張唯一,肖 洋,馬長健,劉文超,沈 巖,張 凱,李云開,3
水流近壁面水力剪切力對滴灌系統(tǒng)碳酸鈣污垢的影響
張唯一1,肖 洋1※,馬長健2,劉文超1,沈 巖1,張 凱1,李云開1,3
(1. 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;2.山東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,濟(jì)南 250100;3. 中國農(nóng)業(yè)大學(xué)農(nóng)業(yè)節(jié)水與水資源教育部工程研究中心,北京 100083)
針對目前水動力學(xué)條件對滴灌系統(tǒng)碳酸鈣污垢形成的影響及適宜的污垢控制閾值尚不明確的問題,該研究對不同近壁面水力剪切力(0~0.70 Pa)下的滴灌系統(tǒng)附著碳酸鈣污垢總量、晶相組成及表觀形貌進(jìn)行了分析。結(jié)果表明:不同剪切力顯著(<0.05)影響了碳酸鈣污垢的形成,隨著剪切力的增大碳酸鈣污垢的總量呈現(xiàn)先增高后降低的趨勢,最大碳酸鈣污垢形成量的剪切力為(0.42±0.02)Pa。剪切力較低(0~0.42 Pa)時,隨著剪切力的增大碳酸鈣晶體的尺寸逐漸變大,Ca2+和CO32-的碰撞幾率增加且晶體成核效率提高,使得碳酸鈣污垢總量呈現(xiàn)增加趨勢;剪切力較高(0.42~0.70 Pa)時,隨著剪切力的增大碳酸鈣晶體大小逐漸減小,且晶體由于高剪切力的作用發(fā)生破碎和脫落,使得碳酸鈣污垢總量呈現(xiàn)下降趨勢。建議灌水器流道近壁面水力剪切力控制在0~0.24 Pa和0.65~0.70 Pa,以減少碳酸鈣污垢的形成。該研究結(jié)果可為高抗堵塞灌水器的研發(fā)以及劣質(zhì)水滴灌技術(shù)的應(yīng)用和推廣提供支撐。
滴灌;灌水器;碳酸鈣污垢;水力剪切力
中國水資源極度短缺,微咸水、高鹽硬度水等劣質(zhì)水源也常作為灌溉水源[1],可以有效地彌補常規(guī)水資源的不足并提高灌溉保證率。滴灌技術(shù)是目前最為高效的節(jié)水灌溉技術(shù)之一,也是劣質(zhì)水灌溉最適宜的方式[2]。然而由于滴灌系統(tǒng)灌水器流道尺寸十分狹窄,劣質(zhì)水體中的大量鈣、鎂、碳酸根等鹽分離子容易在流道中發(fā)生一系列的化學(xué)反應(yīng),造成灌水器堵塞[3]。碳酸鈣污垢是灌水器化學(xué)堵塞中最常見的堵塞物質(zhì),如何避免碳酸鈣污垢的形成是解決滴灌系統(tǒng)灌水器化學(xué)堵塞的關(guān)鍵。
灌水器流道結(jié)構(gòu)是影響其抗堵塞性能最直接、重要的因素之一[4],眾多學(xué)者通過改變灌水器流道深度[5]、齒角[6]、構(gòu)型[7]等試圖調(diào)控流道內(nèi)水力學(xué)條件,進(jìn)而減少流道近壁面低速漩渦區(qū)、提高懸浮顆粒物的輸移能力來增加灌水器的抗堵塞能力,取得了卓有成效的研究結(jié)果。然而,面向水中溶解性離子導(dǎo)致的灌水器化學(xué)沉淀的流道水力學(xué)優(yōu)化還鮮有研究。已有研究表明剪切力對碳酸鈣污垢的形成同時存在生長和剝蝕兩個過程[8],兩者的差值即為碳酸鈣污垢的凈含量。水動力學(xué)條件尤其是近壁面剪切力是影響碳酸鈣等化學(xué)污垢形成的關(guān)鍵因素之一[9],如FAHIMINIA等[10]發(fā)現(xiàn)0、1.2、4.3 Pa剪切力條件下的碳酸鈣污垢結(jié)晶速率隨剪切力的增大而變慢,且碳酸鈣污垢晶體結(jié)構(gòu)越松散;BOULOS等[11]也發(fā)現(xiàn)0、0.8、2.2、3.6、8.4、12.7 Pa 6種剪切力下的碳酸鈣污垢結(jié)晶量隨剪切力的增大而降低。然而,MA等[12]以及MISAGHI等[13]卻得出了相反的結(jié)論,兩者分別對0、0.02、0.08、0.3 Pa以及0、0.03、0.06、0.18、0.24 Pa剪切力下碳酸鈣結(jié)晶量進(jìn)行了探究,發(fā)現(xiàn)隨著剪切力的增大反而增加了碳酸鈣污垢的含量。整體來看,針對水力剪切力對碳酸鈣污垢的影響并未得到一致的結(jié)論。本文推斷現(xiàn)有研究結(jié)果出現(xiàn)相互矛盾的結(jié)論主要是由于剪切力的研究范圍選擇跨度及剪切力梯度不合理,并且不同剪切力究竟如何影響碳酸鈣污垢的生長和剝蝕過程尚不明晰,難以為抗化學(xué)堵塞灌水器的流道結(jié)構(gòu)優(yōu)化提供借鑒意義。
