朱士信
摘要:量子糾錯(cuò)碼是實(shí)現(xiàn)量子通信和量子計(jì)算的有效編碼方案,如何構(gòu)造高性能的量子糾錯(cuò)碼是量子糾錯(cuò)理論最基本的研究課題之一.量子常循環(huán)碼具有良好的代數(shù)結(jié)構(gòu),可以通過量子線性移位寄存器進(jìn)行編譯,在未來量子通信系統(tǒng)中有著廣泛的應(yīng)用前景.本綜述將介紹量子常循環(huán)碼的構(gòu)造方法,揭示經(jīng)典常循環(huán)碼與量子糾錯(cuò)碼之間的聯(lián)系,闡述經(jīng)典常循環(huán)碼在量子MDS碼和糾纏輔助量子MDS碼中的應(yīng)用.
關(guān)鍵詞:常循環(huán)碼; 量子碼; 量子MDS碼; 糾纏輔助量子碼A
中圖分類號(hào):O236.2 文獻(xiàn)標(biāo)志碼:文章編號(hào):1001-8395(2023)05-0569-12
20世紀(jì)80年代,人們發(fā)現(xiàn)利用量子物理的并行計(jì)算機(jī)制可以極大地加快計(jì)算和通信速度,量子信息理論獲得迅速發(fā)展,量子信息理論和技術(shù)成為信息領(lǐng)域研究的熱門課題.近20年來,以量子力學(xué)為基礎(chǔ)的量子通信和計(jì)算不僅在技術(shù)上取得了快速發(fā)展,而且在理論上不斷獲得突破,展現(xiàn)出廣闊的應(yīng)用前景.量子通信和量子計(jì)算在安全、速度、計(jì)算、搜索等方面相比經(jīng)典數(shù)字通信具有巨大優(yōu)勢(shì).然而,存儲(chǔ)量子信息的物理系統(tǒng)不可避免會(huì)與環(huán)境相互作用,受到噪音的干擾或影響而失去量子特性,與經(jīng)典數(shù)字通信相似,出現(xiàn)量子比特錯(cuò)誤.同時(shí),在量子通信和量子計(jì)算中還存在消相干現(xiàn)象,破壞了量子信息在傳輸過程中量子態(tài)的相干疊加,致使量子信息和量子計(jì)算發(fā)生錯(cuò)誤.因此,可靠的量子通信和量子計(jì)算要求對(duì)邏輯量子比特進(jìn)行編碼、譯碼和糾錯(cuò),并在糾錯(cuò)保護(hù)下進(jìn)行量子邏輯門操控,從而實(shí)現(xiàn)量子信息的有效傳輸.量子糾錯(cuò)碼被證明是克服量子錯(cuò)誤和消相干最有效的方法,能切實(shí)保障量子通信和量子計(jì)算的可靠性和安全性[1-2].
目前,第五代移動(dòng)通信系統(tǒng)5G逐漸走向商業(yè)化,5G的發(fā)展源于用戶對(duì)移動(dòng)數(shù)據(jù)日益增長(zhǎng)的需求.美國主導(dǎo)的LDPC碼、中國華為公司主導(dǎo)的Polar碼分別被采納為5G eMBB場(chǎng)景的數(shù)據(jù)信道編碼方案和控制信道編碼方案.無論是Turbo碼、LDPC碼,還是Polar碼,都屬于有限域上經(jīng)典的糾錯(cuò)編碼.進(jìn)入21世紀(jì),全球科技創(chuàng)新進(jìn)入空前密集活躍時(shí)期,量子信息技術(shù)也成為當(dāng)今世界科技實(shí)力和創(chuàng)新能力的一大表現(xiàn),正在逐步影響信息產(chǎn)業(yè)發(fā)展和經(jīng)濟(jì)發(fā)展方向,世界正在由數(shù)字信息時(shí)代步入量子信息時(shí)代,而量子信息和量子計(jì)算必將成為這一時(shí)代的核心技術(shù)和科技競(jìng)爭(zhēng)焦點(diǎn).
