu)勢,但存在設(shè)備價格高昂、方法不適合產(chǎn)品現(xiàn)場抽查等缺點(diǎn),限制了其發(fā)展。其他常見的化學(xué)物質(zhì)檢測方法如表2所示。

在一些濃度低、基質(zhì)復(fù)雜的材料(如礦物油等)中,無法用一維色譜或通用色譜技術(shù)完全區(qū)分,因此需采用特定的色譜耦合技術(shù)。對于未知的NIAS,高分辨率質(zhì)譜法[62]可以有效提高分辨率,并尋找質(zhì)譜庫中不存在的新物質(zhì)。在FCMs中,NIAS的非靶向分析仍存在顯著局限性。目前,液相高分辨高精密度質(zhì)譜(Liquid Chromatography-High Resolution Mass Spectrometry, LC-HRMS)和氣相色譜四級飛行時間質(zhì)譜(Gas Chromatography Quadrupole Time-of-Flight Mass Spectrometry, GC-QTOF-MS)是NIAS非靶向分析常用的方法,但在如何完全提取NIAS等回收率高的分析物上仍然存在較大困難。

表2 食品接觸材料中化學(xué)物質(zhì)的檢測

Tab.2 Detection of chemical substances in food contact materials

注:食品模擬物的百分?jǐn)?shù)皆表示體積分?jǐn)?shù)。

4 結(jié)語

針對FCMs中有毒有害物質(zhì)的遷移和檢測方法,國內(nèi)外已取得一定進(jìn)展,但存在的缺陷也非常明顯。

1)針對塑料、紙基、油墨材料的理化性質(zhì)、接觸時間、溫度和食品性質(zhì)等影響遷移的因素進(jìn)行了相關(guān)研究,但針對高聚物材料的結(jié)構(gòu)和性質(zhì)對遷移過程的影響等方面的研究較少。

2)食品包裝材料是以可持續(xù)發(fā)展為導(dǎo)向,其研究重點(diǎn)朝著可回收、可生物降解及可再生的綠色包裝方向發(fā)展,開發(fā)和合成功能全面、成本較低、用料安全的生物基材料是未來紙質(zhì)、塑料、印刷油墨的發(fā)展方向。目前人們對生物基材料的化學(xué)安全性還不甚清楚。

3)針對紙基、塑料和油墨等的遷移模型主要基于菲克模型展開,但菲克模型的限制條件較多,且一般僅適用于聚合物的遷移研究。國內(nèi)外尚缺乏紙基及印刷油墨中化學(xué)物質(zhì)的遷移機(jī)理及遷移模型方面的研究。

4)目前,對于非揮發(fā)性物質(zhì)和揮發(fā)性物質(zhì),兩者前處理方法的主要區(qū)別是后者一般多采用頂空萃取法,共同之處是均存在耗時過長、前處理復(fù)雜及成本較高等缺點(diǎn)。未來可將開發(fā)新型快速在線自動化裝置及專用吸附劑作為樣品前處理方法的研究重點(diǎn)。

5)對食品包裝材料中的NIAS的高精密辨別能力不夠,許多檢測方法往往局限于利用檢測方法測定包裝中化學(xué)物質(zhì),缺乏對經(jīng)濟(jì)、快速、準(zhǔn)確且簡便的檢測方法的開發(fā)和研究。

FCMs以可持續(xù)發(fā)展、可回收、可生物降解的綠色包裝為研究重點(diǎn),開發(fā)和合成功能全面、成本較低、用料安全的生物基材料是未來紙質(zhì)、塑料、印刷油墨的發(fā)展方向。同時,可不斷減少其他類型FCMs的用量,降低其對生態(tài)環(huán)境和人身的危害。此外,科研人員應(yīng)投入更大的精力攻破以上技術(shù)壁壘,開發(fā)針對FCMs中有害物質(zhì)的高效檢測方法,為相關(guān)標(biāo)準(zhǔn)的建立提供可靠依據(jù),為未來食品產(chǎn)業(yè)的穩(wěn)定發(fā)展提供參考。

[1] ONG H T, SAMSUDIN H, SOTO-VALDEZ H. Migration of Endocrine-Disrupting Chemicals into Food from Plastic Packaging Materials: An Overview of Chemical Risk Assessment, Techniques to Monitor Migration, and International Regulations[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(4): 957-979.