基于此,本試驗利用剪切力模擬裝置Couette-Taylor反應(yīng)器研究了不同近壁面水力剪切力(0~0.70 Pa)對滴灌系統(tǒng)灌水器中碳酸鈣污垢干質(zhì)量、晶相組成、晶體大小及表觀形貌的影響。旨在:1)探究不同水力剪切力對碳酸鈣污垢總量的影響;2)揭示水力剪切力對碳酸鈣污垢附著的生長-剝蝕過程影響機(jī)制;3)提出適宜防止灌水器碳酸鈣污垢附著的近壁面水力剪切力控制閾值。
1.1.1 水源制備
1.1.2 試驗系統(tǒng)工況設(shè)定
灌水器流道內(nèi)碳酸鈣污垢附著模擬系統(tǒng)如圖1所示,系統(tǒng)包含儲水桶、蠕動泵、硅膠管、Couette-Taylor反應(yīng)器等裝置。將配置好的Ca2+、CO32-、HCO3-亞穩(wěn)態(tài)溶液儲存在儲水桶中,為系統(tǒng)提供水源;蠕動泵為系統(tǒng)提供工作驅(qū)動力(BT100L;Lead Fluid,China),通過乳膠管將儲水桶中水源緩慢地輸送到反應(yīng)器中。為真實模擬灌水器流道壁面介質(zhì),試驗載片采用與灌水器材質(zhì)相同的PE切片(粗糙度為145 nm,最大高度為1504 nm;比表面積為0.18%;水接觸角為103°;硬度為63.7 HA;彈性模量為262.2 MPa),切片尺寸為190 mm×10 mm。當(dāng)反應(yīng)器電機(jī)(功率:150 W)工作時,內(nèi)筒(φ110×135 mm)旋轉(zhuǎn)帶動水流運動,使得外筒(φ130×252 mm)內(nèi)壁水流運動,帶有取樣PE片的取樣片固定架緊貼在外筒內(nèi)壁上,水流在PE片表面會產(chǎn)生剪切力,剪切力大小采用同軸旋轉(zhuǎn)圓柱間流動公式[14]計算:
式中τ表示半徑為點的摩擦應(yīng)力,Pa,方向與角速度1相反;1和2為內(nèi)、外桶的半徑,m;1和2分別為內(nèi)、外桶的角速度,rad/s;2表示內(nèi)桶和外桶之間某一圓形切面的半徑,m;為液體黏滯系數(shù),N·s/m2。
1.電動機(jī) 2.法蘭圓盤 3.橡膠密封墊 4.電機(jī)軸 5.傳動連接軸 6.內(nèi)筒 7.電線 8.外筒 9.PE片 10.PE片固定架 11.儀器進(jìn)水口 12.儀器出水口
1.Motor 2.Flange disc 3.Sealing gasket 4.Motor shaft 5.Transmission connection shaft 6.Inner cylinder 7.Electric wire 8.Outer cylinder 9.PE piece 10.PE piece fixed frame 11.Instrument water inlet 12.Instrument water outlet
圖1 試驗系統(tǒng)示意圖
Fig.1 Schematic diagram of test system
其中2=0、2=2,=1.005×10-3N·s/m2(水在20 ℃時的黏滯系數(shù)),將式(1)進(jìn)行簡化,可得到本試驗反應(yīng)器內(nèi)筒旋轉(zhuǎn)角速度與外桶內(nèi)壁壁面水力剪切力的計算式為
現(xiàn)有研究結(jié)果[15-19]表明滴灌灌水器易堵塞區(qū)域近壁面剪切力多在0.7 Pa以下,因此本試驗選取0~0.7 Pa剪切力對碳酸鈣污垢形成的影響進(jìn)行研究,為更精細(xì)確定碳酸鈣污垢剪切力控制閾值,取0、0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.50、0.60和0.70 Pa共12個剪切力。試驗系統(tǒng)的溫度控制在20 ℃。
