郭瑞 姚維成 陳琛 曲朝喜 溫明星 劉家俊 鄧垚 申雪懿 李東升
摘要: 為了闡明鎮(zhèn)麥品種相關(guān)品質(zhì)基因分布特點(diǎn),以11份鎮(zhèn)麥品種為試驗(yàn)材料,分別利用單粒谷物特性測定系統(tǒng)測定籽粒硬度指數(shù),采用分子標(biāo)記和瓊脂糖凝膠電泳分離技術(shù)檢測籽粒硬度基因、高/低分子量麥谷蛋白亞基(HMW-GS、LMW-GS)、Wx基因以及面粉色澤相關(guān)基因等分布特點(diǎn),并結(jié)合十二烷基磺酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)技術(shù)明確鎮(zhèn)麥材料的HMW-GS類型。結(jié)果表明,硬度指數(shù)大于60的鎮(zhèn)麥品種有9份,均可檢測到硬度基因突變。HMW-GS分布特點(diǎn)為:鎮(zhèn)麥168等8份材料的組合均為1/7+9/5+10,鎮(zhèn)麥11號為1/7+8/2+12,鎮(zhèn)麥17和鎮(zhèn)麥19為Null/7+8/2+12。LMW-GS有Glu-A3c、Glu-A3d、Glu-B3b、Glu-B3f和Glu-B3g 5種基因型,其中鎮(zhèn)麥168、鎮(zhèn)麥13和鎮(zhèn)麥17為Glu-A3c/Glu-B3g,鎮(zhèn)麥11號為Glu-A3d/Glu-B3g,鎮(zhèn)麥19為Glu-A3c/Glu-B3b,其余6份鎮(zhèn)麥品種均為Glu-A3c/Glu-B3f。Wx基因的檢測結(jié)果表明,鎮(zhèn)麥品種中未檢測到Wx基因突變,均為野生型。面粉色澤及相關(guān)基因檢測結(jié)果為:鎮(zhèn)麥材料的面粉白度為74.47~78.70,其中鎮(zhèn)麥168的白度最小;鎮(zhèn)麥168等8份材料的基因型為Ppo-A1b/Ppo-B1a/Ppo-D1b/TaLox-B1b,鎮(zhèn)麥11號和鎮(zhèn)麥19為Ppo-A1a/Ppo-B1a/Ppo-D1a/TaLox-B1b,鎮(zhèn)麥17為Ppo-A1a/Ppo-B1a/Ppo-D1a/b/TaLox-B1b;鎮(zhèn)麥168、鎮(zhèn)麥12號和鎮(zhèn)麥16為Psy-A1b/Psy-B1d/Psy-D1a,鎮(zhèn)麥11號和鎮(zhèn)麥13為Psy-A1b/Psy-B1b/Psy-D1a,其余6份鎮(zhèn)麥品種為Psy-A1b/Psy-B1a/Psy-D1a。
關(guān)鍵詞: 小麥;品質(zhì);基因;分子標(biāo)記
中圖分類號: S512.1+10.1 文獻(xiàn)標(biāo)識碼: A 文章編號: 1000-4440(2023)01-0001-14
Analysis of molecular markers detection for genes related to quality traits in Zhenmai wheat cultivars
GUO Rui1,2, YAO Wei-cheng1, CHEN Chen1,2, QU Chao-xi1, WEN Ming-xing1,2, LIU Jia-jun1, DENG Yao1, SHEN Xue-yi1, LI Dong-sheng1,2
(1.Zhenjiang Institute of Agricultural Sciences in the Hilly Area of Jiangsu Province, Jurong 212400, China;2.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ College of Agriculture, Yangzhou University, Yangzhou 225009,? China)
