鄭博文 劉華亭 陳晨 侯彥婕 范曉陽 劉光珍
【摘要】 腎小管上皮細胞是腎單位重要的組成結(jié)構(gòu)之一,對維持腎臟正常生理功能具有重要作用。近年研究提示,近端小管嚴重損傷或多次損傷將導(dǎo)致不可逆的結(jié)構(gòu)破壞和功能丟失,引起間質(zhì)小管炎癥和纖維化、腎小球硬化,以及毛細血管稀疏等慢性化表現(xiàn)。當腎小管上皮細胞損傷后,會發(fā)生適應(yīng)性修復(fù)異常,具體機制包括細胞衰老、代謝紊亂和部分上皮細胞-間充質(zhì)轉(zhuǎn)化等,這將導(dǎo)致腎臟纖維化的發(fā)生發(fā)展。在大多數(shù)存活的患者中,尤其是在輕度損傷的情況下,可以觀察到腎小管的再生和成功的腎修復(fù)。在適應(yīng)性修復(fù)中,存活的腎小管上皮細胞經(jīng)歷去分化和增殖,以恢復(fù)功能。然而在嚴重、重復(fù)性損傷或腎臟老化的情況下,腎小管上皮細胞可能會出現(xiàn)適應(yīng)性修復(fù)異常的情況,這會導(dǎo)致進行性腎臟纖維化。本文就近年來腎小管上皮細胞損傷后的適應(yīng)性修復(fù)異常及其機制的研究進展做如下綜述。
【關(guān)鍵詞】 腎小管上皮細胞 適應(yīng)性修復(fù)異常 損傷機制
Advances in Adaptive Repair Abnormalities and Mechanisms of Renal Tubular Epithelial Cells Damage/ZHENG Bowen, LIU Huating, CHEN Chen, HOU Yanjie, FAN Xiaoyang, LIU Guangzhen. //Medical Innovation of China, 2023, 20(10): -173
[Abstract] Renal tubular epithelial cells are one of the important structural components of nephrons and play an important role in maintaining the normal physiological function of the kidney. Recent studies have suggested that severe damage or multiple damage to the proximal tubules will lead to irreversible structural destruction and functional loss, causing interstitial tubulitis and fibrosis, glomeruloscerosis, and capillary rarefaction and other chronic manifestations. When the renal tubular epithelial cells are damaged, adaptive repair abnormalities will occur, with specific mechanisms including cell senescence, metabolic disorders and partial epithelial-mesenchymal transition, which will lead to the development of renal fibrosis. Tubular regeneration and successful renal repair can be observed in most surviving patients, especially in the setting of mild damage. In adaptive repair, surviving renal tubular epithelial cells undergo dedifferentiation and proliferation to restore function. However, in the cases of severe, repeated damage or renal aging, renal tubular epithelial cells may exhibit adaptive repair abnormalities that lead to progressive renal fibrosis. In this paper, the research progress of adaptive repair abnormalities and its mechanism after renal tubular epithelial cells damage in recent years is reviewed as follows.