由碳酸鈣污垢隨時間生長變化可知碳酸鈣附著污垢隨時間變化的生長過程符合Logistic生長模型動態(tài)變化趨勢[20],以此建立滴灌系統(tǒng)灌水器壁面碳酸鈣附著污垢隨時間變化的生長動力學(xué)模型為
式中表示單位面積碳酸鈣附著污垢生長量,mg/cm2;表示水力剪切力,Pa;max指的是剪切力保持不變的情況下,單位面積上可以容納的最大碳酸鈣結(jié)晶量,mg/cm2;表示生物膜生長時間,h;1、2、3均為模型擬合參數(shù)。
由碳酸鈣污垢隨剪切力變化趨勢可知碳酸鈣附著污垢隨剪切力變化的生長過程符合Gaussian生長模型動態(tài)變化趨勢[21],以此建立滴灌系統(tǒng)灌水器壁面碳酸鈣附著污垢隨剪切力變化的生長動力學(xué)模型為
式中表示單位面積碳酸鈣附著污垢生長量,mg/cm2;1、2、3均為模型擬合參數(shù)。
碳酸鈣污垢隨剪切力變化的增加率[22]為:
式中I為碳酸鈣污垢隨剪切力變化的增加率。當(dāng)I>1時,的單位增量導(dǎo)致碳酸鈣污垢成分的快速增長,動態(tài)響應(yīng)變得更加敏感,當(dāng)I<1時意味著剪切力的變化對碳酸鈣污垢量的影響較弱,因此當(dāng)I=1時的剪切力值被認(rèn)為是碳酸鈣污垢快速增長的臨界點,碳酸鈣污垢量應(yīng)被控制在I<1的范圍內(nèi)。
1.3.1 干質(zhì)量
試驗運行300 h,每50 h取樣一次,每次取樣將3片PE片從取樣架上取下,將取下的載片用電子天平稱量,然后放入超聲波清洗器中清洗使碳酸鈣析晶污垢脫落,在烘箱中烘干洗凈的載片,然后分別稱取每一片的質(zhì)量,所得的原始質(zhì)量和烘干后的質(zhì)量差為碳酸鈣析晶污垢的質(zhì)量差,單位面積的碳酸鈣析晶污垢質(zhì)量差即為碳酸鈣析晶污垢的干質(zhì)量(mg/cm2)。
1.3.2 X射線衍射分析
試驗運行累計達(dá)到300 h后,將6片PE片從取樣架上取下,裝入自封袋中,加入去離子水后置于超聲波清洗器中清洗制得碳酸鈣析晶污垢的懸濁液,再使用真空抽濾裝置抽濾過0.22 μm的濾膜,將碳酸鈣析晶污垢濾出。將?15 ℃真空干燥后的樣品放置在儀器型號為D8-Advance X射線衍射儀上進(jìn)行掃描。試驗過程的基本試驗條件為:電壓40 kV,電流40 mA,Cu靶,波長為1.540 6 A。所得圖譜使用配套的Topas軟件進(jìn)行分析,確定組成的物相。
1.3.3 晶體大小
根據(jù)X射線衍射的結(jié)果計算晶體大小[23]。
=0.89/cos(6)
式中為碳酸鈣晶體的直徑,nm;為衍射波長,nm;為半高寬,nm;為主峰的衍射角,(°)。
1.3.4 碳酸鈣析晶污垢表觀形貌測定
試驗運行累計達(dá)到300 h后,將6片載片從取樣架上取下,進(jìn)行冷凍干燥,在測試的樣品表面覆蓋一層導(dǎo)電性較好的金薄膜以避免導(dǎo)電性差的物質(zhì)在觀察時產(chǎn)生嚴(yán)重的荷電現(xiàn)象,將樣品直接固定在導(dǎo)電膠帶上即可。采用日本JSM-6360LV掃描電鏡,工作電壓為20 kV,放大倍數(shù)為2 000倍,測定樣品的表面形貌。
試驗干質(zhì)量數(shù)據(jù)及晶體大小計算利用Microsoft excel 2019進(jìn)行統(tǒng)計分析及繪圖;X射線衍射數(shù)據(jù)利用配套的Topas軟件進(jìn)行分析,并利用Excel 2019進(jìn)行繪圖;利用MATLAB軟件對Logistic生長模型、Gaussian生長模型進(jìn)行模型數(shù)據(jù)的擬合,并計算出模型參數(shù);采用Pearson相關(guān)系數(shù)來衡量各處理間的相關(guān)性,并利用SPSS 23.0進(jìn)行統(tǒng)計分析。
利用碳酸鈣附著污垢隨運行時間變化數(shù)據(jù)擬合得到Logistic增長模型參數(shù)如表1所示,由圖2a看出Logistic增長模型能夠有效地刻畫碳酸鈣附著污垢的增長過程(2>0.97;標(biāo)準(zhǔn)差<0.1;檢驗的<0.05),具體表現(xiàn)為生長適應(yīng)期(0~50 h)、快速增長期(50~200 h)和動態(tài)穩(wěn)定期(200~300 h)3個階段,系統(tǒng)運行末期碳酸鈣附著污垢總量達(dá)0.2~1.3 mg/cm2。