Abstract: This study was designed to elucidate the distribution characteristics of quality-related genes in Zhenmai wheat varieties. Eleven wheat varieties of Zhenmai were used as the tested materials. Grain hardness was measured by single kernel characterization system. The distribution characteristics of hardness gene, high molecular weight glutenin subunit (HMW-GS) gene, low molecular weight glutenin subunit (LMW-GS) gene, Wx gene, and flour color related genes in Zhenmai varieties were detected by molecular markers and agarose gel electrophoresis technology, and HMW-GS was determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that nine Zhenmai wheat varieties were hard wheats, and the hardness gene mutation could be detected. Distribution characteristics of HMW-GS were analyzed, and it was found that the subunit combinations of eight wheat varieties including Zhenmai 168 were 1/7+9/5+10, the subunit combination of Zhenmai 11 was 1/7+8/2+12, the subunit combinations of Zhenmai 17 and Zhenmai 19 were Null/7+8/2+12. For LMW-GS compositions, there were five genotypes, Glu-A3c, Glu-A3d, Glu-B3b, Glu-B3f and Glu-B3g. LMW-GS compositions of Zhenmai 168, Zhenmai 13 and Zhenmai 17 were Glu-A3c/Glu-B3g, Zhenmai 11 and Zhenmai 19 were Glu-A3d/Glu-B3g and Glu-A3c/Glu-B3b, respectively, other six wheat varieties were Glu-A3c/Glu-B3f. The detecting results of Wx gene indicated that there was no Wx gene mutation in Zhenmai varieties. The flour whiteness of Zhenmai wheat varieties was 74.47-78.70, and the whiteness of Zhenmai 168 was the lowest. Genotypes of eight Zhenmai wheat varieties including Zhenmai 168 were Ppo-A1b/Ppo-B1a/Ppo-D1b/TaLox-B1b, Zhenmai 11 and Zhenmai 19 were Ppo-A1a/Ppo-B1a/Ppo-D1a/TaLox-B1b, Zhenmai 17 was Ppo-A1a/Ppo-B1a/Ppo-D1a/b/ TaLox-B1b. Psy gene compositions of Zhenmai 168, Zhenmai 12 and Zhenmai 16 were Psy-A1b/Psy-B1d/Psy-D1a, Zhenmai 11 and Zhenmai 13 were Psy-A1b/Psy-B1b/Psy-D1a, other six Zhenmai wheat varieties were Psy-A1b/ Psy-B1a/Psy-D1a.
