梁 磊,孫浩田,徐高明,李毅念,何瑞銀,丁啟朔
?農(nóng)業(yè)水土工程?
田間原位試驗分析長期機械作業(yè)下稻麥輪作地塊土壤入滲性能
梁 磊,孫浩田,徐高明,李毅念,何瑞銀,丁啟朔※
(1. 南京農(nóng)業(yè)大學工學院,南京 10031; 2. 江蘇省智能化農(nóng)業(yè)裝備重點實驗室,南京 10031)
田間原位不同深度入滲試驗是表達土壤分層狀態(tài)、展示土層物理分異以及定量土壤剖面水功能變化的關鍵。為了探究不同深度水稻土的入滲能力及保水作用,該研究以華東稻麥輪作區(qū)小農(nóng)戶長期機械化耕整模式下代表地塊的土層分異為目標,設計田間原位不同深度入滲試驗。在試驗地塊內開挖7個不同深度的入滲坑并在坑底進行入滲試驗,然后滲透48 h分層測取土壤含水率,研究不同坑底深度(坑深)土壤的入滲能力和入滲后各土層含水率的變化。結果表明,不同深度入滲試驗準確表達了不同坑深土壤的水分入滲及土層持水分異,同時也能清晰地鑒別出犁底層所在位置和厚度,犁底層始于15 cm深,且耕作層與犁底層分異明顯,耕作層平均緊實度為1 005.79 kPa,犁底層平均緊實度為1 910.73 kPa;土壤剖面分析表明,耕作層土壤形態(tài)疏松,根系分布稠密,犁底層土壤容重大,孔隙度小,透水性差,心土層土壤鐵錳斑點較多,結構性差;土壤入滲參數(shù)隨坑深的增加而減少,其中0~15 cm坑深范圍內平均的平均入滲速率和累計入滲量分別為>20~30 cm的17.04倍和18.06倍;通過對比初始含水率和滲透48 h后含水率,得到坑深在15 cm范圍內的水分入滲深度均為距表土20 cm,而大于15 cm坑深的水分入滲深度均為坑深以下10 cm;利用Horton、Kostiakov和Philip 3個模型擬合不同坑深入滲,結果表明,Kostiakov模型的擬合參數(shù)與實際相符且2最高(0.98~0.99),均方根誤差最?。?.01~0.77 mm/min)。入滲參數(shù)與土壤容重、含水率、總孔隙度和田間持水量有極顯著的相關性(<0.01),與土壤緊實度相關性不顯著(>0.05)。該研究通過原位不同深度入滲試驗,說明華東稻麥輪作區(qū)小農(nóng)戶生產(chǎn)模式下長期機械化耕作導致水稻土明顯的分層和土壤水功能垂直分異,進而導致耕作層與耕作層以下土層表現(xiàn)出顯著的入滲能力差異。研究可為稻麥輪作地區(qū)的機械耕作、灌溉等提供借鑒。
土壤;入滲;水分;稻麥輪作區(qū);耕作層;犁底層
長江中下游稻麥輪作區(qū)土壤周年干濕交替,土壤結構保護及耕作層水管理也隨水-旱作物的輪茬交替而周年切換。集約化生產(chǎn)模式及機械化的發(fā)展導致小農(nóng)戶生產(chǎn)方式下普遍以旋代耕,加之周年多次田間機械作業(yè)造成土壤壓實,多重因素導致耕層淺薄、土壤緊實、孔隙破壞,進而增加作物產(chǎn)量降低的風險[1-2]。集約化稻麥輪作系統(tǒng)的可持續(xù)性必然要求增加耕作層厚度、下移犁底層,而深松是目前普遍應用的保護性耕作措施之一[3]。
為打破犁底層、增加土壤保水量,北方旱作制深松耕深通常達到30 cm[3-4]。對稻麥輪作制而言,如果在旱作的麥季實施深耕深松創(chuàng)建厚度達30 cm的耕層,雖可打破犁底層提高土壤蓄水,但此做法在生產(chǎn)中常面臨諸多質疑,人們擔心麥季破壞的犁底層失去保水阻滲的效果,輪作到稻季時水分下滲加劇、形成漏斗田、增加稻季用水。稻麥輪作周年混亂的農(nóng)藝現(xiàn)狀及尚存爭議的耕作措施要求基于生產(chǎn)實際闡明田間土壤的物理性質及耕作深度對土壤入滲能力的影響[5-6]。同時基于土壤精細分層并逐層定量土壤入滲能力及土層間差異性的研究尚未見諸報道。
近年來耕作與土壤入滲關系的研究越發(fā)受到關注,侯賢清等[7]研究表明,2 a免耕+1 a深松和2 a深松+1 a免耕能顯著提高土壤水分入滲,降低土壤體積質量和增大土壤孔隙度。張西平等[8]研究表明耕作對土壤入滲參數(shù)的影響比種植方式大。姚毓香等[9]針對深松效應研究時發(fā)現(xiàn)適當增加鏟間距有利于加速土壤水分入滲。安晶等[10]研究表明深松有利于創(chuàng)造上虛下實的土壤結構,提高上層土壤的保水和蓄水能力。長期機械化生產(chǎn)導致農(nóng)田土壤分層,土壤剖面從上至下分異成為耕作層、犁底層和心土層[4]?;趯ν翆臃之愋缘年P注,孫蓓等[11]對田間耕作層和犁底層土壤分別取樣并開展室內模擬試驗,據(jù)此提出可連續(xù)測量耕作層與犁底層入滲過程的方法。劉淙琮等[12]獲取田間耕作層和犁底層土壤進行室內土柱模擬入滲試驗,表明犁底層顯著提高上層土壤的含水量,并且犁底層深度的增加可有效促進水分在上層土壤的儲存。
已報道的耕作與土壤入滲關系的研究主要集中在耕后土壤檢測,展示耕后土壤剖面的入滲能力變化,難以指導稻麥輪作地區(qū)的耕作深度,同時對不同深度的入滲過程鮮有研究,更未見到田間原位開挖不同深度的坑底入滲試驗及相關報道。對長江中下游區(qū)域的稻麥輪作制而言,尤其缺乏針對田間水稻土不同開挖深度坑底入滲試驗所得的不同土層入滲能力的數(shù)據(jù)。因此有必要設計一種基于不同深度處理的田間原位入滲試驗,準確定量土壤剖面精細分層的各土層入滲及蓄水能力。本文設計了一種精準控制田間開挖深度的坑底入滲試驗,用于準確測定不同深度土層的入滲能力及入滲后各土層的含水率變化,闡明長期集約化機械化稻麥輪作對土壤分層及土壤水行為的影響,以期為稻麥輪作地區(qū)機械耕作、灌溉等提供借鑒。
田間試驗位于南京市六合區(qū)八百橋試驗田(118°55′E,32°25′N),平均海拔22.7 m,地勢平坦,土壤質地為壤質黏土,土壤是長期(10 a以上)稻麥輪作而形成的水稻土。該區(qū)處于亞熱帶季風氣候帶,年平均溫度為15.7 ℃,年平均降水量為1 000 mm左右,該地區(qū)生產(chǎn)周年全程機械化。試驗地為小農(nóng)戶土地經(jīng)營模式,地塊分散、細碎化嚴重,周年(10 a以上)機械化作業(yè)環(huán)節(jié)繁多且長期以旋代耕,耕層淺薄、土層分異明顯。土壤入滲試驗進行于2021年11月水稻收獲后,試驗前人工清除地表留茬。