[Key words] Renal tubular epithelial cells Adaptive Repair Abnormalities Damage mechanism
First-author's address: Shanxi Academy of Traditional Chinese Medicine, Taiyuan 030012, China
doi:10.3969/j.issn.1674-4985.2023.10.040
通常腎小管上皮細胞具有強大的自我更新能力,當損傷因素去除后可以快速修復(fù)。然而當損傷因素持續(xù)存在,腎小管上皮細胞修復(fù)不良,會出現(xiàn)細胞衰老、代謝紊亂和部分上皮細胞-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),將導(dǎo)致腎臟炎癥和纖維化的發(fā)生發(fā)展。
1 衰老
適應(yīng)性修復(fù)異常的腎小管上皮細胞會有細胞衰老的表現(xiàn)[1-2]。細胞衰老是指與細胞周期阻滯和促炎癥“衰老相關(guān)分泌表型”(senescence associated secretory phenotype,SASP)相關(guān)的明確程序[3]。這兩種變化是連接腎小管上皮細胞衰老和腎臟纖維化的橋梁。
1.1 SASP 盡管衰老細胞在細胞周期中處于停滯狀態(tài),但由于其天生具有創(chuàng)造促炎癥環(huán)境和分泌促纖維化分子(SASP的成分)的能力,衰老細胞在代謝上仍然非?;钴S,可轉(zhuǎn)化為纖維化細胞[4]。SASP分泌組依賴于多種促炎細胞因子、促纖維化因子、趨化因子、生長因子和基質(zhì)降解因子的產(chǎn)生[5-6]。腎小管上皮細胞中SASP的激活導(dǎo)致成纖維細胞和血管周圍周細胞的激活和增殖,進而誘導(dǎo)細胞外基質(zhì)生成和小管間質(zhì)炎癥[1,7]。除了SASP的常見成分外,衰老細胞產(chǎn)生的線粒體活性氧水平上升,還可釋放線粒體DNA,進一步促進模式識別受體(pattern recognition receptor,PRR)的激活[8-9]。Notch信號通路被認為是激活衰老分子(p21、p16Ink4a)的信號途徑,促進腎小管上皮細胞增殖及間質(zhì)纖維化[10]。Wnt蛋白(如Wnt9A)持續(xù)激活腎小管上皮細胞可誘導(dǎo)腎小管衰老,其特征是p16、p19、p53和p21的表達增加[11]。先天性免疫系統(tǒng)也會促進腎小管上皮細胞的衰老,急性腎損害(acute kidney injury,AKI)通過Toll樣受體(toll-like receptors,TLR)導(dǎo)致先天性免疫細胞浸潤,白細胞介素-1受體(interleukin-1 receptor,IL-1R)信號促進腎小管上皮細胞的衰老[12]??偟膩碚f,以上途徑放大了炎癥、線粒體功能障礙和衰老的惡性循環(huán),最終導(dǎo)致腎小管修復(fù)失調(diào)而促進腎臟纖維化。
1.2 細胞周期阻滯 研究發(fā)現(xiàn),腎小管上皮細胞的細胞周期阻滯是推動腎臟纖維化的重要因素。并且細胞周期阻滯是細胞衰老最重要的特征之一,是腎小管上皮細胞修復(fù)失調(diào)的結(jié)果。細胞開始分裂修復(fù),必須按照細胞周期程序進入和退出每一期。如果細胞退出某一期或停滯在某一期太久或太短,正常的修復(fù)和恢復(fù)過程將出現(xiàn)紊亂。受到損傷后,腎小管上皮細胞進入細胞周期,再生并替換損傷過程中會丟失細胞,而一些細胞被阻滯在G1或G2期進行DNA修復(fù)[13]。停滯的腎小管上皮細胞也無法再生以取代丟失的細胞,為成纖維細胞的增殖和細胞外基質(zhì)(extracellular matrix,ECM)的沉積留下空間。在AKI的毒性和阻塞性模型中,腎小管上皮細胞細胞周期阻滯與纖維化結(jié)局之間有因果關(guān)系[14]。G2/M期腎小管上皮細胞可以激活JNK信號誘導(dǎo)促纖維化細胞因子(TGF-β1和CTGF)等促纖維化因子的產(chǎn)生,從而刺激成纖維細胞增殖和細胞外基質(zhì)的堆積,導(dǎo)致細胞外基質(zhì)產(chǎn)生和腎臟纖維化。Liu等[15]在單側(cè)輸尿管梗阻(unilateral uretera obstruction,UUO)模型中也發(fā)現(xiàn),損傷腎小管上皮細胞中低氧誘導(dǎo)因子1α(hypoxia-inducible factor 1α,HIF-1α)活化上調(diào)p53表達,通過抑制細胞周期蛋白依賴性激酶1和細胞周期蛋白B1、D1,誘導(dǎo)G2/M期阻滯,促進腎臟纖維化。