圖2 不同運行時長及水力剪切力對碳酸鈣附著污垢的影響
表1 碳酸鈣附著污垢隨時間變化的Logistic生長動力學(xué)模型擬合結(jié)果
注:所有剪切力下的擬合模型<0.05。
Note: Fitting model under all shear forces<0.05
利用碳酸鈣附著污垢隨剪切力變化數(shù)據(jù)擬合得到Gaussian生長模型參數(shù)如表2所示,由圖2b可以看出碳酸鈣附著污垢總量隨剪切力的變化趨勢符合Gaussian生長模型(2>0.88;RMSE<0.1;檢驗<0.05),進(jìn)一步借助該模型獲取了碳酸鈣附著污垢的最大值出現(xiàn)在(0.42±0.02)Pa,分別是0和0.7 Pa的6.2~8.5倍和1.8~3.1倍。此外,隨運行時間的增加,碳酸鈣附著污垢干質(zhì)量增加,其干質(zhì)量峰值隨剪切力增大而后移。
表2 碳酸鈣附著污垢隨剪切力變化的Gaussian生長動力學(xué)模型擬合結(jié)果
注:所有運行時間下的擬合模型<0.05。
Note: Fitting model at all run times<0.05.
借助X射線衍射技術(shù)獲得了不同水力剪切力處理下的碳酸鈣附著污垢的衍射圖譜(圖3),結(jié)果表明不同剪切力并未影響附著碳酸鈣污垢的種類,所有剪切力處理下碳酸鈣污垢均是包括方解石和文石兩種類型,并未發(fā)現(xiàn)球霰石,這主要與試驗配置的溶液體系有關(guān)。方解石和文石在碳酸鈣污垢總量的占比分別為94.6%~97.3%和2.0%~4.9%,而不同剪切力影響了兩類碳酸鈣污垢的比例(圖4a、圖4b),隨著剪切力的增大方解石的比例呈現(xiàn)先降低后升高的趨勢,文石則呈現(xiàn)相反的規(guī)律。兩類物質(zhì)的含量均在低剪切力(0~0.30 Pa)下隨剪切力的增大呈逐漸增加的趨勢,在高剪切力(>0.50 Pa)下隨剪切力的增大呈逐漸降低的趨勢,方解石及文石含量的最大值出現(xiàn)在0.35~0.50 Pa之間。此外,不同剪切力影響了方解石和文石的晶體大小(圖4c),在初始剪切力(>0.05 Pa)條件下,晶體大小隨著剪切力的增大碳酸鈣晶體尺寸先增大后減小,碳酸鈣晶體尺寸在0.25 Pa時最大,在0.70 Pa時最小,最大尺寸變化范圍發(fā)生在0.05~0.10 Pa之間,最小變化范圍發(fā)生在0.60~0.70 Pa之間,0~0.05 Pa之間,剪切力剛產(chǎn)生使得晶體大小略微較低。
圖3 不同剪切力條件下碳酸鈣附著污垢XRD衍射圖譜
注:不同小字母代表各處理間的差異顯著性。
借助掃描電鏡技術(shù)獲得了不同剪切力條件下碳酸鈣析晶污垢表面形貌(圖5)。電鏡圖結(jié)果表明隨著剪切力的增大,碳酸鈣晶體碎粒狀晶體數(shù)量逐漸增多,這意味著高剪切力使得大塊碳酸鈣污垢晶體發(fā)生了裂解,且隨著剪切力的增大碳酸鈣晶體大小的變化呈現(xiàn)出先增大后減小的趨勢,在0.25 Pa左右達(dá)到最大,這與XRD微觀晶體結(jié)構(gòu)的結(jié)果較為一致。相較于剪切力為0 時,剪切力0.05 Pa條件下,晶體呈現(xiàn)出層狀結(jié)構(gòu),雖略微降低了晶體大小,但卻使晶體密實度增加且表面粗糙度變大;剪切力在0.05~0.25 Pa時,碳酸鈣晶體大小逐漸增大,碎粒狀晶體數(shù)量逐漸增多且表面粗糙度逐漸增大;剪切力在0.30~0.70 Pa時,隨著剪切力的增大,水流的剝蝕作用加劇,碳酸鈣晶體大小雖然逐漸減小,但碳酸鈣碎粒狀晶體數(shù)量逐漸增多。
圖5 不同剪切力條件下碳酸鈣晶體表觀形貌(2000倍)