1.2.1 土壤剖面入滲試驗設計
耕作后受擾動的土壤產(chǎn)生較大的孔隙,大的孔隙不具有保水阻滲作用,為了探究深松耕深以下未受擾動土壤的入滲能力及保水作用,本文參照常規(guī)深松的最大耕深(圖1)設置5、10、15、20、25和30 cm共6個不同開挖深度,挖坑截面為60 cm×60 cm,移除坑內土壤并以坑底作為入滲面進行入滲試驗。不同深度的入滲坑及坑底入滲能夠直接準確測定各土層的入滲能力并區(qū)分土層間的物理分異。試驗采用(0 cm)表土入滲作為對照,因此共計7個不同的入滲試驗,各處理3次重復。
圖1 土壤分層以及深松耕深示意圖
1.2.2 土壤剖面入滲試驗過程
試驗采用鐵框法[13],鐵框截面為正方形(圖2a),分為大框(邊長50 cm、高20 cm)和小框(邊長25 cm、高15 cm)。將土壤表面輕輕鏟平,將大小框按照圖2b所示切入土中3 cm,且相鄰大框的距離大于50 cm。為避免水流過大沖擊表層土壤,用水桶沿著框壁四周對大小框同時注水,并使大小框內水位均為5 cm,以便大小框內的水垂直入滲。注水后,立即用秒表計時,然后用量杯持續(xù)向框內外加水維持水位5 cm。因入滲初期土壤基質吸力和重力的作用,入滲速率先快后慢,所以記錄時間間隔由快變慢,分別在0、0.5、1、2、3、4、5、6、7、8、9、10 min及10 min后每間隔10 min記錄,1 h后間隔30 min記錄[14],直到穩(wěn)滲狀態(tài)停止試驗。入滲總歷時120 min,初始入滲速率為0~1 min的入滲速率[15-16],穩(wěn)定入滲速率為單位時間內入滲速率趨于同一入滲速率,本研究在90 min時達到穩(wěn)定入滲,平均入滲速率表示到達穩(wěn)定入滲狀態(tài)后,累計入滲量與到達穩(wěn)滲時間的比值,取前90 min內的入滲總量與時間的比值。因本文入滲總時間為120 min,故取120 min的滲透總量作為累計入滲量進行分析。入滲速率為
式中V為第次測量時的入滲速率,mm/min;Q為第次測量時量筒加入的水量,mL;為小鐵框的橫截面積,cm2;T為第次測量的時間間隔,min。
第次測量時的累計入滲量為
式中為總加水次數(shù)。
圖2 鐵框法測定田間土壤水分入滲過程
1.3.1 土壤物理參數(shù)
入滲試驗前,在鐵框旁隨機選取21個點進行緊實度測試,使用土壤緊實度儀(TJSD-750-II型,浙江托普儀器有限公司)測取,每隔2.5 cm深度記錄一次,直到深度40 cm。在緊實度測試點旁取土壤容重,用環(huán)刀(高5 cm,體積100 cm3)采集0~5、>5~10、>10~15、>15~20、>20~25、>25~30、>30~35、>35~40、>40~45、>45~50 cm 10個土層的土樣,每層3次重復,取出的土樣立即稱取質量獲取濕土質量,用來測定各土層的初始含水率。同時在較為平坦的地面上挖出深50 cm、寬50 cm的地坑用以觀察水稻土剖面。
入滲試驗結束后,為了闡明不同深度坑底入滲的滲透深度,依據(jù)《麥秸稈機械化全量還田與水稻機插秧集成技術》[17],繼續(xù)維持入滲框內水位滲透48 h,環(huán)刀法分層取出入滲面下部土樣,每層3次重復,測定各土層滲泡后的含水率,用來檢驗初始含水率和滲泡后含水率的差異顯著性并基于此判斷入滲到達的土層深度。
將土樣帶回實驗室置于105 ℃條件下烘干48 h,稱取干土質量,然后其與環(huán)刀體積的比值即為土壤容重,相應的土壤總孔隙度計算式為
土壤含水率為
式中為含水率,%;為濕土質量,g;m為干土質量,g。
田間持水量是指排水良好的土地上充分灌溉或者降水后,水分充分下滲,經(jīng)過一段時間,多余的重力水排走后,土壤所能維持的最大含水量,是大多數(shù)植物可利用水的上限[20]。將土樣放置在充滿水的平底金屬托盤中,靜置24 h,土樣飽和后,將其靜置在干燥的土壤上8 h排除重力水,然后稱質量,按式(5)計算田間持水量:
式中w為田間持水量,%;m為飽和濕土質量,g。
1.3.2 土壤入滲模型
土壤入滲模型可以反映土壤入滲性能,利用相關數(shù)學模型對入滲速率擬合可以更直觀描述不同土層的入滲規(guī)律。本研究分別選取Horton、Koistakov、Philip 入滲模型[21-24]對土壤入滲速率與入滲時間進行擬合,各模型計算式及參數(shù)見表1。
表1 土壤入滲模型及參數(shù)說明
試驗數(shù)據(jù)使用Excel 2019進行基本處理,利用SPSS 26.0對土壤物理和入滲參數(shù)進行方差分析(one-way ANOVA,顯著性水平為0.05)。圖和表中的數(shù)據(jù)均為平均值,圖中的誤差線為標準差。使用Pearson相關性分析表示土壤物理和入滲參數(shù)之間的相關關系,使用Origin 2020軟件繪圖,利用Matlab R2020軟件進行土壤入滲模型擬合。
土壤容重變化是反映土層物理分異的基礎指標之一。表2顯示0~50 cm深度范圍內土壤容重以15 cm為分界,呈現(xiàn)上下土層間的顯著性差異(<0.05)。除此之外,土壤含水率也反映出各土層的土壤物理分異性,土壤含水率在0~15 cm范圍內隨著土層深度增加呈現(xiàn)遞減變化趨勢,同時顯示15 cm以上與15 cm以下顯著變化。田間持水量在0~20 cm內每5 cm顯著降低,之后不再顯著變化,總孔隙度在0~15 cm內每5 cm變化不顯著,而15 cm以上與15 cm以下顯著變化,表現(xiàn)為以15 cm深度為分界,呈上下顯著性差異(<0.05)??梢?,土壤分層取樣分析及土壤層物理分異性表達涉及的土壤容重、含水率、田間持水量、總孔隙度等多個土壤物理基礎指標反映的土層物理分異特征各不相同。
表2 0~50 cm土壤物理參數(shù)
注:同列不同的小寫字母表示在0.05水平上土層間存在顯著性差異。下同。
Note: Different lowercase letters in same column indicate significant differences among soil layers at the 0.05 level. Same as below.