[2] EMATERINA K. Food Contact Materials-Regulation (EC) 1935/2004-European Implementation Assessment[J/OL]. European Asylum Support Office, 2016. https://policycommons.net/artifacts/2144122/food-contact-materials/2899420/.

[3] DESHWAL G K, PANJAGARI N R, ALAM T. An Overview of Paper and Paper Based Food Packaging Materials: Health Safety and Environmental Concerns[J]. Journal of Food Science and Technology, 2019, 56(10): 4391-4403.

[4] AGARWAL A, SHAIDA B, RASTOGI M, et al. Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications[J]. Chemistry Africa, 2023, 6(1): 117-144.

[5] ZIMMERMANN L, SCHERINGER M, GEUEKE B, et al. Implementing the EU Chemicals Strategy for Sustainability: The Case of Food Contact Chemicals of Concern[J]. Journal of Hazardous Materials, 2022, 437: 129167.

[6] 徐冰冰. 防水防油牛皮紙的制備及性能表征[D]. 北京: 北京林業(yè)大學(xué), 2021: 2-10.

XU Bing-bing. Preparation and Characterization of Waterproof and Oilproof Kraft Paper[D]. Beijing: Beijing Forestry University, 2021: 2-10.

[7] WANG Fei-jie, WANG Li-qiang, ZHANG Xin-chang, et al. Enhancement of Oil Resistance of Cellulose Packaging Paper for Food Application by Coating with Materials Derived from Natural Polymers[J]. Journal of Food Engineering, 2022, 332: 111039.

[8] AWAD R, ZHOU Yi-hui, NYBERG E, et al. Emerging Per- and Polyfluoroalkyl Substances (PFAS) in Human Milk from Sweden and China[J]. Environmental Science Processes & Impacts, 2020, 22(10): 2023-2030.

[9] KANSAL D, HAMDANI S S, PING Ruo-qi, et al. Food-Safe Chitosan-Zein Dual-Layer Coating for Water- and Oil-Repellent Paper Substrates[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6887-6897.

[10] CHUNGSIRIPORN J, KHUNTHONGKAEW P, WONGNOIPLA Y, et al. Fibrous Packaging Paper Made of Oil Palm Fiber with Beeswax-Chitosan Solution to Improve Water Resistance[J]. Industrial Crops and Products, 2022, 177: 114541.

[11] ROY CHONG J W, TAN Xue-fei, KHOO K S, et al. Microalgae-Based Bioplastics: Future Solution towards Mitigation of Plastic Wastes[J]. Environmental Research, 2022, 206: 112620.

[12] HAVSTAD M R. Biodegradable Plastics[M]// Plastic Waste and Recycling. Amsterdam: Elsevier, 2020: 97-129.

[13] V?H?-NISSI M, KOIVULA H M, R?IS?NEN H M, et al. Cellulose Nanofibrils in Biobased Multilayer Films for Food Packaging[J]. Journal of Applied Polymer Science, 2017, 134(19): 44830.

[14] QASIM U, OSMAN A I, AL-MUHTASEB A H, et al. Renewable Cellulosic Nanocomposites for Food Packaging to Avoid Fossil Fuel Plastic Pollution: A Review[J]. Environmental Chemistry Letters, 2021, 19(1): 613-641.

[15] LAVRI? G, OBERLINTNER A, FILIPOVA I, et al. Functional Nanocellulose, Alginate and Chitosan Nanocomposites Designed as Active Film Packaging Materials[J]. Polymers, 2021, 13(15): 2523.

[16] ZHAO Xiao-ying, CORNISH K, VODOVOTZ Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update[J]. Environmental Science & Technology, 2020, 54(8): 4712-4732.

[17] RANASINGHE R A S N, WIJESEKARA W L I, PERERA P R D, et al. Functional and Bioactive Properties of Gelatin Extracted from Aquatic Bioresources-A Review[J]. Food Reviews International, 2022, 38(4): 812-855.

[18] MOEINI A, GERMANN N, MALINCONICO M, et al. Formulation of Secondary Compounds as Additives of Biopolymer-Based Food Packaging: A Review[J]. Trends in Food Science & Technology, 2021, 114: 342-354.