C反應(yīng)蛋白(C reactive protein,CRP)誘導(dǎo)的細胞周期G1/S阻滯也可通過Smad3-p21/p27機制導(dǎo)致進行性腎小管間質(zhì)纖維化(tubulointerstitial fibrosis,TIF)[16-17]。缺氧也可以導(dǎo)致G2/M期阻滯[1]。劉水英等[18]進一步證實了近端腎小管上皮細胞在G2/M期成為西羅莫司自噬空間偶聯(lián)區(qū)(tor-autophagy spatial coupling compartments,TASCCs)的靶點,從而促進了類似于衰老相關(guān)分泌表型的促纖維化分泌。細胞周期蛋白G1可促進腎小管上皮細胞中G2/M期阻滯和TASCCs的形成,從而促進慢性腎臟?。╟hronic kidney disease,CKD)小鼠的腎臟纖維化進展速度。所有這些變化都會導(dǎo)致腎小管間質(zhì)纖維化,加重腎功能喪失。
2 代謝紊亂
適應(yīng)性修復(fù)異常的腎小管上皮細胞會代謝紊亂,包括代謝重編程、活性氧(reactive oxygen species,ROS)和內(nèi)質(zhì)網(wǎng)應(yīng)激,最終導(dǎo)致腎臟纖維化。
2.1 代謝重編程 腎小管上皮細胞是最需要能量的細胞,主要依靠線粒體中的脂肪酸β-氧化(fatty acid β-oxidation,F(xiàn)AO)提供三磷酸腺苷(adenosinetriphosphate,ATP)。當腎小管上皮細胞受到刺激時,如短暫缺氧或藥物毒性,F(xiàn)AO將關(guān)閉一段時間,直到損傷結(jié)束[19-20]。腎小管上皮細胞若長期無法恢復(fù)正常能量代謝便會影響AKI的轉(zhuǎn)歸,導(dǎo)致腎臟纖維化[21]。FAO的損傷歸因于過氧化物酶體增殖物激活受體α(PPARα)、肉毒堿棕櫚酰轉(zhuǎn)移酶1(CPT1)活性的下調(diào)[22]和miR-218-10的過度表達[23]。最近的研究表明,AKI期間存活的腎小管上皮細胞可以通過增加糖酵解來緩解FAO缺陷的情況[23-25]。代謝重編程(朝向糖酵解)可以快速生成ATP,并涉及丙酮酸激酶M2(PKM2),但會加重腎小管損傷和纖維化[23,25]。由于FAO關(guān)閉,腎小管上皮細胞中游離脂肪酸的利用率降低會促進腎臟中的脂質(zhì)積累和纖維化,腎小管上皮細胞出現(xiàn)一定程度的脂質(zhì)積累,會導(dǎo)致細胞功能障礙及壞死,稱為脂毒性[26-29]。這些發(fā)現(xiàn)表明,脂毒性可以激活炎癥反應(yīng)和促進纖維化。在線粒體內(nèi),輔酶煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)是FAO的限速催化劑[30-31]。腎小管上皮細胞的NAD+水平受到抑制,NAD+降低,阻礙FAO,減少ATP生成[32]。Kang等[22]研究小組表明,F(xiàn)AO的顯著抑制是由TGF-β信號傳導(dǎo)誘導(dǎo)的。腎小管上皮細胞中FAO缺乏和脂質(zhì)積聚可相互促進,形成惡性循環(huán),最終加重腎損傷和腎臟纖維化[22,33-34]。
2.2 ROS 腎小管上皮細胞中線粒體的NLRP3炎癥小體通過產(chǎn)生ROS促進腎小管萎縮和纖維化,ROS在CKD發(fā)病過程中以非依賴炎癥體的方式增強了TGF-β/Smad信號通路[35-36]。NLRP3炎癥小體還通過與UUO模型中腎小管上皮細胞中的線粒體抗病毒信號蛋白結(jié)合,參與線粒體ROS的產(chǎn)生和損傷[37]。并且高水平白蛋白結(jié)合的長鏈飽和FAs通過激活促炎癥途徑,包括腫瘤壞死因子α(TNF-α)、C-C基序趨化因子配體2(CCL2)和IL-6,來促進腎小管損傷和間質(zhì)纖維化的進展,也會增加ROS應(yīng)激的產(chǎn)生[38-39]。此外,在高糖誘導(dǎo)的腎小管上皮細胞中,CD36的過度表達促進了NLRP3炎癥小體的激活和IL-1β的分泌,從而抑制線粒體FAO并刺激線粒體ROS的產(chǎn)生[40]。高級氧化蛋白產(chǎn)物(AOPP)的積累導(dǎo)致線粒體損傷和氧化應(yīng)激[41]。最近的一項研究表明,這一過程可能由mROS-TXNIP-NLRP3路徑介導(dǎo)[42]。ROS還可以增加其他幾種促炎癥和促纖維化因子的表達,包括單核細胞趨化蛋白-1(MCP-1)、纖溶酶原激活物抑制劑和轉(zhuǎn)化生長因子β1(TGF-β1),以上途徑產(chǎn)生ROS促進腎小管上皮細胞纖維化[43]。