土壤緊實度是反映土壤抵抗外力壓實以及破碎的一種能力,直接影響耕作阻力以及作物根系的下扎[25],通過測量土壤緊實度能夠確定犁底層在耕地中的深度[26]。由圖3可知,土壤緊實度隨土壤深度呈“幾”型的變化趨勢。圖3緊實度結合表2土壤物理參數(shù)可知,耕作層位于0~15 cm,平均緊實度為1 005.79 kPa,犁底層處于15~20 cm處,平均緊實度為1 910.73 kPa,心土層處于20 cm以下,平均緊實度為1 412.22 kPa,犁底層緊實度約為耕作層緊實度的2倍。犁底層的致密性影響植物根系的延伸生長和對下層養(yǎng)分的吸收,還影響氣體和熱量的上下交換,更是影響農(nóng)田的水循環(huán)[26-27]。同時犁底層具有避免其以下土壤壓實的風險,有研究表明在收割機軋后15 cm內土壤緊實度顯著變化,但不造成15 cm以下土壤顯著破壞[19]。
圖3 0~40 cm土壤緊實度
土壤剖面結構特征對土壤水分交換、降雨入滲、地下水補給及物質交換等有重要影響[28]。圖4可以看出,耕作層土壤較為疏松,分布著較多根系,土壤顆粒間空隙較大,土壤以團聚體形式為主,總體結構性較好,利于水分入滲,是機械耕作的主要影響區(qū)域。犁底層土壤較為緊實,根系下扎困難,土壤孔隙度小,土壤以大塊狀分布,透水性差,結合表2可知,犁底層對比耕作層土壤容重增大,含水率減小。心土層處于犁底層之下,與上層土壤物質交換較少,土壤堅實,鐵錳斑點較多,結構性差,養(yǎng)分含量低。結合表2和圖3可知,心土層緊實度比犁底層小,容重、含水率、田間持水量和總孔隙度并無顯著性差異。
圖4 水稻土剖面結構特征
由圖5a可知,不同坑深的土壤在0~5 min內水分入滲較快,處于瞬變階段。在6~90 min處于滲漏階段,此階段隨著入滲時間的增加土壤入滲速率逐漸減小且變化趨于平緩。在90 min后,水的入滲達到穩(wěn)滲階段,此階段土壤入滲速率變化不明顯,接近穩(wěn)定狀態(tài),并且隨著坑深的增加,穩(wěn)滲速率減小。從圖中可以看出大于15 cm坑深的土壤水分入滲速率相差較小。由圖5b可知,在入滲前90 min,由于前期入滲較快,累計入滲量呈對數(shù)型增長,到達90 min后,累計入滲量不再快速增長,保持穩(wěn)定。與入滲速率相同,隨著坑深的增加,累計入滲量在減小,且大于15 cm坑深的累計入滲量相差較小,這可能是由于15 cm以下土壤的土壤緊實度均大于表層土層,此處土壤常年未受到擾動,土壤較為濕黏,孔隙差。
圖5 不同坑深的土壤入滲過程
土壤初始入滲速率、穩(wěn)定入滲速率和平均入滲速率是反映土壤入滲能力的重要指標,比較其大小關系可以了解不同土層入滲能力的強弱[29]。從表3可知,不同坑深的土壤初始入滲速率和穩(wěn)定入滲速率呈現(xiàn)顯著性差異(<0.05)。各個坑深的土壤初始入滲速率、穩(wěn)定入滲速率、平均入滲速率和累計入滲量均表現(xiàn)為隨坑深遞增,數(shù)值遞減,其中0~15 cm坑深范圍內平均的平均入滲速率和累計入滲量分別為>20~30 cm的17.04倍和18.06倍,耕作層與耕作層以下的土壤入滲能力差異較大。
表3 不同坑深的土壤入滲參數(shù)
注:不同小寫字母表示不同坑深間差異顯著(<0.05)。
Note: Different lowercase letters indicate significant differences among pit depths at the 0.05 level.
同一坑深條件下的滲后不同土層含水率變化的顯著性是反映土層間含水率差異的關鍵指標,以表4的縱向數(shù)據(jù)間差異顯著性檢驗為判斷依據(jù)。不同坑深下滲后同一土層間的含水率變化顯著性是反映水分從開始入滲到“截止”入滲的深度的關鍵指標,以表4的橫向數(shù)據(jù)間差異顯著性檢驗為判斷依據(jù)。由表4可知,田間持水量和初始含水率均以>15~20 cm為分界呈現(xiàn)上層與下層土壤間的顯著性差異(<0.05),這緊密對應前文所述的犁底層鑒定結果。經(jīng)過48 h滲透后,對于0、5和10 cm坑深的滲后各土層而言,以>20~25 cm為分界呈現(xiàn)上層與下層含水率的顯著性變化(<0.05)。同樣的>25~30 cm為分界也發(fā)生在15 cm坑深的入滲處理。對于20 cm坑深則表現(xiàn)出以>30~35 cm土層為分界。對于25 cm坑深的入滲處理,>35~40 cm土層是其分界。30 cm的坑深入滲處理則以>40~45 cm為分界。
表4 不同坑深滲后田間持水量與含水率變化
注:大寫字母表示不同土層差異顯著(<0.05),小寫字母表示同一土層不同坑深差異顯著(<0.05)。
Note: Uppercase letters indicate significance at different soil layers (<0.05), lowercase letters indicate significance at different pit depths at the same layer (<0.05).