近壁面水力剪切力是影響壁面碳酸鈣污垢附著生長的關(guān)鍵因素,適宜的近壁面剪切力控制閾值可為高抗化學(xué)堵塞灌水器的研發(fā)提供重要借鑒。本研究通過不同水力剪切力對碳酸鈣附著污垢的影響,發(fā)現(xiàn)水力剪切力顯著影響了碳酸鈣附著污垢的形成(<0.05),隨水力剪切力增加碳酸鈣附著污垢的總量呈現(xiàn)出先增高后降低的趨勢。大量研究表明剪切力對碳酸鈣附著污垢的形成同時存在生長和剝蝕兩個過程[13,23-25]。低剪切力時(<0.4 Pa)剪切力的增大加速了碳酸鈣的形成。首先是生長過程,相較于高剪切力條件,低剪切力下壁面與水流的傳質(zhì)邊界層更厚[26],使得Ca2+、CO32-離子的彌散速率成為碳酸鈣污垢沉積的主導(dǎo)因素[27],剪切力增高加快了離子彌散速率,使得碳酸鈣污垢生長加快。與此同時,剪切力增大時傳質(zhì)層厚度逐漸變薄,Ca2+和CO32-穿越固-液相界面的速率增大[24],同時使得方解石和文石圍繞著晶核的生長速率加快,晶體層狀累積加快[28],進(jìn)而使得碳酸鈣晶體的尺寸增大,這在一定程度上增加了碳酸鈣附著污垢的體積。其次是剝蝕過程,低剪切力時碳酸鈣晶核均勻形成,碳酸鈣晶體圍繞晶核緩慢、均勻增長[13],碳酸鈣晶體表面較為光滑(圖5c),這印證了低剪切力時水力剪切力對碳酸鈣的剝蝕作用相對較小。整體來看,低剪切力時生長過程在碳酸鈣附著污垢的形成中占主導(dǎo)地位,因此此時表現(xiàn)為隨剪切力的增大碳酸鈣附著污垢的含量增高。
高剪切力時,剪切力的增大降低了碳酸鈣附著污垢的總量。這是由于剪切力增大水流的剝蝕作用增強,傳質(zhì)層厚度逐漸變薄[26],Ca2+和CO32-穿越固-液相界面的速率增大,Ca2+和CO32-停滯時間急劇縮短[27],抑制了方解石與文石晶體的成核效率與生長速率[24],方解石及文石晶體沉積效率進(jìn)一步降低,碳酸鈣晶體大小隨著剪切力的增加逐漸減小,同時由于剪切力增大,水流對碳酸鈣的剝蝕作用在碳酸鈣附著污垢生長過程中占據(jù)主導(dǎo)作用,較強的剝蝕作用使得碳酸鈣晶體結(jié)構(gòu)被破壞,出現(xiàn)較多破碎狀晶粒(圖5k),進(jìn)而使得碳酸鈣附著污垢總量降低。BOULOS等[11]發(fā)現(xiàn)隨著剪切力的增大,碳酸鈣等污垢總量減少的剪切力范圍應(yīng)該是處于高剪切力范圍內(nèi)。
結(jié)合試驗結(jié)果及Gaussian生長模型,發(fā)現(xiàn)PE膜片上的碳酸鈣附著污垢總量在剪切力(0.42±0.02)Pa范圍時達(dá)到最大,這與HOU等[16]發(fā)現(xiàn)再生水滴灌系統(tǒng)中生物污垢的最高值處于(0.3±0.1)Pa明顯不同,這可能是因為生物污垢主要是微生物生長及其分泌的胞外聚合物所形成的生物膜復(fù)合結(jié)構(gòu)[29],而碳酸鈣附著污垢則是以晶體形式附著在灌水器流道內(nèi)壁上[30],相較于生物污垢碳酸鈣化學(xué)污垢的內(nèi)聚力及其與壁面的黏附力較高,具有更強的抵御高水力剪切力剝蝕的作用,因此其最適宜生長范圍相較于生物污垢而更大。
通過控制灌水器流道的近壁面剪切力防止碳酸鈣的形成是實現(xiàn)灌水器抗堵塞能力提升的有效方法,根據(jù)Gaussian生長模型以及對碳酸鈣污垢隨剪切力變化的增加率I的分析可知,當(dāng)近壁面的剪切力處于0~0.24 Pa和0.65~0.70 Pa內(nèi)時I<1,相應(yīng)的此時碳酸鈣附著污垢量較低,因此建議在進(jìn)行灌水器流道結(jié)構(gòu)優(yōu)化時,流道近壁面剪切力大小控制在上述范圍以減少碳酸鈣附著污垢的形成,進(jìn)而減緩灌水器化學(xué)堵塞的發(fā)生。
本文僅研究了微咸水滴灌條件不同剪切力對PE材質(zhì)表面的碳酸鈣附著污垢形成的影響,進(jìn)一步可開展不同劣質(zhì)水源和不同類型污垢的研究,為多水源條件下的灌水器結(jié)構(gòu)優(yōu)化提供支撐。
通過研究不同水力剪切力對滴灌系統(tǒng)附著碳酸鈣污垢形成的影響,發(fā)現(xiàn)隨著剪切力的增大碳酸鈣污垢的總量呈現(xiàn)先增高后降低的趨勢,碳酸鈣污垢附著的最高值剪切力范圍處于(0.42±0.02)Pa,這主要是受到水力剪切力對碳酸鈣附著污垢生長-脫落過程的影響所致。建議滴灌系統(tǒng)灌水器流道近壁面剪切力控制在0~0.24 Pa和0.65~0.70 Pa以減緩灌水器堵塞。
[1] 馬文軍,程琴娟,李良濤,等. 微咸水灌溉下土壤水鹽動態(tài)及對作物產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(1):73-80.