2.3 內(nèi)質(zhì)網(wǎng)應(yīng)激 內(nèi)質(zhì)網(wǎng)生理功能紊亂可破壞內(nèi)質(zhì)網(wǎng)蛋白及鈣離子穩(wěn)態(tài),誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激。內(nèi)質(zhì)網(wǎng)應(yīng)激表現(xiàn)為未折疊蛋白反應(yīng)(unfolded protein response,UPR),這是一種幫助細胞存活的內(nèi)在適應(yīng)性過程。然而,UPR的持續(xù)激活可能最終導(dǎo)致細胞凋亡[44]。這一過程通過激活caspase-9/caspase-3級聯(lián),由內(nèi)質(zhì)網(wǎng)特異性caspase-12介導(dǎo)[45]。最近的一項研究也揭示了一種新型內(nèi)質(zhì)網(wǎng)相關(guān)蛋白網(wǎng)狀蛋白1A的促纖維化作用。網(wǎng)狀蛋白1A與延長內(nèi)質(zhì)網(wǎng)應(yīng)激和腎小管上皮細胞凋亡有關(guān)[46]。4-苯基丁酸鈉可以在體內(nèi)模擬內(nèi)質(zhì)網(wǎng)伴侶的作用,并大大減少內(nèi)質(zhì)網(wǎng)應(yīng)激引起的腎小管上皮細胞凋亡和腎臟纖維化[47]。
3 部分上皮間質(zhì)轉(zhuǎn)化
EMT是使極性上皮細胞呈現(xiàn)出間充質(zhì)表型的過程,包括遷移能力增強、侵襲性增強、抗凋亡能力增強和ECM產(chǎn)生的成分增加[48]。如上所述,腎小管上皮細胞在損傷后經(jīng)歷去分化和再生以產(chǎn)生新的管狀細胞。同時,它們產(chǎn)生各種因子,將炎癥細胞吸引到腎小管間質(zhì)部位,進一步改變小管間質(zhì)微環(huán)境,迫使腎小管上皮細胞轉(zhuǎn)向間充質(zhì)表型,以適應(yīng)這些變化并避免凋亡[49-50]。EMT也可以說是一種表型轉(zhuǎn)化程序,其特征為上皮標記物(如E-鈣黏蛋白、閉鎖小帶蛋白-1和細胞角蛋白)丟失和間質(zhì)特征(包括波形蛋白、平滑肌肌動蛋白、成纖維細胞特異性蛋白-1、間質(zhì)基質(zhì)成分Ⅰ型膠原和纖連蛋白)表達。腎小管上皮細胞中Snail或Twist轉(zhuǎn)錄調(diào)節(jié)因子的條件性缺失足以抑制EMT。腎小管上皮細胞在腎臟纖維化過程中發(fā)生的是不完全EMT,也就是說EMT不是一個“全有或全無”的過程,而是一系列變化[13,49,51],即細胞同時表達上皮和間充質(zhì)細胞的標志物,并呈現(xiàn)動態(tài)變化的過程[52-55]。
據(jù)報道,G2/M期阻滯與EMT相關(guān),TGF-β1能夠通過細胞周期抑制劑因子p21誘導(dǎo)腎臟纖維化過程中腎小管上皮細胞的G2/M期阻滯和EMT[55-57]。EMT和細胞衰老(表現(xiàn)為G2/M期阻滯)實際上有很多共同點。兩者都發(fā)生在持續(xù)性損傷和修復(fù)異常后;兩者都經(jīng)歷去分化過程,促炎和促纖維化細胞因子的分泌加劇了腎臟纖維化。此外,它們甚至可能是同一過程中不可分割的兩個方面,EMT強調(diào)表型變化,衰老強調(diào)細胞周期變化。例如,在多種AKI模型中,腎小管上皮細胞被阻滯在細胞周期的G2/M期,并獲得促纖維化表型,而活化的肌成纖維細胞也可以對腎小管上皮細胞產(chǎn)生促纖維化作用。ECM的累積導(dǎo)致基質(zhì)硬度增加和間質(zhì)中的其他生物力學(xué)變化,進而導(dǎo)致TGF-β1表達和EMT水平增加[58]。新發(fā)現(xiàn)表明,脂肪酸氧化失調(diào)后腎小管上皮細胞內(nèi)脂質(zhì)積聚,也可促進EMT導(dǎo)致腎小管間質(zhì)纖維化[22]。部分EMT可以誘導(dǎo)腎小管功能損傷,觸發(fā)細胞周期停滯和促進關(guān)鍵纖維化細胞因子的釋放,其過程所涉及的信號通路很復(fù)雜,包括TGF-β1/Smad通路、ILK通路、Wnt/β連環(huán)蛋白通路、p38 MAPK通路、Shh信號通路等[59-61]。
4 小結(jié)
總之,在這篇綜述中,腎小管上皮細胞受到損傷后會發(fā)生適應(yīng)性修復(fù)異常的情況,具體機制包括細胞衰老、代謝紊亂與部分EMT等。保護腎小管上皮細胞并促進腎小管上皮細胞修復(fù)可能是防治腎臟纖維化的重要策略。維持正常腎小管功能免遭疾病重復(fù)的破壞,恢復(fù)健康的正常腎小管分泌功能很可能將是CKD患者治療中的一項首要任務(wù)。