由表4可知,對于0、5和10 cm坑底入滲處理,滲后土層含水率與初始含水率在>20~25 cm土層間的差異性不顯著,表明0、5和10 cm坑深的水分入滲達20 cm。同理,對于15 cm坑深,>25~30 cm土層間的差異性不顯著(>0.05)。對于20 cm坑深,>30~35 cm土層間的差異性不顯著(>0.05)。對于25 cm坑深,>35~40 cm土層間的差異性不顯著(>0.05)。對于30 cm坑深,>40~45 cm土層間的差異性不顯著(>0.05)。
將表4不同坑深滲后土層含水率與對應土層的田間持水量進行橫向比較發(fā)現(xiàn),滲透48 h后,坑深以下5 cm土壤均含有重力水,處于過飽和狀態(tài)。通過縱向與橫向對比可知,滲透48 h后,坑深小于15 cm(等效于淺旋耕未打破犁底層),水分入滲深度可達20 cm,而坑深大于或等于15 cm時,水分入滲深度為坑深以下10 cm。鑒于常規(guī)旋耕和水田打漿深度在10~15 cm[30-31]并未打破犁底層,這印證了生產(chǎn)中人們對水田犁底層具有保水保肥功能的基本認知的正確性。
為了進一步探究不同坑深土壤水分入滲速率與時間的變化關系以及入滲模型在水稻土的適用性,采用Horton、Kostiakov和Philip 3個常用模型擬合入滲速率,擬合結果如表5所示。決定系數(shù)2的取值范圍為[0,1],2越接近1,表明擬合程度越佳。均方根誤差(root mean squared error,RMSE)越趨近于0表明模型的擬合度越好。Horton 模型的2為0.91~0.97,RMSE平均值為0.02~1.63 mm/min,表明該模型對不同坑深土壤入滲的過程擬合程度較好,但與表3相比,模型擬合的c過高,不符合真實穩(wěn)定入滲速率,所以該模型不適用擬合本研究土壤水分入滲速率。Kostiakov 模型的2為0.98~0.99,RMSE為0.01~0.77 mm/min,表明該模型對于土壤入滲速率擬合度良好。Philip 模型的2為0.95~0.99,RMSE為0.03~0.80 mm/min,表明該模型對不同坑深的入滲過程擬合程度較好,表征土壤入滲能力的吸滲率隨著坑深增加土壤入滲能力越弱,這與實際土壤入滲能力相一致,但模型擬合的c為負值,與實際不符,說明該模型不適用于本研究。綜上,Kostiakov 模型最適合于分析水稻土不同坑深的水分入滲過程。在Kostiakov模型中,參數(shù)表示土壤入滲的第1時段平均入滲速率,第1時段平均入滲速率越大土壤入滲性能越好,參數(shù)為衰減系數(shù),參數(shù)越大表示土壤入滲速率隨時間增加遞減越快[32]。從表5可知,參數(shù)隨著坑深的增加而減小,與表3的初始入滲速率規(guī)律相同,參數(shù)隨著坑深的增加并無明顯差異。
表5 不同坑深的土壤入滲模型擬合參數(shù)
注:2為決定系數(shù);RMSE為均方根誤差。
Note:2is dertermination coefficient;RMSEis root mean squared error.
由表4可知,當坑深小于15 cm入滲時,水分入滲可達20 cm土壤層,當坑深大于或等于15 cm開始入滲時,水分入滲深度為坑深以下10 cm。因此,為了探究入滲參數(shù)與土壤初始物理參數(shù)之間的關系,對0、5、10 cm坑深的土壤物理參數(shù)取20 cm內的平均土壤初始物理參數(shù),對15、20、25、30 cm坑深的土壤物理參數(shù)取其坑深以下10 cm內的平均土壤初始物理參數(shù),對土壤初始物理參數(shù)與入滲參數(shù)進行Pearson相關性分析如表6所示。土壤入滲參數(shù)與容重呈極顯著負相關(<0.01),與含水率和田間持水量呈極顯著正相關(<0.01),與土壤緊實度不顯著(>0.05)。這表明田間土壤容重越大,入滲性能越差。劉姍姍等[33]研究表明入滲參數(shù)與土壤初始含水率、土壤緊實度和黏粒含量均呈負相關,曾辰等[34]研究表明累積入滲量隨初始含水率的增大而減小,然而本文含水率越高,入滲性能反而越好,這可能是由于表層土壤含水率相對于底層含水率高的原因,突顯了田間原位土壤入滲的特殊性。對于田間耕作,耕作層越疏松,越有利于水分的入滲,然而卻不利于作物根系的下扎,如何平衡好土壤物理參數(shù),對土壤水循環(huán)及耕作具有重要意義。
表6 入滲參數(shù)與土壤初始物理參數(shù)相關關系
注:**表示極顯著(<0.01)。
Note: ** mean extreme significance (<0.01).