[19] SILVEIRA V A I, MARIM B M, HIPóLITO A, et al. Characterization and Antimicrobial Properties of Bioactive Packaging Films Based on Polylactic Acid-Sophorolipid for the Control of Foodborne Pathogens[J]. Food Packaging and Shelf Life, 2020, 26: 100591.

[20] ETXABIDE A, YOUNG B, BREMER P J, et al. Non-Permanent Primary Food Packaging Materials Assessment: Identification, Migration, Toxicity, and Consumption of Substances[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5): 4130-4145.

[21] ALAMRI M S, QASEM A A A, MOHAMED A A, et al. Food Packaging's Materials: A Food Safety Perspective[J]. Saudi Journal of Biological Sciences, 2021, 28(8): 4490-4499.

[22] HENCH L L, CLARK D E, LUE E. Corrosion of Glasses and Glass-Ceramics[J]. Nuclear and Chemical Waste Management, 1980, 1(1): 59-75.

[23] RAMíREZ CARNERO A, LESTIDO-CARDAMA A, VAZQUEZ LOUREIRO P, et al. Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials (FCM) and Its Migration to Food[J]. Foods, 2021, 10(7): 1443.

[24] 謝曉超, 梁健能. 食品接觸包裝材料遷移模型研究[J]. 質(zhì)量與認(rèn)證, 2021(S1): 200-202.

XIE Xiao-chao, LIANG Jian-neng. Study on Migration Model of Food Contact Packaging Materials[J]. China Quality Certification, 2021(S1): 200-202.

[25] XUE Mei-gui, TIAN Le-yuan, YANG Yu-chun, et al. Predictive Migration Model for Organic Contaminants from Printed Paper (Board) Food Packaging Materials into Food[J]. Applied Mechanics and Materials, 2015, 731: 471-475.

[26] HELLéN E, KETOJA J, NISKANEN K, et al. Diffusion through Fibre Networks[J]. Journal of Pulp and Paper Science, 2002, 28(2): 55-62.

[27] DE FáTIMA PO?AS M, OLIVEIRA J C, PEREIRA J R, et al. Modelling Migration from Paper into a Food Simulant[J]. Food Control, 2011, 22(2): 303-312.

[28] SAMSUDIN H, AURAS R, MISHRA D, et al. Migration of Antioxidants from Polylactic Acid Films: A Parameter Estimation Approach and an Overview of the Current Mass Transfer Models[J]. Food Research International, 2018, 103: 515-528.

[29] PANDISELVAM R, AYDAR A Y, KUTLU N, et al. Individual and Interactive Effect of Ultrasound Pre-Treatment on Drying Kinetics and Biochemical Qualities of Food: A Critical Review[J]. Ultrasonics Sonochemistry, 2023, 92: 106261.

[30] BRANDSCH R, PEMBERTON M, SCHUSTER D, et al. Impact of Partitioning in Short-Term Food Contact Applications Focused on Polymers in Support of Migration Modelling and Exposure Risk Assessment[J]. Molecules, 2021, 27(1): 121.

[31] RADUSIN T, NILSEN J, LARSEN S, et al. Use of Recycled Materials as Mid Layer in Three Layered Structures-New Possibility in Design for Recycling[J]. Journal of Cleaner Production, 2020, 259: 120876.

[32] AZNAR M, DOME?O C, NERíN C, et al. Set-off of Non Volatile Compounds from Printing Inks in Food Packaging Materials and the Role of Lacquers to Avoid Migration[J]. Dyes and Pigments, 2015, 114: 85-92.

[33] ZALEWSKI S. Design, Graphic Arts, and Environment[D]. Rochester: Rochester Institute of Technology, 1994: 55-63.

[34] GROH K J, BACKHAUS T, CARNEY-ALMROTH B, et al. Overview of Known Plastic Packaging-Associated Chemicals and Their Hazards[J]. Science of the Total Environment, 2019, 651: 3253-3268.

[35] AURISANO N, WEBER R, FANTKE P. Enabling a Circular Economy for Chemicals in Plastics[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 31: 100513.

[36] CARMEN S. Microbial Capability for the Degradation of Chemical Additives Present in Petroleum-Based Plastic Products: A Review on Current Status and Perspectives[J]. Journal of Hazardous Materials, 2021, 402: 123534.