參考文獻
[1] ANDRADE L,RODRIGUES C E,GOMES S A,et al.Acute kidney injury as a condition of renal senescence[J].Cell Transplant,2018,27(5):739-753.
[2] QI R,YANG C.Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury[J].Cell Death Dis,2018,9(11):1126.
[3] KIM S,JIANG K,F(xiàn)ERGUSON C,et al.Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney[J].American Journal of Physiology,2020,318(5):F1167-F1176.
[4] WILEY C D,VELARDE M C,LECOT P,et al.Mitochondrial dysfunction induces senescence with a distinct secretory phenotype[J].Cell Metab,2016,23(2):303-314.
[5] BONVENTRE J V.Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis[J].Kidney Int Suppl,2014,4(1):39-44.
[6] FERENBACH D A,BONVENTRE J V.Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD[J].Nat Rev Nephrol,2015,11(5):264-276.
[7] KIM M G,YANG J,KO Y S,et al.Impact of aging on transition of acute kidney injury to chronic kidney disease[J].Sci Rep,2019,9(1):18445.
[8] CHAPMAN J,F(xiàn)IELDER E,PASSOS J F.Mitochondrial dysfunction and cell senescence: deciphering a complex relationship[J].FEBS Lett,2019,593(13):1566-1579.
[9] MAEKAWA H,INOUE T,OUCHI H,et al.Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury[J].Cell Rep,2019,29(5):1261-1273.
[10] SORENSEN-ZENDER I,RONG S,SUSNIK N,et al.Renal tubular notch signaling triggers a prosenescent state after acute kidney injury[J]. Am J Physiol Renal Physiol,2014,306(8):F907-F915.
[11] LUO C,ZHOU S,ZHOU Z,et al.Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells[J].J Am Soc Nephrol,2018,29(4):1238-1256.
[12] JIN H,ZHANG Y,DING Q,et al.Epithelial innate immunity mediates tubular cell senescence after kidney injury[J/OL].JCI Insight,2019,4(2):e125490.https://pubmed.ncbi.nlm.nih.gov/30674725/.
[13] GEWIN L S.Renal fibrosis: primacy of the proximal tubule[J].Matrix Biol,2018(68-69):248-262.
[14] YANG L,BESSCHETNOVA T Y,BROOKS C R,et al.
Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J].Nat Med,2010,16(5):535-543.