農(nóng)田耕作層與犁底層土壤性質不盡相同,上層耕作層土壤結構良好、結構孔隙豐富,而下層犁底層土壤致密,多表現(xiàn)為基粒材質孔隙,因此不同土層的水分入滲有著不同表現(xiàn)。本研究表明,試驗地水稻土耕作層位于15 cm以上,土壤較為疏松,分布著較多根系,犁底層處于15 cm以下處,土壤較為緊實,根系較少,這些基于精細土層控制的坑深入滲所得結論與HUO等[19,35]研究結果一致,從土壤水的角度進一步印證以往區(qū)域調查研究所得土層結論,同時本研究進一步發(fā)現(xiàn)犁底層平均緊實度約為耕作層的2倍。
土壤容重、緊實度、含水率等指標的土層分異也印證土壤剖面視覺評價方法的可行性,疏松多孔的土壤層有利于作物根系的生長發(fā)育,緊實少孔的土壤不利于作物根系下扎,土壤剖面配合土壤結構體視覺評價方法是生產(chǎn)中簡單、可靠、實用的田間原位觀測評價方法[36]。耕作層厚度與本地長期的耕作模式有很大的關系,本文地區(qū)長期10~15 cm深度的旋耕和水田打漿[30-31]決定了耕作層的厚度為15 cm,而對于北方旱作土壤,犁底層出現(xiàn)的位置為15~30 cm[37-38],水稻土相比北方旱作土壤,耕作層偏薄,犁底層出現(xiàn)位置偏上(>15~20 cm),不利于作物根系下扎,影響作物最終產(chǎn)量的提高。因而,針對稻麥輪作區(qū)的水稻土,耕作層淺薄,土壤板結,孔隙度低等問題[1-2],有必要進行深松耕作,使犁底層下移,消除土壤板結,改善土壤結構,提高土壤入滲能力[39]。
土壤入滲能力除了受水頭、溫度等外在因素的影響,也受土壤自身物理特性(尤其是結構孔隙)的影響,如質地、容重、含水率、緊實度、孔隙度等[24]。田間土壤隨著土層深度的增加,各層土壤物理性質表現(xiàn)出差異性[40],土壤物理性質的不同就會引起土壤入滲能力的不同。從試驗結果可知,初始入滲速率、穩(wěn)定入滲速率和平均入滲速率隨著土壤深度的增加而減小,同余林等[41]研究結論一致。當滲透48 h后,小于15 cm坑深入滲時,水稻土入滲深度均為距表土20 cm,而包含等[42]通過室內模擬降雨試驗表明砂壤土的最佳保水性土層深度為20~35 cm。王曉彤等[43]研究表明層狀土壤黏土夾層能夠明顯改變水分的入滲特性。肖慶禮等[44]表明土壤下部黏土夾層不僅對水分入滲起到顯著的阻礙作用,而且具有較強的持水保水能力。這些研究表明層狀土壤中存在土層保水阻滲,水稻土的犁底層具有土壤孔隙小、緊實和黏重的特點[26-27],這些特點起著儲存水分和保水阻滲的作用,同時YI等[45]研究表明降低犁底層的飽和導水率可以阻礙水滲透,且隨著水稻栽培年限的增加,犁底層的厚度和容重在增加。3個常用模型對不同坑深土壤水分入滲過程擬合優(yōu)度從大到小為:Kostiakov模型、Philip模型、Horton模型,結果表明Kostiakov模型對于水稻土的適用性比較高,這與羅瑩麗等[22-23,46]在非水稻土水分入滲模型的研究中得出結果相似。
為了獲取不同深度水稻土的入滲能力及保水作用,用以指導深松耕深,本文在長期機械作業(yè)的稻麥輪作地塊內開挖7個不同深度的入滲坑并在坑底進行入滲試驗,研究了不同坑深土壤的入滲能力和入滲后各土層含水率的變化,得出如下結論:
1)通過分析田間水稻土的物理參數(shù)及剖面得出,耕作層位于0~15 cm土深,分布較多根系,平均緊實度為1 005.79 kPa,犁底層處于>15~20 cm土深,容重大,孔隙度小,平均緊實度為1 910.73 kPa,犁底層緊實度約為耕作層的2倍。
2)7個控制土層深度的初始入滲速率、穩(wěn)定入滲速率、平均入滲速和累計入滲量均表現(xiàn)為隨著入滲面深度遞增,數(shù)值遞減,其中0~15 cm坑深范圍內平均的平均入滲速率和累計入滲量分別為>20~30 cm的17.04倍和18.06倍,耕作層與耕作層以下的土壤入滲能力差異較大。
3)通過對比初始含水率和滲透48 h后含水率的顯著性得出,坑深小于15 cm入滲時,水分入滲深度均為距表土20 cm,而坑深大于等于15 cm入滲時,水分入滲深度均為坑底以下10 cm,這表明犁底層具有保水阻滲效果。
4)Horton、Kostiakov和Philip 3個模型中,Kostiakov模型的擬合參數(shù)與實際相符,可較好地模擬水稻土入滲過程。土壤物理和入滲參數(shù)的相關性表明,入滲參數(shù)與容重、含水率、總孔隙度和田間持水量有著較強的相關性,與土壤緊實度相關性不顯著。
[1] 李春林,丁啟朔,陳青春. 水稻土的先期固結壓力測定與分析[J]. 農(nóng)業(yè)工程學報,2010,26(8):141-144.
LI Chunlin, DING Qishuo, CHEN Qingchun. Measurement and analysis of precompression stress of soil in rice field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 141-144. (in Chinese with English abstract)
[2] KUMAR V, BELLINDER R R, GUPTA R K, et al. Role of herbicide-resistant rice in promoting resource conservation technologies in rice-wheat cropping systems of India: a review[J]. Crop Protection, 2008, 27(3/4/5): 290-301.
[3] 劉俊安,王曉燕,李洪文,等. 基于土壤擾動與牽引阻力的深松鏟結構參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機械學報,2017,48(2):60-67.
LIU Jun’an, WANG Xiaoyan, LI Hongwen, et al. Optimization of structural parameters of subsoiler based on soil disturbance and traction resistance[J]. Transaction of the Chinese Society for Agricultural Machinery, 2017, 48(2): 60-67. (in Chinese with English abstract)
[4] 鄭侃,何進,李洪文,等. 基于離散元深松土壤模型的折線破土刃深松鏟研究[J]. 農(nóng)業(yè)機械學報,2016,47(9):62-72.
ZHENG Kan, HE Jin, LI Hongwen, et al. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(9): 62-72. (in Chinese with English abstract)
[5] WANG C, MAO X, HATANO R. Modeling ponded infiltration in fine textured soils with coarse interlayer[J]. Soil Science Society of America Journal, 2014, 78(3): 745-753.
[6] ZETTL J, LEE B S, HUANG M, et al. Influence of textural layering on field capacity of coarse soils[J]. Canadian Journal of Soil Science, 2011, 91(2): 133-147.
[7] 侯賢清,賈志寬,韓清芳,等. 不同輪耕模式對旱地土壤結構及入滲蓄水特性的影響[J]. 農(nóng)業(yè)工程學報,2012,28(5):85-94.