由于量子信道的錯(cuò)誤率會(huì)限制可執(zhí)行的量子信息計(jì)算和傳輸長(zhǎng)度.因此,如果要進(jìn)行高效可靠的量子通信和量子計(jì)算,首先必須解決好量子糾錯(cuò)問題,“糾錯(cuò)”是量子技術(shù)面臨的最大挑戰(zhàn).從這個(gè)意義上說,量子通信和量子計(jì)算依賴于量子糾錯(cuò)編碼.解決糾錯(cuò)問題是實(shí)現(xiàn)量子信息傳輸和量子計(jì)算的關(guān)鍵.量子糾錯(cuò)碼是目前克服量子信道干擾最有效的編碼方案,它不僅能實(shí)現(xiàn)量子信息在帶有噪音的量子信道上可靠傳輸,而且能保證量子計(jì)算的有效進(jìn)行.隨著量子傳輸?shù)膶?shí)現(xiàn),構(gòu)造高性能的量子糾錯(cuò)碼具有十分重要的理論意義和應(yīng)用價(jià)值.量子常循環(huán)碼作為一類重要的量子糾錯(cuò)碼,具有豐富的代數(shù)結(jié)構(gòu),可以通過量子移位寄存器進(jìn)行編譯,它的發(fā)展對(duì)量子信息傳輸和量子并行計(jì)算的發(fā)展具有重要意義.
1基本概念
2量子常循環(huán)碼
3量子常循環(huán)BCH碼
經(jīng)典的BCH碼是一類循環(huán)碼,其參數(shù)可以通過設(shè)計(jì)距離進(jìn)行界定,成為構(gòu)造量子碼的首選碼源.文獻(xiàn)[8,26]給出了量子BCH碼的編碼和譯碼方法.文獻(xiàn)[27-28]給出了歐幾里得對(duì)偶包含BCH碼存在的充要條件,并構(gòu)造了量子BCH碼.2007年,Aly等[29]確定了歐幾里得和厄密特對(duì)偶包含BCH碼的最大設(shè)計(jì)距離,建立了量子BCH碼的一般理論框架,其結(jié)果也成為量子碼性能的參照標(biāo)準(zhǔn).通常,利用有限域上常循環(huán)碼構(gòu)造量子碼,需要確定常循環(huán)碼滿足對(duì)偶包含性的最大設(shè)計(jì)距離.一個(gè)主要目標(biāo)是選取恰當(dāng)?shù)亩x集,使得對(duì)偶包含碼的最大設(shè)計(jì)距離盡可能大,由此產(chǎn)生的量子碼具有更強(qiáng)的糾錯(cuò)能力.文獻(xiàn)[30-32]研究了各種長(zhǎng)度的厄密特對(duì)偶包含碼,由此構(gòu)造了一系列量子BCH碼.對(duì)于一般的常循環(huán)碼,歐幾里得對(duì)偶包含碼僅存在循環(huán)碼或負(fù)循環(huán)碼,而厄密特對(duì)偶包含碼存在其他類型的常循環(huán)碼.因而,量子常循環(huán)BCH碼受到了極大的關(guān)注.文獻(xiàn)[33-36]研究了各種類型量子常循環(huán)碼的參數(shù).下面主要介紹文獻(xiàn)[33]的工作.