[15] LIU L,ZHANG P,BAI M,et al.p53 upregulated by HIF-1α promotes hypoxia-induced G2/M arrest and renal fibrosis in vitro and in vivo[J].J Mol Cell Biol,2019,11(5):371-382.
[16] TANG J,LIU N,TOLBERT E,et al.Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury[J].Am J Pathol,2013,183(1):160-172.
[17]丁照瑩,湯濤濤,劉必成.腎小管上皮細胞損傷在急性腎損傷向慢性腎臟病轉(zhuǎn)變中的作用研究進展[J].中華醫(yī)學(xué)雜志,2021,101(6):442-446.
[18]劉水英,尹建永,張芳菲,等.G2/M細胞周期阻滯在急性腎損傷向慢性腎臟病轉(zhuǎn)變中的作用研究進展[J].臨床腎臟病雜志,2020,20(10):834-837.
[19] LI M,LI C M,YE Z C,et al.Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice[J].J Cell Mol Med,2020,24(9):5109-5121.
[20] BATAILLE A,GALICHON P,CHELGHOUM N,et al.
Increased fatty acid oxidation in differentiated proximal tubular cells surviving a reversible episode of acute kidney injury[J].Cell Physiol Biochem,2018,47(4):1338-1351.
[21]汪知玉,張文.脂肪酸氧化在缺血再灌注急性腎損傷發(fā)病及轉(zhuǎn)歸中的作用[J].中華腎臟病雜志,2019(10):784-789.
[22] KANG H M,AHN S H,CHOI P,et al.Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development[J].Nat Med,2015,21(1):37-46.
[23] LAN R,GENG H,SINGHA P K,et al.Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI[J].J Am Soc Nephrol,2016,27(11):3356-3367.
[24] SCHOLZ H,BOIVIN F J,SCHMIDT-OTT K M,et al.Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J].Nat Rev Nephrol,2021,17(5):335-349.
[25] LI M,JIA F,ZHOU H,et al.Elevated aerobic glycolysis in renal tubular epithelial cells influences the proliferation and differentiation of podocytes and promotes renal interstitial fibrosis[J].Eur Rev Med Pharmacol Sci,2018,22(16):5082-5090.
[26] JANG H S,NOH M R,KIM J,et al.Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases[J].Front Med (Lausanne),2020,12(7):65.
[27] ERPICUM P,ROWART P,DEFRAIGNE J O,et al.What we need to know about lipid-associated injury in case of renal ischemia-reperfusion[J].Am J Physiol Renal Physiol,2018,315(6):F1714-F1719.
[28] SOUMURA M,KUME S,ISSHIKI K,et al.Oleate and eicosapentaenoic acid attenuate palmitate-induced inflammation and apoptosis in renal proximal tubular cell[J].Biochem Biophys Res Commun,2010,402(2):265-271.
[29] KATSOULIERIS E,MABLEY J G,SAMAI M,et al.Lipotoxicity in renal proximal tubular cells: relationship between endoplasmic reticulum stress and oxidative stress pathways[J].Free Radic Biol Med,2010,48(12):1654-1662.
[30] SZETO H H.Pharmacologic approaches to improve mitochondrial function in AKI and CKD[J].J Am Soc Nephrol,2017,28(10):2856-2865.
[31] ZHENG J,DEVALARAJA-NARASHIMHA K,SINGARAVELU K,et al. Poly (ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury[J].Am J Physiol Renal Physiol,2005,288(2):F387-F398.
[32] TRAN M T,ZSENGELLER Z K,BERG A H,et al.PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection[J].Nature,2016,531(7595):528-532.
[33] JANG H S,NOH M R,JUNG E M,et al.Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury[J].Kidney Int,2020,97(2):327-339.
[34] WEINBERG J M.Lipotoxicity[J].Kidney Int,2006,70(9):1560-1566.
[35] LORENZ G, DARISIPUDI M N,ANDERS H J.Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis[J].Nephrol Dial Transplant,2014,29(1):41-48.
[36] BRACEY N A,GERSHKOVICH B,CHUN J,et al.Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome[J].J Biol Chem,2014,289(28):19571-19584.
[37] KIM S M,KIM Y G,KIM D J,et al.Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury[J].Front Immunol,2018,12(9):2563.