MA Wenjun, CHENG Qinjuan, LI Liangtao, et al. Effect of slight saline water irrigation on soil salinity and yield of crop[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 73-80. (in Chinese with English abstract)
[2] 李云開,馮吉,宋鵬,等. 低碳環(huán)保型滴灌技術(shù)體系構(gòu)建與研究現(xiàn)狀分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(6):83-92.
LI Yunkai, FENG Ji, SONG Peng, et al. Developing situation and system construction of low-carbon environment friendly drip irrigation technology[J] Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6):83-92. (in Chinese with English abstract)
[3] 王慧蕓,陳俊英,王耀民,等. 微咸水加肥灌溉下陶瓷灌水器與迷宮流道灌水器的抗堵塞性能[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(13):84-94.
WANG Huiyun, CHEN Junying, WANG Yaomin, et al. Anti-clogging performance of the ceramic emitters and labyrinth channel emitters under brackish water and fertilizer irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 84-94. (in Chinese with English abstract)
[4] 侯鵬,肖洋,吳乃陽,等.黃河水滴灌系統(tǒng)灌水器結(jié)構(gòu)-泥沙淤積-堵塞行為的相關(guān)關(guān)系研究[J]. 水利學(xué)報,2020,51(11):1372-1382.
HOU Peng, XIAO Yang, WU Naiyang, et al. Cascade relationship between the emitter structure-sedimentation- clogging behavior in drip irrigation systems with Yellow River water[J] Journal of Hydraulic Engineering, 2020, 51(11): 1372-1382. (in Chinese with English abstract)
[5] Zhou B, Li Y, Liu Y, et al. Effects of flow path depth on emitter clogging and surface topographical characteristics of biofilms[J]. Irrigation and Drainage, 2014, 63(1): 46-58.
[6] 牛文全,喻黎明,吳普特,等. 迷宮流道轉(zhuǎn)角對灌水器抗堵塞性能的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2009,40(9):51-55,67.
NIU Wenquan, YU liming, WU Pute, et al. Influence of angle of labyrinth channels on anti-clogging performance of emitter[J] Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(9): 51-55, 67. (in Chinese with English abstract)
[7] 魏正英,趙萬華,唐一平,等. 滴灌灌水器迷宮流道主航道抗堵設(shè)計方法研究[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(6):1-7.
WEI Zhengying, ZHAO Wanhua, TANG Yiping, et al. Anti-clogging design method for the labyrinth channels of drip irrigation emitters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(6): 1-7. (in Chinese with English abstract)
[8] CONTRERAS V, PAZ P, NETTO T A. Experimental analysis of inorganic scale deposition in pipes: Mesoscale flow loop development and case study[J]. Journal of Petroleum Science and Engineering, 2022, 209: 13.
[9] MUHAMMAD T, XIAO Y, PUIG-BARGUES J, et al. Effects of coupling multiple factors on CaCO3fouling in agricultural saline water distribution systems[J]. Agricultural Water Management, 2021, 248: 10.
[10] FAHIMINIA F, WATKINSON A P, EPSTEIN N. Early events in the precipitation fouling of calcium sulphate dihydrate under sensible heating conditions[J]. Canadian Journal of Chemical Engineering, 2007, 85(5): 679-691.
[11] BOULOS R A, ZHANG F, TJANDRA E S, et al. Spinning up the polymorphs of calcium carbonate[J]. Scientific Reports, 2014, 4(1):1-6.
[12] MA W D, WANG Z R, JIAO F, et al. Study on fouling characteristics of CaCO3at low reynolds number[J]. Environmental Progress & Sustainable Energy, 2019, 38(5): 1-8.