[37] LIU Jing-min, LI Chun-yang, ZHAO Ning, et al. Migration Regularity of Phthalates in Polyethylene Wrap Film of Food Packaging[J]. Journal of Food Science, 2020, 85(7): 2105-2113.

[38] KHAN M R, OULADSMANE M, ALAMMARI A M, et al. Bisphenol a Leaches from Packaging to Fruit Juice Commercially Available in Markets[J]. Food Packaging and Shelf Life, 2021, 28: 100678.

[39] WANG Rui-guo, HUANG Yuan, DONG Shu-jun, et al. The Occurrence of Bisphenol Compounds in Animal Feed Plastic Packaging and Migration into Feed[J]. Chemosphere, 2021, 265: 129022.

[40] PARASKEVOPOULOU D, ACHILIAS D S, PARASKEVOPOULOU A. Migration of Styrene from Plastic Packaging Based on Polystyrene into Food Simulants[J]. Polymer International, 2012, 61(1): 141-148.

[41] DOUZIECH M, BENíTEZ-LóPEZ A, ERNSTOFF A, et al. A Regression-Based Model to Predict Chemical Migration from Packaging to Food[J]. Journal of Exposure Science & Environmental Epidemiology, 2020, 30(3): 469-477.

[42] SPEIGHT J G. Handbook of industrial hydrocarbon processes[M]. Oxford: Gulf Professional Publishing, 2019: 666-691.

[43] LAJARRIGE A, GONTARD N, GAUCEL S, et al. Evaluation of the Food Contact Suitability of Aged Bio-Nanocomposite Materials Dedicated to Food Packaging Applications[J]. Applied Sciences, 2020, 10(3): 877.

[44] SELIN E, SVENSSON K, GRAVENFORS E, et al. Food Contact Materials: An Effect-Based Evaluation of the Presence of Hazardous Chemicals in Paper and Cardboard Packaging[J]. Food Additives & Contaminants: Part A, 2021, 38(9): 1594-1607.

[45] BLANCO-ZUBIAGUIRRE L, ZABALETA I, PRIETO A, et al. Migration of Photoinitiators, Phthalates and Plasticizers from Paper and Cardboard Materials into Different Simulants and Foodstuffs[J]. Food Chemistry, 2021, 344: 128597.

[46] LUO Ren-jie, LIN Qin-bao, ZHU Lei, et al. Detection of Primary Aromatic Amines Content in Food Packaging Ink and Migration from Printed Plastic Bags[J]. Food Packaging and Shelf Life, 2022, 32: 100820.

[47] GALBIATI E, JACXSENS L, DE MEULENAER B. Hazard Prioritisation of Substances in Printing Inks and Adhesives Applied to Plastic Food Packaging[J]. Food Additives & Contaminants: Part A, 2021, 38(9): 1608-1626.

[48] JAéN J, DOME?O C, NERíN C. Development of an Analytical Method for the Determination of Mineral Oil Aromatic Hydrocarbons (MOAH) from Printing Inks in Food Packaging[J]. Food Chemistry, 2022, 397: 133745.

[49] PAN Jing-jing, CHEN Yan-fen, ZHENG Jian-guo, et al. Migration of Mineral Oil Hydrocarbons from Food Contact Papers into Food Simulants and Extraction from Their Raw Materials[J]. Food Additives & Contaminants: Part A, 2021, 38(5): 870-880.

[50] PACK E C, JANG D Y, CHA M G, et al. Potential for Short-Term Migration of Mineral Oil Hydrocarbons from Coated and Uncoated Food Contact Paper and Board into a Fatty Food Simulant[J]. Food Additives & Contaminants: Part A, 2020, 37(5): 858-868.

[51] WAN Jiao-jiao, ZHANG Shu-chang, LIU Ling-ling, et al. Contribution of Packaging Materials to MOSH and POSH Contamination of Milk Powder Products during Storage[J]. Food Additives & Contaminants: Part A, 2021, 38(6): 1034-1043.

[52] LAGO M A, SENDóN R, BUSTOS J, et al. Migration Studies of Two Common Components of UV-Curing Inks into Food Simulants[J]. Molecules, 2019, 24(19): 3607.