Key words: wheat;quality;gene;molecular markers
鎮(zhèn)麥品種因優(yōu)質(zhì)紅皮中強(qiáng)筋方面的優(yōu)勢,近年來備受關(guān)注,并被廣泛用作親本資源。鎮(zhèn)麥168是江蘇省淮南麥區(qū)首個(gè)紅皮中強(qiáng)筋小麥品種,且后續(xù)鎮(zhèn)麥品種多以優(yōu)質(zhì)中強(qiáng)筋、強(qiáng)筋品種為主,為江蘇省淮南麥區(qū)開展中強(qiáng)筋、強(qiáng)筋小麥新品種選育奠定了堅(jiān)實(shí)基礎(chǔ)。前人對鎮(zhèn)麥相關(guān)品種的選育和生理特性進(jìn)行了研究,并形成了相應(yīng)的栽培技術(shù)規(guī)程,但對鎮(zhèn)麥品質(zhì)特性的研究相對較少,因此研究其品質(zhì)遺傳規(guī)律將為小麥育種及生產(chǎn)應(yīng)用等方面提供理論支撐,非常必要。
目前,影響小麥品質(zhì)的硬度、高分子量谷蛋白亞基、低分子量谷蛋白亞基、Wx基因、多酚氧化酶和黃色素等相關(guān)品質(zhì)性狀的功能性分子標(biāo)記已得到廣泛應(yīng)用。籽粒硬度是小麥品質(zhì)分類的重要依據(jù),主要由Pina、Pinb基因控制[1],Pina-D1b、Pinb-D1b[2-3]基因的功能標(biāo)記已在小麥輔助篩選中廣泛應(yīng)用。麥谷蛋白是影響小麥面粉加工品質(zhì)的重要因素,其構(gòu)成亞基根據(jù)分子量大小可分為高分子量麥谷蛋白亞基(HMW-GS)和低分子量麥谷蛋白亞基(LMW-GS)。其中,HMW-GS在改進(jìn)小麥的面筋品質(zhì)中有重要作用[4],而LMW-GS影響面團(tuán)的強(qiáng)度和延伸性,其等位變異對小麥面筋品質(zhì)和籽粒蛋白組分含量均有顯著影響[5]。目前HMW-GS主要有Ax1、Null、Ax2*、Bx7、Bx7OE、By8、By9、By17、Dx2、Dy12、Dx5和Dy10等類型,優(yōu)質(zhì)的LMW-GS基因包括Glu-A3d、Glu-B3b、Glu-B3g等[6-12]。編碼直鏈淀粉合成的關(guān)鍵基因Waxy,其等位基因類型決定了直鏈淀粉的含量,進(jìn)而影響小麥的品質(zhì)。普通小麥含有3種類型的Wx基因,即Wx-A1、Wx-B1和Wx-D1[13-15],其中任一基因功能異常,尤其是Wx-B1,都會影響直鏈淀粉合成,改變糊化溫度和膨脹特性[16-17]。面粉及面制品的色澤主要與色素含量相關(guān),是由多酚氧化酶(PPO)、脂肪氧化酶(LOX)等對色素類物質(zhì)的氧化降解,以及八氫番茄紅素合酶(PSY)等對色素類物質(zhì)的合成積累來調(diào)控[18-20]。PPO是導(dǎo)致面制品褐變的主要因素,其蛋白質(zhì)活性主要由不同基因型決定[21],PPO18[22]、F-8[23]、STS01[24]、PPO16和PPO29[25]等功能標(biāo)記可用來鑒定各染色體上的控制高/低PPO活性的等位基因。LOX可以促進(jìn)多聚不飽和脂肪酸釋放出高活性氧自由基,氧化類胡蘿卜素等色素類物質(zhì),從而對面粉顏色起到漂白作用[26-27],可有效檢測TaLox-B1基因的顯性標(biāo)記有LOX16和LOX18[28]。黃色素含量與面制品的外觀品質(zhì)顯著相關(guān),用于鑒別控制高/低黃色素含量的等位基因的標(biāo)記主要有YP7A、YP7B和YP7D[29-30]。