[13] MISAGHI M, NASERI A, KHAZAEI M. The effect of agitation and temperature on crystallization of calcium carbonate in water injection process[J]. Petroleum Science and Technology, 2021, 39(23/24): 1157-1175.
[14] 朱克勤,徐春曉. 粘性流體力學(xué)[M]. 北京:高等教育出版社,2009.
[15] LI Y K, ZHOU B, LIU Y Z, et al. Preliminary surface topographical characteristics of biofilms attached on drip irrigation emitters using reclaimed water[J]. Irrigation Science, 2013, 31(4): 557-574.
[16] HOU P, WANG T Z, ZHOU B, et al. Variations in the microbial community of biofilms under different near-wall hydraulic shear stresses in agricultural irrigation systems[J]. Biofouling, 2020, 36(1): 44-55.
[17] ZHANGZHONG L, YANG P, REN S, et al. Flow characteristics and pressure-compensating mechanism of non-pressure-compensating drip irrigation emitters[J]. Irrigation and Drainage, 2015, 64(5): 637-646.
[18] ZHOU B, HOU P, XIAO Y, et al. Visualizing, quantifying, and controlling local hydrodynamic effects on biofilm accumulation in complex flow paths[J]. Journal of Hazardous Materials, 2021, 416: 1-11.
[19] ZHOU B, LI Y, LIU Y, et al. Critical controlling threshold of internal water shear force of anti-clogging drip irrigation emitters using reclaimed water[J]. Irrigation Science, 2019, 37(4): 469-481.
[20] 孫振宇. 多元回歸分析與Logistic回歸分析的應(yīng)用研究[D]. 南京:南京信息工程大學(xué),2008.
SUN Zhenyu. Discussion of the Application of Multiple Regression Analysis and Logistic Regression Analysis[D]. Nanjing: Nanjing University of Information Science & Technology, 2008. (in Chinese with English abstract)
[21] PARKER A E, PITTS B, LORENZ L, et al. Polynomial accelerated solutions to a large gaussian model for imaging biofilms: In theory and finite precision[J]. Journal of the American Statistical Association, 2018, 113(524): 1431-1442.
[22] ZHOU B, LI Y K, PEI Y T, et al. Quantitative relationship between biofilms components and emitter clogging under reclaimed water drip irrigation[J]. Irrigation Science, 2013, 31(6): 1251-1263.
[23] 楊新萍. X射線衍射技術(shù)的發(fā)展和應(yīng)用[J]. 山西師范大學(xué)學(xué)報(自然科學(xué)版),2007,21(1):72-76.
YANG Xinping. The development and application of X-ray diffraction[J]. Journal of Shanxi Normal University (Natural Science Edition), 2007, 21(1): 72-76. (in Chinese with English abstract)
[24] LAI N J, WEN Y P, WANG Y, et al. Calcium carbonate scaling kinetics in oilfield gathering pipelines by using a 1D axial dispersion model[J]. Journal of Petroleum Science and Engineering, 2020, 188: 1-13.
[25] HIDEMA R, TOYODA T, SUZUKI H, et al. Adhesive behavior of a calcium carbonate particle to solid walls having different hydrophilic characteristics[J]. International Journal of Heat and Mass Transfer, 2016, 92: 603-609.
[26] JA?IMOVSKI D, GARI?-GRULOVI? R, VU?ETI? N, et al. Mass transfer and concentration boundary layer in a particulate fluidized bed[J]. Powder Technology, 2016, 303: 68-75.
[27] GOLMOHAMADI M, WILKINSON K J. Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion[J]. Carbohydrate Polymers, 2013, 94(1): 82-87.
[28] BEN AMOR Y, BOUSSELMI L, BERNARD M C, et al. Nucleation-growth process of calcium carbonate electrodeposition in artificial water—Influence of the sulfate ions[J]. Journal of Crystal Growth, 2011, 320(1): 69-77.
[29] 譚思源,沈巖,劉雁征,等. 納米氣泡對沼液滴灌系統(tǒng)灌水器的防堵塞效應(yīng)與機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(14):79-87.
TAN Siyuan, SHEN Yan, LIU Yanzheng, et al. Effects and mechanism of using Nanobubble to inhibit biofouling and scaling in biogas slurry drip irrigation emitters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(14): 79-87. (in Chinese with English abstract)
[30] 葛紅花,位承君,龔曉明,等. 電磁處理對水溶液中碳酸鈣微粒沉降及附著性能的影響[J]. 化學(xué)學(xué)報,2011,69(19):2313-2318.