[53] KUREK M, PLAZONI? I, PETRIC MARETI? K, et al. Effects of Non-Wood Fibres in Printed Paper Substrate on Barrier and Migration Properties[J]. Tehni?ki Glasnik, 2022, 16(3): 299-305.

[54] GAO Song, WANG Zhi-wei, HU Chang-ying, et al. Investigation of Migration Model of Printing Inks on Paper Packaging[J]. Journal of Food Process Engineering, 2014, 37(2): 146-159.

[55] OUYANG Xiao-yan, LU Zi-cheng, HU Yu-ling, et al. Research Progress on Sample Pretreatment Methods for Migrating Substances from Food Contact Materials[J]. Journal of Separation Science, 2021, 44(4): 879-894.

[56] PEZHHANFAR S, ALI FARAJZADEH M, HOSSEINI- YAZDI S A, et al. An MOF-Based Dispersive Micro Solid Phase Extraction Prior to Dispersive Liquid-Liquid Microextraction for Analyzing Plasticizers[J]. Journal of Food Composition and Analysis, 2021, 104: 104174.

[57] UBEDA S, AZNAR M, ROSENMAI A K, et al. Migration Studies and Toxicity Evaluation of Cyclic Polyesters Oligomers from Food Packaging Adhesives[J]. Food Chemistry, 2020, 311: 125918.

[58] ECKARDT M, HETZEL L, BRENZ F, et al. Release and Migration of Cyclic Polyester Oligomers from Bisphenol a Non-Intent Polyester-Phenol-Coatings into Food Simulants and Infant Food-a Comprehensive Study[J]. Food Additives & Contaminants: Part A, 2020, 37(4): 681-703.

[59] JIANG Hai-long, LI Na, CUI Lin, et al. Recent Application of Magnetic Solid Phase Extraction for Food Safety Analysis[J]. TrAC Trends in Analytical Chemistry, 2019, 120: 115632.

[60] 張梟雄, 鐘紅霞. 食品接觸材料重金屬遷移檢測分析[J]. 化工管理, 2020(14): 34-35.

ZHANG Xiao-xiong, ZHONG Hong-xia. Detection and Analysis of Heavy Metal Migration in Food Contact Materials[J]. Chemical Engineering Management, 2020(14): 34-35.

[61] FU Xian-shu, CHEN Er-jing, MA Biao, et al. Establishment of an Indirect Competitive Enzyme-Linked Immunosorbent Method for the Detection of Heavy Metal Cadmium in Food Packaging Materials[J]. Foods, 2021, 10(2): 413.

[62] NERíN C, BOURDOUX S, FAUST B, et al. Guidance in Selecting Analytical Techniques for Identification and Quantification of Non-Intentionally Added Substances (NIAS) in Food Contact Materials (FCMS)[J]. Food Additives & Contaminants: Part A, 2022, 39(3): 620-643.

[63] VERA P, CANELLAS E, NERíN C. Identification of Non Volatile Migrant Compounds and NIAS in Polypropylene Films Used as Food Packaging Characterized by UPLC- MS/QTOF[J]. Talanta, 2018, 188: 750-762.

[64] YANG Jin-ling, SONG Wei-zhong, WANG Xiao-jie, et al. Migration of Phthalates from Plastic Packages to Convenience Foods and Its Cumulative Health Risk Assessments[J]. Food Additives & Contaminants: Part B, 2019, 12(3): 151-158.

[65] ZHU Wen-juan, JIN Ping-ning, YANG Hong-rui, et al. A Green Extraction Strategy for the Detection of Antioxidants in Food Simulants and Beverages Migrated from Plastic Packaging Materials[J]. Food Chemistry, 2023, 406: 135060.

[66] 程暢. 食品接觸用橡膠密封墊圈中抗氧化劑的檢測與遷移研究[D]. 無錫: 江南大學(xué), 2021: 25-34.

CHENG Chang. Detection and Migration of Antioxidants in Rubber Gasket Ring for Food Contact[D].Wuxi: Jiangnan University, 2021: 25-34.

[67] DREOLIN N, AZNAR M, MORET S, et al. Development and Validation of a LC-MS/MS Method for the Analysis of Bisphenol a in Polyethylene Terephthalate[J]. Food Chemistry, 2019, 274: 246-253.