HOU Xianqing, JIA Zhikuan, HAN Qingfang, et al. Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 85-94. (in Chinese with English abstract)
[8] 張西平,程伍群,繩莉麗,等. 耕作及種植方式對土壤入滲參數(shù)和畦灌水流運動的影響[J]. 農(nóng)業(yè)工程學報,2019,35(12):89-97.
ZHANG Xiping, CHENG Wuqun, SHENG Lili, et al. Effects of tillage and planting patterns on soil infiltration parameters and water flow of border irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 89-97. (in Chinese with English abstract)
[9] 姚毓香,高喜杰,高鵬洋,等. 深松鏟橫向間距對土壤水分入滲的影響[J]. 農(nóng)機化研究,2020,42(9):18-23.
YAO Yuxiang, GAO Xijie, GAO Pengyang, et al. Influence of tine spacing on soil-water infiltration[J]. Journal of Agricultural Mechanization Research, 2020, 42(9): 18-23. (in Chinese with English abstract)
[10] 安晶,張玉龍,鄒洪濤,等. 深松和壓實對旱地棕壤硬度和水分入滲性能的影響[J]. 土壤通報,2016,47(5):1107-1112.
AN Jing, ZHANG Yulong, ZOU Hongtao, et al. Quantifying the influence of deep ripping and compaction on soil strength and water infiltration of brown earth[J]. Chinese Journal of Soil Science, 2016, 47(5): 1107-1112. (in Chinese with English abstract)
[11] 孫蓓,馬玉瑩,雷廷武,等. 農(nóng)地耕層與犁底層土壤入滲性能的連續(xù)測量方法[J]. 農(nóng)業(yè)工程學報,2013,29(4):118-124.
SUN Bei, MA Yuying, LEI Tingwu, et al. Method for continuously measuring soil infiltrability of plow-cultivated layer and hardpan in farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 118-124. (in Chinese with English abstract)
[12] 劉淙琮,王利書,楊寶斌. 不同農(nóng)田土壤壓實層深度對水分入滲和分布的影響[J]. 北方園藝,2021(19):107-113.
LIU Congcong, WANG Lishu, YANG Baobin. Effects of soil compaction depth on water in filtration and distribution in different farmland[J]. Northern Horticulture, 2021(19): 107-113. (in Chinese with English abstract)
[13] 依艷麗. 土壤物理研究法[M]. 北京:北京大學出版社,2009.
[14] 孟凡旭,王樹森,馬迎梅,等. 不同果農(nóng)復合種植模式土壤入滲能力及其影響因素[J]. 干旱區(qū)研究,2020,37(6):1469-1477.
MENG Fanxu, WANG Shusen, MA Yingmei, et al. Soil infiltration ability and influencing factors under different intercropping patterns in orchards in the gully region of loess plateau[J]. Arid Zone Research, 2020, 37(6): 1469-1477. (in Chinese with English abstract)
[15] 何苗苗,劉芝芹,王克勤,等. 滇池流域不同植被覆蓋土壤的入滲特征及其影響因素[J]. 水土保持學報,2022,36(3):181-187.
HE Miaomiao, LIU Zhiqin, WANG Keqin, et al. Soil infiltration characteristics and influencing factors under different vegetation cover types in Dianchi Lake Basin[J]. Journal of Soil and Water Conservation, 2022, 36(3): 181-187. (in Chinese with English abstract)
[16] 吳佩瑤,秦富倉,董曉宇,等. 坡度影響下的砒砂巖區(qū)裸露坡面水分入滲特征及模擬[J]. 水土保持學報,2022,36(2):64-69.
WU Peiyao, QIN Fucang, DONG Xiaoyu, et al. Water infiltration characteristics and simulation on exposed slope in pisha rock area under the influence of slope[J]. Journal of Soil and Water Conservation, 2022, 36(2): 64-69. (in Chinese with English abstract)
[17] 江蘇省農(nóng)業(yè)農(nóng)村廳. 麥秸稈機械化全量還田與水稻機插秧集成技術[EB/OL]. (2014-06-04)[2022-06-28]. http://nynct.jiangsu.gov.cn/art/2014/6/4/art_13467_5056407.html
[18] 丁啟朔,葛雙洋,任駿,等. 水稻土深松阻力與土壤擾動效果研究[J]. 農(nóng)業(yè)機械學報,2017,48(1):47-56,63.
DING Qishuo, GE Shuangyang, REN Jun, et al. Characteristics of subsoiler traction and soil disturbance in paddy soil[J]. Transaction of the Chinese Society for Agricultural Machinery, 2017, 48(1): 47-56, 63. (in Chinese with English abstract)
[19] HUO L F, LIANG L, ABBAS A, et al. Soil disturbance under small harvester traffic in paddy-based smallholder farms in China[J]. Agronomy Journal, 2020, 112(2): 1441-1451.
[20] ZHAO W X, LI J S, YANG R M, et al. Crop yield and water productivity responses in management zones for variable-rate irrigation based on available soil water holding capacity[J]. Transactions of the ASABE, 2017, 60(5): 1659 - 1667.
[21] 陳磊,張科利,李業(yè)桐,等. 喀斯特坡耕地塊石出露對土壤水分入滲的影響[J]. 農(nóng)業(yè)工程學報,2022,38(10):111-118.
CHEN Lei, ZHANG Keli, LI Yetong, et al. Effects of rock outcropping on soil water infiltration in karst cropland slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 111-118. (in Chinese with English abstract)
[22] 羅瑩麗,韋杰,劉春紅. 紫色土坡耕地埂坎裂隙發(fā)育對土壤入滲的影響[J]. 農(nóng)業(yè)工程學報,2021,37(21):116-123.
LUO Yingli, WEI Jie, LIU Chunhong. Water seepage in soil bunds under different crack development degrees on the purple-soil sloping farmlands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 116-123. (in Chinese with English abstract)
[23] 魏永霞,王鶴,劉慧,等. 生物炭對黑土區(qū)土壤水分及其入滲性能的影響[J]. 農(nóng)業(yè)機械學報,2019,50(9):290-299.
WEI Yongxia, WANG He, LIU Hui, et al. Effect of Biochar on Soil Moisture and Its Infiltration Performance in Black Soil Area[J]. Transaction of the Chinese Society for Agricultural Machinery, 2019, 50(9): 290-299. (in Chinese with English abstract)
[24] 劉月梅,張興昌. EN-1對黃土性固化土水分垂直入滲特征的影響[J]. 農(nóng)業(yè)機械學報,2012,43(11):65-73.