GE Honghua, WEI Chengjun, GONG Xiaoming, et al. Effect of electromagnetic treatment on sedimentation and adhesion behavior of calcium carbonate particles formed in aqueous solution[J]. Acta Chimica Sinica, 2011, 69(19): 2313-2318. (in Chinese with English abstract)
Effects of hydraulic shear on calcium carbonate fouling in drip irrigation systems near the wall of water flow
ZHANG Weiyi1, XIAO Yang1※, MA Changjian2, LIU Wenchao1, SHEN Yan1, ZHANG Kai1, LI Yunkai1,3
(1.,,100083,;2.,,, 250100,;3.,,,100083,)
This study aims to determine the influence of hydrodynamic conditions on the formation of calcium carbonate fouling and the appropriate control threshold. A systematic investigation was implemented to explore the influence of hydraulic shear on the growth mechanism of calcium carbonate attached to the fouling process, together with the effect of changes in the total amount of fouling. The control threshold of hydraulic shear was also clarified on the growth of calcium carbonate fouling.This experiment was carried out to evaluate the 12 near-wall hydraulic shear forces (0-0.70 Pa) on the dry weight, crystalline phase composition, crystal size, and apparent morphology of calcium carbonate fouling in the irrigators of drip irrigation systems using a shear simulation device, the Couette-Taylor reactor, and with the aid of scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The results showed that the dry weight of calcium carbonate fouling and different shear forces were significantly (<0.05) dominated the formation of calcium carbonate fouling. Total amount of calcium carbonate fouling showed a trend of first increasing and then decreasing with the increase of shear force. The trend of the total amount of calcium carbonate fouling with the shear force was consistent with the Gaussian growth model. The most suitable shear force was at (0.42 ± 0.02) Pa for the formation of calcium carbonate fouling. The total amount of calcium carbonate fouling was 6.2-8.5 and 1.8-3.1 times of 0 and 0.70 Pa, respectively. The surface roughness of calcium carbonate crystals gradually increased with the increase of shear force, while the number of fragmented crystals also increased in the crystal surface morphology. The crystal size of calcium carbonate first increased and then decreased with the increase of shear force, reaching the maximum at about 0.25 Pa. In terms of crystal composition, the proportion of calcite was tended to decrease and then increase with the increasing shear, while the aragonite showed the opposite pattern. The content of both types of materials showed a linear increase with the increasing shear at the low shear (0-0.30 Pa), whereas, a linear decrease with the increasing shear at the high shear (>0.50 Pa), with the maximum content of calcite and aragonite between 0.35-0.50 Pa. In the shear force on calcium carbonate fouling growth, there was the thicker boundary layer of mass transfer between the material wall and water flow at the low shear force. The dispersion rate of Ca2+and CO32-ions was the dominant factor of calcium carbonate fouling deposition. The increase of shear force was accelerated the ion dispersion rate, leading to the faster fouling growth of calcium carbonate. However, the exfoliation effect of water flow on the calcium carbonate played a dominant role in the fouling growth of calcium carbonate at the high shear force. Furthermore, the stripping effect of water flow on calcium carbonate was occupied a dominant role in the growth of calcium carbonate attached fouling, as the shear force increased. The stronger stripping was found in the calcium carbonate crystal structure, as the mass transfer layer thinned, where more broken grains appeared. In turn, there was the decrease in the total amount of calcium carbonate attached fouling. Therefore, the hydraulic shear at the near-wall surface of the irrigator flow channel was controlled at 0-0.24 and 0.65-0.70 Pa, in order to reduce the formation of calcium carbonate fouling. The finding can provide a strong support to the application and promotion of highly clog-resistant irrigators for the better quality in the water drip irrigation.
drip irrigation; drip emitter; calcium carbonate fouling; hydraulic shear
2022-08-01
2023-03-10
國家自然科學(xué)基金項目(52209074,51790531),國家重點研發(fā)計劃項目(2021YFD1900900),黃三角國家農(nóng)高區(qū)科技專項(2022SZX41)
張唯一,研究方向為滴灌灌水器堵塞機(jī)理。Email:2441993487@qq.com
肖洋,助理研究員,研究方向為滴灌系統(tǒng)灌水器堵塞機(jī)理與控制。Email:xiaoyang@cau.edu.cn
10.11975/j.issn.1002-6819.202208008
S275.6
A
1002-6819(2023)-07-0137-07
張唯一,肖洋,馬長健,等. 水流近壁面水力剪切力對滴灌系統(tǒng)碳酸鈣污垢的影響[J]. 農(nóng)業(yè)工程學(xué)報,2023,39(7):137-144. doi:10.11975/j.issn.1002-6819.202208008 http://www.tcsae.org
ZHANG Weiyi, XIAO Yang, MA Changjian, et al. Effects of hydraulic shear on calcium carbonate fouling in drip irrigation systems near the wall of water flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 137-144. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202208008 http://www.tcsae.org