[38] KENNEDY D J,CHEN Y,HUANG W,et al.CD36 and Na/K-ATPase-α1 form a proinflammatory signaling loop in kidney[J].Hypertension,2013,61(1):216-224.
[39] GAO X,WU J,QIAN Y,et al.Oxidized high-density lipoprotein impairs the function of human renal proximal tubule epithelial cells through CD36[J].Int J Mol Med,2014,34(2):564-572.
[40] HOU Y,WANG Q,HAN B,et al.CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys[J].Cell Death Dis,2021,12(6):523.
[41] LI X,XU L,HOU X,et al.Advanced oxidation protein products aggravate tubulointerstitial fibrosis through protein kinase C-dependent mitochondrial injury in early diabetic nephropathy[J].Antioxid Redox Signal,2019,30(9):1162-1185.
[42] WEN Y,LIU Y R,TANG T T,et al.mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI[J].Int J Biochem Cell Biol,2018,98:43-53.
[43] HIGGINS G C,COUGHLAN M T.Mitochondrial dysfunction and mitophagy: The beginning and end to diabetic nephropathy?[J].Br J Pharmacol,2014,171(8):1917-1942.
[44] FAN Y,LEE K,WANG N,et al.The role of endoplasmic reticulum stress in diabetic nephropathy[J].Curr Diab Rep,2017,17(3):17.
[45] XU Y,GUO M,JIANG W,et al.Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury[J].Ren Fail,2016,38(5):831-837.
[46] HE L,F(xiàn)AN Y,XIAO W,et al.Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy[J].Oncotarget,2017,8(67):111295-111308.
[47] LIU S H,YANG C C,CHAN D C,et al.Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro[J].Oncotarget,2016,7(16):22116-22127.
[48] KALLURI R,WEINBERG R A.The basics of epithelial-mesenchymal transition[J].J Clin Invest,2009,119(6):1420-1428.
[49] LIU B C,TANG T T,LV L L,et al.Renal tubule injury: a driving force toward chronic kidney disease[J].Kidney Int,2018,93(3):568-579.
[50] SCHELLING J R.Tubular atrophy in the pathogenesis of chronic kidney disease progression[J].Pediatr Nephrol,2016,31(5):693-706.
[51] LIU Y.Cellular and molecular mechanisms of renal fibrosis[J].Nat Rev Nephrol,2011,7(12):684-696.
[52] OVADYA Y,KRIZHANOVSKY V.A new Twist in kidney fibrosis[J].Nat Med,2015,21(9):975-987.
[53] ZHOU D,LIU Y.Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis[J].Nat Rev Nephrol,2016,12(2):68-70.
[54] GRANDE M T,S?NCHEZ-LAORDEN B,L?PEZ-BLAU C,et al.Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease[J].Nat Med,2015,21(9):989-997.
[55] LOVISA S,LEBLEU V S,TAMPE B,et al.Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis[J].Nat Med,2015,21(9):998-1009.
[56] WU C F,CHIANG W C,LAI C F,et al.Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis[J].Am J Pathol,2013,182(1):118-131.
[57] MEGYESI J,TARCSAFALVI A,LI S,et al.Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis[J].Am J Physiol Renal Physiol,2015,308(2):F122-F130.
[58] O'CONNOR J W,GOMEZ E W.Biomechanics of TGFβ-induced epithelial-mesenchymal transition: implications for fibrosis and cancer[J].Clin Transl Med,2014,3:23.
[59] BAI Y,LU H,LIN C,et al.Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis[J].Int J Mol Med,2016,37(5):1317-1327.
[60] GONZALEZ D M,MEDICI D.Signaling mechanisms of the epithelial-mesenchymal transition[J/OL].Sci Signal,2014,7(344):e8.https://pubmed.ncbi.nlm.nih.gov/25249658/.
[61]王小麗.高糖誘導(dǎo)的腎小管上皮細胞向間充質(zhì)轉(zhuǎn)化與TGF-β1/p38MAPK通路的關(guān)系[D].大連:大連醫(yī)科大學(xué),2019.
(收稿日期:2022-10-19) (本文編輯:陳韻)