4糾纏輔助量子MDS碼
量子穩(wěn)定子碼通過某種內(nèi)積下對(duì)偶包含碼進(jìn)行構(gòu)造,這極大地限制了量子糾錯(cuò)碼的發(fā)展.早在2002年,Bowen [37] 指出在量子信道兩端預(yù)先共享糾纏態(tài)c,可以提高信道容量.2006年,Brun等[38]證明了收發(fā)端在預(yù)先共享糾纏態(tài)c的情況下,可以利用任意經(jīng)典線性碼進(jìn)行量子信息傳輸并糾錯(cuò),由此建立了糾纏輔助穩(wěn)定子碼編碼方案.這一重要發(fā)現(xiàn)標(biāo)志著糾纏輔助量子碼這一新的理論分支的誕生.糾纏輔助量子碼可以直接利用經(jīng)典的線性碼進(jìn)行量子信息傳送,克服了標(biāo)準(zhǔn)量子碼對(duì)偶包含條件的限制,這不僅使得所有的經(jīng)典線性碼得以量子化,還大大簡(jiǎn)化了量子糾錯(cuò)碼的構(gòu)造理論.本節(jié)介紹糾纏輔助量子碼的相關(guān)概念和構(gòu)造方法,重點(diǎn)介紹糾纏輔助量子MDS碼方面的工作進(jìn)展.
5總結(jié)
本文從代數(shù)結(jié)構(gòu)、構(gòu)造方法、糾錯(cuò)性能等方面詳細(xì)介紹了量子常循環(huán)碼的研究成果,結(jié)合實(shí)例闡述了量子常循環(huán)碼、量子MDS碼和糾纏輔助量子MDS碼的構(gòu)造方法.量子糾錯(cuò)理論在近30年獲得了重大突破和快速發(fā)展,已成為計(jì)算機(jī)科學(xué)、通信、物理和數(shù)學(xué)的一個(gè)交叉前沿領(lǐng)域.隨著量子傳輸與量子計(jì)算在實(shí)驗(yàn)室中不斷得以實(shí)現(xiàn),亟待建立系統(tǒng)而有效的量子編碼和譯碼方案.量子常循環(huán)碼是經(jīng)典常循環(huán)碼的量子推廣,目前理論研究表明,量子常循環(huán)碼具有優(yōu)良的糾錯(cuò)性能,并且可以使用量子移位寄存器進(jìn)行編譯.此外,量子常循環(huán)碼具有碼長(zhǎng)靈活和類型豐富的特點(diǎn),理論上自然成為量子傳輸和量子計(jì)算中首選的糾錯(cuò)碼源.如何真正在技術(shù)上實(shí)現(xiàn)量子常循環(huán)碼在量子信道中進(jìn)行信息傳輸并糾錯(cuò),從而降低誤碼率,是量子常循環(huán)碼應(yīng)用的關(guān)鍵,這需要從量子比特測(cè)量和量子編碼電路等方面對(duì)量子常循環(huán)碼開展深入的研究.
參考文獻(xiàn)
[1] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A,1995,52(4):2493-2496.
[2] STEANE A M. Multiple particle interference and quantum error correction[J]. Proceedings of the Royal Society A,1996,452(1):2551-2577.
[3] MACWILLIAMS F J, SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam:North-Holland,1977.
[4] KRISHNA A, SARWATE D V. Pseudocyclic maximum-distance-separable codes[J]. IEEE Trans Inform Theory,1990,36(4):880-884.
[5] DINH H Q, LPEZ-PERMOUTH S R. Cyclic and negacyclic codes over finite chain rings[J]. IEEE Trans Inform Theory,2004,50(8):1728-1744
[6] HUFFMAN W C, PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge:Cambridge University Press,2003.
[7] KAI X S, ZHU S X, LI P. Constacyclic codes and some new quantum MDS codes[J]. IEEE Trans Inform Theory,2014,60(4):2080-2086.
[8] GRASSL M, BETH T. Cyclic quantum error-correcting codes and quantum shift registers[J]. Proceedings of the Royal Society A,2000,456(2003):2689-2706.
[9] 馮克勤,陳豪. 量子糾錯(cuò)碼[M]. 北京:科學(xué)出版社,2010.
[10] RAINSE M. Nonbinary quantum codes[J]. IEEE Trans Inform Theory,1999,45(6):1827-1832.
[11] KETKAR A, KLAPPENECKER A, KUMAR S, et al. Nonbinary stabilizer codes over finite fields[J]. IEEE Trans Inform Theory,2006,52(11):4892-4916.