鎮(zhèn)麥品種品質(zhì)優(yōu)良,但其相關(guān)品質(zhì)的遺傳特性尚不清楚,相關(guān)品質(zhì)性狀基因的研究尚處于起步階段。本研究擬對鎮(zhèn)麥168及鎮(zhèn)麥9號等鎮(zhèn)麥品種的品質(zhì)相關(guān)性狀進(jìn)行功能標(biāo)記檢測,明確其品質(zhì)遺傳特性,篩選優(yōu)質(zhì)親本資源,探索鎮(zhèn)麥品種優(yōu)異品質(zhì)形成機(jī)理,以期為優(yōu)質(zhì)中強(qiáng)筋、強(qiáng)筋小麥品種的選育提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
試驗(yàn)材料包括鎮(zhèn)麥168、鎮(zhèn)麥9號、鎮(zhèn)麥10號、鎮(zhèn)麥11號、鎮(zhèn)麥12號、鎮(zhèn)麥13、鎮(zhèn)麥15、鎮(zhèn)麥16、鎮(zhèn)麥17、鎮(zhèn)麥18和鎮(zhèn)麥19(表1),對照材料為揚(yáng)麥158和揚(yáng)麥20,共計(jì)13份原種材料,其中鎮(zhèn)麥相關(guān)材料均由江蘇丘陵地區(qū)鎮(zhèn)江農(nóng)業(yè)科學(xué)研究所選育,對照品種來源于江蘇里下河農(nóng)業(yè)科學(xué)研究所。2018-2021年連續(xù)3年統(tǒng)一種植在江蘇丘陵地區(qū)鎮(zhèn)江農(nóng)業(yè)科學(xué)研究所農(nóng)業(yè)科技創(chuàng)新中心小麥展示示范基地,成熟期按小區(qū)收獲、脫粒,并進(jìn)行品質(zhì)分析。
1.2 硬度測定
采用單粒谷物特性測定儀(Perten公司產(chǎn)品,SKCS 4100型)測定籽粒硬度指數(shù),測定方法按GB/T 2304-2007執(zhí)行,測定前確保每個(gè)樣本的純度。
1.3 白度測定
利用智能白度測定儀(杭州天成光電有限公司產(chǎn)品,WGB-2000L型)分析小麥面粉白度,每個(gè)樣品設(shè)3個(gè)重復(fù)。
1.4 分子標(biāo)記鑒定
小麥籽粒DNA的提取采用十六烷基三甲基溴化銨(CTAB)法。PCR反應(yīng)體系:2×Taq Mix 7.5 μl,10 μmol/L的引物各0.5 μl,模板DNA為1.0 μl,加ddH2O補(bǔ)足至15.0 μl。擴(kuò)增程序:94 ℃預(yù)變性3 min;94 ℃變性30 s,53~62 ℃退火30 s,72 ℃延伸30 s(延伸時(shí)間根據(jù)產(chǎn)物大小按1 kb/min調(diào)整),擴(kuò)增30~35個(gè)循環(huán),72 ℃延伸10 min,16 ℃保溫。
PCR反應(yīng)產(chǎn)物在1%~3%的經(jīng)溴化乙錠(EB)染色的瓊脂糖凝膠中進(jìn)行電泳,利用凝膠成像儀拍照觀察。引物序列見表2。
1.5 SDS-PAGE蛋白質(zhì)電泳
選取無病小麥種子,按照張平平等[31]的方法進(jìn)行蛋白質(zhì)提取及SDS-PAGE電泳檢測,對試驗(yàn)材料的HMW-GS進(jìn)行分析。
2 結(jié)果與分析
2.1 小麥籽粒硬度指數(shù)及硬度基因分子標(biāo)記檢測
利用單粒谷物特性測定系統(tǒng)(SKCS)法測定籽粒硬度,硬度指數(shù)≥60的為硬質(zhì)麥,40~60的為混合麥,<40的為軟質(zhì)麥[42]。硬度指數(shù)和分子標(biāo)記檢測結(jié)果表明,鎮(zhèn)麥品種中硬度指數(shù)>60的硬質(zhì)麥有9份,硬度指數(shù)<60的混合麥有2份。鎮(zhèn)麥品種及對照品種揚(yáng)麥158和揚(yáng)麥20的等位變異類型均為Pina-D1a類型;鎮(zhèn)麥9號、鎮(zhèn)麥10號、鎮(zhèn)麥15、鎮(zhèn)麥18和揚(yáng)麥158為Pinb-D1b類型,鎮(zhèn)麥168、鎮(zhèn)麥12號、鎮(zhèn)麥13和鎮(zhèn)麥16為Pinb-D1p類型,且硬度指數(shù)大于60,其余材料為Pinb-D1a類型(圖1、表3)。利用Pina-N1、Pina-N2和Pina-N3標(biāo)記引物對Pina-D1a類型的材料進(jìn)行擴(kuò)增,結(jié)果表明無Pina-D1b、Pina-D1c、Pina-D1l、Pina-D1r和Pina-D1s等變異類型。Pinb-D1的擴(kuò)增產(chǎn)物測序比對結(jié)果進(jìn)一步驗(yàn)證了鎮(zhèn)麥9號等材料為Pinb-D1b類型,而鎮(zhèn)麥168、鎮(zhèn)麥12號、鎮(zhèn)麥13和鎮(zhèn)麥16的擴(kuò)增產(chǎn)物序列缺失單堿基G,為Pinb-D1p類型。