LIU Yuemei, ZHANG Xingchang. Effects of EN-1 soil stabilizer on water vertical infiltration characteristics for loess stabilized soil[J]. Transaction of the Chinese Society for Agricultural Machinery, 2012, 43(11): 65-73. (in Chinese with English abstract)
[25] 王慧杰,郝建平,馮瑞云,等. 微孔深松耕降低土壤緊實度提高棉花產(chǎn)量與種籽品質[J]. 農(nóng)業(yè)工程學報,2015,31(8):7-14.
WANG Huijie, HAO Jianping, FENG Ruiyun, et al. Microhole subsoiling decreasing soil compaction, and improving yield and seed quality of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 7-14. (in Chinese with English abstract)
[26] JE?áBEK J, ZUMR D, DOSTáL T. Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance[J]. Soil and Tillage Research, 2017, 174: 231-240.
[27] 王立梅. “犁底層”對北方半干旱地區(qū)農(nóng)田水循環(huán)的影響[J]. 鄉(xiāng)村科技,2019(15):119,121.
[28] 吉恒瑩,邵明安,賈小旭. 土壤剖面結構特征對坡面產(chǎn)流產(chǎn)沙過程的影響[J]. 土壤通報,2018,49(2):441-446.
JI Hengying, SHAO Min’an, JIA Xiaoxu. Impact of soil profile structure on infiltration and erosion processes[J]. Chinese Journal of Soil Science, 2018, 49(2): 441-446. (in Chinese with English abstract)
[29] 云慧雅,畢華興,王珊珊,等. 不同林分類型土壤理化特征及其對土壤入滲過程的影響[J]. 水土保持學報,2021,35(6):183-189.
YUN Huiya, BI Huaxing, WANG Shanshan, et al. Soil physical and chemical characteristics of different forest types and their effects on soil infiltration process[J]. Journal of Soil and Water Conservation, 2021, 35(6): 183-189. (in Chinese with English abstract)
[30] 方會敏,姬長英,F(xiàn)arman Ali Chandio,等. 基于離散元法的旋耕過程土壤運動行為分析[J]. 農(nóng)業(yè)機械學報,2016,47(3):22-28.
FANG Huimin, JI Changying, FARMAN Ali Chandio, et al. Analysis of soil dynamic behavior during rotary tillage based on distinct element method[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(3): 22-28. (in Chinese with English abstract)
[31] 丁啟朔,呂緒敏,孫克潤,等. 基于逆向工程的攪漿刀作業(yè)性能界定與關鍵設計參數(shù)研究[J]. 農(nóng)業(yè)機械學報,2021,52(3):68-74.
DING Qishuo, LYU Xumin, SUN Kerun, et al. Performance and design parameter definition on puddling knife using reverse engineering[J]. Transaction of the Chinese Society for Agricultural Machinery, 2021, 52(3): 68-74. (in Chinese with English abstract)
[32] 張志華,桑玉強,孔玉華,等. 太行山低山丘陵區(qū)坡位對土壤滲透性能影響研究[J]. 灌溉排水學報,2018,37(9):43-47.
ZHANG Zhihua, SANG Yuqiang, KONG Yuhua, et al. The variation of water infiltration rate over various slopes in taihang mountain[J]. Journal of Irrigation and Drainage, 2018, 37(9): 43-47. (in Chinese with English abstract)
[33] 劉姍姍,白美健,許迪,等. Green-Ampt模型參數(shù)簡化及與土壤物理參數(shù)的關系[J]. 農(nóng)業(yè)工程學報,2012,28(1):106-110.
LIU Shanshan, BAI Meijian, XU Di, et al. Parameters simplification of Green-Ampt infiltration models and relationships between infiltration and soil physical parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 106-110. (in Chinese with English abstract)
[34] 曾辰,王全九,樊軍. 初始含水率對土壤垂直線源入滲特征的影響[J]. 農(nóng)業(yè)工程學報,2010,26(1):24-30.
ZENG Chen, WANG Quanjiu, FAN Jun. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 24-30. (in Chinese with English abstract)
[35] 丁啟朔,李楊,BELAL Eisa Adam,等. 基于田間攝像的多參數(shù)水稻土深松擾動行為與效應研究[J]. 農(nóng)業(yè)機械學報,2019,50(10):44-55.
DING Qishuo, LI Yang, BELAL Eisa Adam, et al. Subsoiler-induced paddy soil disturbance and effects based on video-assisted multi-index quantification[J]. Transaction of the Chinese Society for Agricultural Machinery, 2019, 50(10): 44-55. (in Chinese with English abstract)
[36] MURPHY B W, CRAWFORD M H, DUNCAN D A, et al. The use of visual soil assessment schemes to evaluate surface structure in a soil monitoring program[J]. Soil and Tillage Research, 2013, 127: 3-12.
[37] 宋強,夏可,楊斌,等. 旱作區(qū)典型土類穿透阻力分布特征及耕層厚度確定[J]. 水土保持學報,2021,35(3):369-377.
SONG Qiang, XIA Ke, YANG Bin, et al. Distribution characteristic of penetration resistance and determination of plough layer thickness of typical soils in dry farming area[J]. Journal of Soil and Water Conservation, 2021, 35(3): 369-377. (in Chinese with English abstract)
[38] 喬磊,黃明鏡,張吳平,等. 山西省典型縣域農(nóng)田耕作層厚度空間格局及影響因素[J]. 中國土壤與肥料,2020(2):75-82.
QIAO Lei, HUANG Mingjing, ZHANG Wuping, et al. Spatial pattern of cultivated layer thickness and its influencing factors in typical area of Shanxi province[J]. Soil and Fertilizer Sciences in China, 2020(2): 75-82. (in Chinese with English abstract)
[39] GAO L, BECKER E, LIANG G, et al. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon[J]. Geoderma, 2017, 288: 97-104.
[40] 李勇,趙云澤,勾宇軒,等. 黃淮海旱作區(qū)土壤壓實度空間分布特征及其影響因素[J]. 農(nóng)業(yè)工程學報,2021,37(13):83-91.