[12] CALDERBANK A R, RAINS E R, SHOR P W, et al. Quantum error correction via codes over GF(4)[J]. IEEE Trans Inform Theory,1998,44(7):1369-1387.
[13] AHIKHMIN A, KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Trans Inform Theory,2001,47(7):3065-3072.
[14] STEANE A M. Enlargement of Calderbank-Shor-Steane quantum codes[J]. IEEE Trans Inform Theory,1999,45(7):2492-2495.
[15] LING S, LUO J Q, XING C P. Generalization of Steanes enlargement construction of quantum codes and applications[J]. IEEE Trans Inform Theory,2010,56(8):4080-4084.
[16] GRASSL M, GEISELMANN W, BETH T. Quantum Reed-Solomon codes[C]//Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Berlin:Springer,1999:231-244.
[17] FENG K Q. Quantum codes [[6,2,3]]p and [[7,3,3]]p(p≥3) exist[J]. IEEE Trans Inform Theory,2002,48(8):2384-2391.
[18] SARVEPALLI P K, KLAPPENECKER A. Nonbinary quantum Reed-Muller codes[C]//Proceedings of International Symposium Information Theory. Adelaide:IEEE,2005:1023-1027.
[19] GRASSL M, BETH T, RTTLER M. On optimal quantum codes[J]. International Journal Quantum Information,2004,2(1):757-775.
[20] LI Z, XING L J, WANG X M. Quantum generalized Reed-Solomon codes:unified framework for quantum maximum-distance-separable codes[J]. International Journal of Quantum Information,2008,77(1):012308.
[21] JIN L F, LING S, LUO J Q, et al. Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes[J]. IEEE Trans Inform Theory,2010,56(9):4735-4740.
[22] CHEN B C, LING S, ZHANG G H. Application of constacyclic codes to quantum MDS codes[J]. IEEE Trans Inform Theory,2015,61(3):1474-1484.
[23] ZHANG T, GE G N.Some new classes of quantum MDS codes from constacyclic codes[J]. IEEE Trans Inform Theory,2015,61(9):5224-5228.
[24] WANG L Q, ZHU S X. New quantum MDS codes derived from constacyclic codes[J]. Quantum Information Processing,2015,14(3):881-889.
[25] LI S X, XIONG M S, GE G N. Pseudo-cyclic codes and the construction of quantum MDS codes[J]. IEEE Trans Inform Theory,2016,62(4):1703-1710.
[26] GRASSL M, BETH T. Quantum BCH codes[C]//Proceedings of International Symposium on Theoretical Electrical Engineering. Magdeburg:IEEE,1999:207-212.
[27] COHEN G, ENCHEVA S, LITSYN S. On binary constructions of quantum codes[J]. IEEE Trans Inform Theory,1999,45(7):2495-2498.
[28] MA Z, LU X, FENG K Q, et al. On non-binary quantum BCH codes[C]//The 3rd International Conference on Theory and Applications of Models of Computation. Berlin:Springer-Verlag,2006:675-683.
[29] ALY S A, KLAPPENECKER A, SARVEPALLI P K. On quantum and classical BCH codes[J]. IEEE Trans Inform Theory,2007,53(3):1183-1188.
[30] LA GUARDIA G G. Constructions of new families of nonbinary quantum codes[J]. Physical Review A,2009,80(4):042331.
[31] LA GUARDIA G G. On the construction of nonbinary quantum BCH codes[J]. IEEE Trans Inform Theory,2014,60(3):1528-1535.
[32] LI R H, ZUO F, LIU Y, et al. Hermitian dual-containing BCH codes and construction of new quantum codes[J]. Quantum Inform Computation,2013,12(1/2):0021-0035.
[33] WANG L Q, SUN Z H, ZHU S X. Hermitian dual-containing narrow-sense constacyclic BCH codes and quantum codes[J]. Quantum Information Processing,2019,18(10):323.