[68] DRIFFIELD M, GARCIA-LOPEZ M, CHRISTY J, et al. The Determination of Monomers and Oligomers from Polyester-Based can Coatings into Foodstuffs over Extended Storage Periods[J]. Food Additives & Contaminants: Part A, 2018, 35(6): 1200-1213.

[69] ZHOU Wen-li, DING Li, CHENG Yun-hui, et al. Application of an Improved Hollow Fiber Liquid Phase Microextraction Technique Coupled to LC-MS/MS to Studying Migration of Fluorescent Whitening Agents from Plastic Food Contact Materials[J]. Food Additives & Contaminants: Part A, 2022, 39(7): 1337-1347.

[70] KHAN S, KHAN A. Migrating Levels of Toxic Heavy Metals in Locally Made Food Packaging Containers[J]. Egyptian Journal of Chemistry, 2022, 65(1): 521-527.

[71] ZABALETA I, BLANCO-ZUBIAGUIRRE L, BAHARLI E N, et al. Occurrence of Per- and Polyfluorinated Compounds in Paper and Board Packaging Materials and Migration to Food Simulants and Foodstuffs[J]. Food Chemistry, 2020, 321: 126746.

Research Progress on the Migration of Harmful Substances in Food Contact Materials

CAO Yu, ZHONG Ze-hui, TANG Cong

(School of Packaging and Materials Engineering, Hunan University of Technology, Hunan Zhuzhou 412000, China)

The work aims to briefly review the current research progress of migration and detection of several commonly used materials (paper, plastic and ink) in food contact materials and outline the development trend of these materials to promote the development of Chinese food industry in a greener and safer direction. The development trend of paper, plastic and ink and the sources of hazardous substances in the materials were generalized. The migration rules and migration models of these materials were compared. The detection methods of several common hazardous substances were summarized. Green and environmentally-friendly bio-based materials are the future direction of food contact materials, but attention should also be paid to the chemical safety of sustainable bio-based food contact materials, as the impact of the chemicals produced on human health is not clear.Therefore, the presence and migration of chemicals in bio-based food contact materials into food need to be studied from many aspects and measures must be taken to reduce the use of packaging materials to lower the threat of toxic and hazardous substances in the materials to humans and environment.

food contact materials; paper-based material; plastic materials; printing ink; hazardous substances; migration

TS206.4

A

1001-3563(2023)15-0112-10

10.19554/j.cnki.1001-3563.2023.15.015

2022?12?02

湖南省自然科學(xué)基金(2022JJ90002);2022年度湖南省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項目(5352,5356)

曹瑜(1997—),女,碩士生,主攻食品接觸材料的安全與檢測。

鐘澤輝(1970—),男,博士,教授,主要研究方向為包裝與印刷新材料與技術(shù)。

責(zé)任編輯:彭颋

猜你喜歡
化學(xué)物質(zhì)食品包裝油墨
新東方油墨有限公司
綠色包裝(2022年11期)2023-01-09 11:23:42
食品包裝設(shè)計優(yōu)秀作品選登
新東方油墨有限公司
綠色包裝(2022年9期)2022-10-12 12:18:32
食品包裝設(shè)計優(yōu)秀作品選登
第1講 身邊的化學(xué)物質(zhì)
第1講 身邊的化學(xué)物質(zhì)
食品包裝機(jī)械的自動化技術(shù)
油墨基本情況概述
中國制筆(2019年2期)2019-11-18 09:28:40
第1講 身邊的化學(xué)物質(zhì)
身邊的化學(xué)物質(zhì)
琼中| 湖北省| 宜良县| 山阳县| 修文县| 定远县| 银川市| 江阴市| 红安县| 龙州县| 台安县| 綦江县| 石阡县| 库车县| 中超| 汾西县| 广平县| 开原市| 凌海市| 霍林郭勒市| 永胜县| 郸城县| 瓦房店市| 威信县| 临邑县| 河西区| 桃江县| 朝阳市| 荆门市| 桃园市| 饶阳县| 象州县| 噶尔县| 平山县| 靖安县| 富蕴县| 定远县| 上杭县| 宿松县| 黄浦区| 临桂县|