LI Yong, ZHAO Yunze, GOU Yuxuan, et al. Spatial distribution characteristics and influence factors of degree of compaction in dry-farming Huang-Huai-Hai Plain of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 83-91. (in Chinese with English abstract)
[41] 余林,肖復明,徐海寧,等. 江西安福不同類型毛竹林土壤入滲與貯水特征[J]. 林業(yè)科技開發(fā),2013,27(2):37-41.
YU Lin, XIAO Fuming, XU Haining, et al. Soil water holding capacities and infiltration characteristics in different types of Phyllostachys edulis plantations at Anfu, Jiangxi Province[J]. Journal of Forestry Engineering, 2013, 27(2): 37-41. (in Chinese with English abstract)
[42] 包含,侯立柱,劉江濤,等. 室內模擬降雨條件下土壤水分入滲及再分布試驗[J]. 農(nóng)業(yè)工程學報,2011,27(7):70-75.
BAO Han, HOU Lizhu, LIU Jiangtao, et al. Experiment on process of soil water infiltration and redistribution under simulated rainfall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 70-75. (in Chinese with English abstract)
[43] 王曉彤,胡振琪,賴小君,等. 黏土夾層位置對黃河泥沙充填復墾土壤水分入滲的影響[J]. 農(nóng)業(yè)工程學報,2019, 35(18):87-94.
WANG Xiaotong, HU Zhenqi, LAI Xiaojun, et al. Influence of clay interlayer position on infiltration of reclaimed soil filled with Yellow River sediment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 86-93. (in Chinese with English abstract)
[44] 肖慶禮,黃明斌,邵明安,等. 黑河中游綠洲不同質地土壤水分的入滲與再分布[J]. 農(nóng)業(yè)工程學報,2014,30(2):124-131.
XIAO Qingli, HUANG Mingbin, SHAO Ming’an, et al. Infiltration and drainage processes of different textural soil moisture in middle reaches of Heihe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 124-131. (in Chinese with English abstract)
[45] YI J, QIU W W, HU W, et al. Effects of cultivation history in paddy rice on vertical water flows and related soil properties[J]. Soil and Tillage Research, 2020, 200: 104613.
[46] 黨宏宇,陳洪松,邵明安. 喀斯特地區(qū)不同層次土石混合介質對土壤水分入滲過程的影響[J]. 農(nóng)業(yè)工程學報,2012,28(8):38-43.
DANG Hongyu, CHEN Hongsong, SHAO Ming'an. Effects of laminated rock fragments on soil infiltration processes in Karst regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 38-43. (in Chinese with English abstract)
Soil infiltration of rice-wheat rotation field under long-term mechanical treatment based on field in situ experiments
LIANG Lei, SUN Haotian, XU Gaoming, LI Yinian, HE Ruiyin, DING Qishuo※
(1.210031,;2.210031,)
Field in situ infiltration experiments at different depths can be used to express the state of soil stratification, and the physical differentiation of soil layers, in order to quantify the changes in the water of the soil profile. This study aims to obtain the infiltration capacity and water retention of paddy soils. The field in situ soil infiltration experiments were also carried out at different depths to identify the soil stratification in the representative plot under long-term mechanized tillage of smallholder farmers in the rice-wheat rotation region of eastern China. Seven infiltration pits of different depths were excavated in the experimental plots. After that, the infiltration experiments were conducted at the bottom of the pits. Soil water content was then measured in the layers for 48 hours of infiltration. A systematic investigation was made to explore the soil infiltration capacity at the bottom of the pits and the soil water content of each layer. The results showed that an accurate description was achieved in the water infiltration and water holding capacity of the soil at different pits after the infiltration experiments at different depths. The location and thickness of the plow pan were also clearly identified during this time. The plow pan was started at a depth of about 15 cm, indicating the outstanding difference between the cultivated layer and the plow pan. The average soil penetration resistances of the cultivated layer and the plow pan were 1 005.79 kPa, and 1 910.73 kPa, respectively. The soil profile showed that the soil in the cultivated layer shared a loose morphology and dense root distribution, whereas, the soil in the plow pan presented a high bulk density, low porosity, and poor permeability, while the soil in the subsoil layer was in more iron-manganese spots and poor structure. Furthermore, the soil infiltration parameters decreased with the increasing pit depth. The average infiltration rate and cumulative infiltration in the 0-15 cm pit depth range were 17.04 and 18.06 times higher, respectively, than those in the >20-30 cm pit depth range. The three infiltration models were fitted using Horton, Kostiakov and Philip. Specifically, the Kostiakov model had the highest2(0.98-0.99) and the smallest root mean square error (0.01-0.77 mm/min), indicating the consistency of the fitted parameters. Infiltration parameters were extremely significant correlated with the soil bulk density, water content, total porosity, and field capacity (<0.01), but not with the soil penetration resistance (>0.05). Field in situ infiltration experiment at different depths was an important tool to identify the soil stratification and quantify the water function differentiation in the soil profiles, according to the soil profile, cone penetration and sampling. Long-term mechanized tillage under the smallholder production model in the rice-wheat rotation region of eastern China can be expected to result in the apparent stratification and vertical differentiation of soil water functions in paddy soils. In turn, there are also some significant differences in the infiltration capacity between the cultivated layer and soil layers below the cultivated layer. This study can provide a reference for mechanical cultivation and irrigation in rice-wheat rotation regions.
soils; infiltration; water; rice-wheat rotation; cultivated layer; plow pan
2022-09-26
2023-03-01
國家重點研發(fā)計劃項目(2022YFD2300304);江蘇省研究生科研創(chuàng)新計劃項目(KYCX21_0573)
梁磊,博士生,研究方向為土壤系統(tǒng)科學。Email:liangupright@163.com
丁啟朔,博士,教授,研究方向為土壤-植物-機器系統(tǒng)科學。Email:qsding@njau.edu.cn
10.11975/j.issn.1002-6819.202209207
S152.7+2; S152.2+3; S220
A
1002-6819(2023)-07-0110-09
梁磊,孫浩田,徐高明,等. 田間原位試驗分析長期機械作業(yè)下稻麥輪作地塊土壤入滲性能[J]. 農(nóng)業(yè)工程學報,2023,39(7):110-118. doi:10.11975/j.issn.1002-6819.202209207 http://www.tcsae.org
LIANG Lei, SUN Haotian, XU Gaoming, et al. Soil infiltration of rice-wheat rotation field under long-term mechanical treatment based on field in situ experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 110-118. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202209207 http://www.tcsae.org