[34] YUAN J, ZHU S X, KAI X S, et al. On the construction of quantum constacyclic codes[J]. Designs, Codes and Cryptography,2017,85(1):179-190.
[35] LIU Y, LI R H, LV L D, et al. A class of constacyclic BCH codes and new quantum codes[J]. Quantum Information Processing,2017,16(3):66.
[36] WANG J L, LI R H, LIU Y, et al. Some negacyclic BCH codes and quantum codes[J]. Quantum Information Processing,2020,19(2):323.
[37] BOWEN G. Entanglement required in achieving entanglement-assisted channel capacities[J]. Physical Review A,2002,66(5):052313.
[38] BRUN T, DEVETAK I, HSIEH M. Correcting quantum errors with entanglement[J]. Science,2006,314(5798):436-439.
[39] LAI C Y, BRUN T A, WILDE M M. Duality in entanglement-assisted quantum error correction[J]. IEEE Trans Inform Theory,2013,59(6):4020-4024.
[40] ALLAHMADI A, ALKENANI A, HIJAZI R, et al. New constructions of entanglement-assisted quantum codes[J]. Cryptography and Communications,2022,14(1):15-37.
[41] MARKUS G. Entanglement-assisted quantum communication beating the quantum Singleton bound[J]. Physical Review A,2021,103(2):L020601.
[42] WILDE M M, BRUN T A. Optimal entanglement formulas for entanglement-assisted quantum coding[J]. Physical Review A,2008,77(6):64302.
[43] CARLOS G, FERNANDO H, RYUTAROH M, et al. Correction to:entanglement-assisted quantum error-correcting codes over arbitrary finite fields[J]. Quantum Information Processing, 2021, 20(6):116.
[44] KENZA G, SOMPHONG J, AARON G T. Constructions of good entanglement-assisted quantum error correcting codes[J]. Designs, Codes and Cryptography,2018,86(1):121-136.
[45] 李瑞虎,許根,呂良東. BCH碼的定義集分解及應(yīng)用[J]. 空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,14(2):86-89.
[46] CHEN J Z, HUANG Y Y, FENG C H, et al. Entanglement-assisted quantum MDS codes constructed from negacyclic codes[J]. Quantum Information Processing,2017,16(12):303.
[47] LIU Y, LI R H, LV L D, et al. Application of constacyclic codes to entanglement-assisted quantum maximum diatance separable codes[J]. Quantum Information Processing,2018,17(8):210.
[48] CHEN X J, ZHU S X, KAI X S. Entanglement-assisted quantum MDS codes constructed from constacyclic codes[J]. Quantum Information Processing,2018,17(10):273.
[49] QIAN J F, ZHANG L N. On MDS linear complementary dual codes and entanglement-assisted quantum codes[J]. Designs, Codes and Cryptography,2018,86(7):1565-1572.
[50] PANG B B, ZHU S X, LI F L,et al. New entanglement-assisted quantum MDS codes with larger minimum distance[J]. Quantum Information Processing,2020,19(7):207.
[51] WANG J L, LI R H, L J J, et al. Entanglement-assisted quantum error correction codes with length n=q2+1[J]. Quantum Information Processing,2019,18(9):292.
Research on Construction of Quantum Constacyclic CodesZHU Shixin(School of Mathematics, Hefei University of Technology, Hefei 230601, Anhui)Quantum error-correcting codes are an effective coding scheme that can realize quantum communication and computation. It is one of the most basic topics to construct quantum error-correcting codes with high error-correcting capability. Quantum constacyclic codes have good algebraic structure, which can be encoded and decoded by quantum linear shift register. Hence, they have wide application prospect in quantum communication system in the future. In this review paper, we introduce the methods of the construction of quantum constacyclic codes and reveal the relationship between classical constacyclic codes and quantum error-correcting codes. We mainly elaborate some applications of classical constacyclic codes to quantum MDS codes and entanglement-assisted quantum MDS codes.constacyclic codes; quantum codes; quantum MDS codes; entanglement-assisted quantum codes
(編輯陶 志寧)