M:DL2 000 DNA marker;1:鎮(zhèn)麥168;2:鎮(zhèn)麥9號;3:鎮(zhèn)麥10號;4:鎮(zhèn)麥11號;5:鎮(zhèn)麥12號;6:鎮(zhèn)麥13;7:鎮(zhèn)麥15;8:鎮(zhèn)麥16;9:鎮(zhèn)麥17;10:鎮(zhèn)麥18;11:鎮(zhèn)麥19;12:揚(yáng)麥158;13:揚(yáng)麥20。
2.2 高/低相對分子質(zhì)量麥谷蛋白亞基的分子標(biāo)記檢測
HMW-GS的分子標(biāo)記檢測結(jié)果(圖2、表4)表明,11份鎮(zhèn)麥品種在Glu-A1、Glu-B1和Glu-D1 3個(gè)位點(diǎn)上有8種亞基類型,分別為1或Null、7、8、9、2、5、10和12。利用UMN19和Ax2*區(qū)分Glu-A1位點(diǎn)上的Ax2*與Ax1或Null,試驗(yàn)材料均為Ax1或Null類型,無Ax2*類型。Glu-B1位點(diǎn)利用bx7、TaBAC1215C06-F517/R964、TaBAC1215C06-F24671/R25515、ZSBy9aF1/R3和ZSBy8F5/R5來區(qū)分鑒定,PCR擴(kuò)增結(jié)果表明,試驗(yàn)材料均為Bx7類型。鎮(zhèn)麥11號、鎮(zhèn)麥17、鎮(zhèn)麥19和揚(yáng)麥158均有By8基因,而鎮(zhèn)麥168等9份材料均含有By9基因。利用共顯性標(biāo)記UMN25和UMN26來區(qū)分Dx5、Dx2和Dy10、Dy12,其試驗(yàn)材料檢測結(jié)果為,鎮(zhèn)麥11號、鎮(zhèn)麥17、鎮(zhèn)麥19、揚(yáng)麥158和揚(yáng)麥20為2+12等位變異類型,其余鎮(zhèn)麥品種均為5+10等位變異類型。綜上所述,試驗(yàn)材料Glu-A1位點(diǎn)上的等位變異類型為1或Null,Glu-B1位點(diǎn)上的等位變異類型為7+8和7+9,Glu-D1位點(diǎn)上的等位變異類型為2+12和5+10。進(jìn)一步利用SDS-PAGE電泳來區(qū)分Glu-A1位點(diǎn)上的1和Null(圖3),并且驗(yàn)證Glu-B1位點(diǎn)和Glu-D1位點(diǎn)的分子標(biāo)記可用性。結(jié)合分子標(biāo)記和蛋白質(zhì)電泳結(jié)果,13份材料中檢測出1/7+9/5+10、1/7+8/2+12、Null/7+8/2+12和Null/7+9/2+12共4種HMW-GS組合,其中鎮(zhèn)麥168、鎮(zhèn)麥9號、鎮(zhèn)麥10號、鎮(zhèn)麥12號、鎮(zhèn)麥13、鎮(zhèn)麥15、鎮(zhèn)麥16和鎮(zhèn)麥18均為1/7+9/5+10,鎮(zhèn)麥11號為1/7+8/2+12,鎮(zhèn)麥17、鎮(zhèn)麥19和揚(yáng)麥158為Null/7+8/2+12,揚(yáng)麥20為Null/7+9/2+12。
低相對分子質(zhì)量麥谷蛋白Glu-A3位點(diǎn)的各個(gè)標(biāo)記檢測結(jié)果為:鎮(zhèn)麥11號為Glu-A3d類型,其余12份材料均為Glu-A3c類型;Glu-B3位點(diǎn)上,鎮(zhèn)麥19為Glu-B3b,其余材料均為Glu-B3f或Glu-B3g類型。進(jìn)一步利用SB7F/SB7R標(biāo)記擴(kuò)增,結(jié)果表明鎮(zhèn)麥168、鎮(zhèn)麥11號、鎮(zhèn)麥13、鎮(zhèn)麥17、揚(yáng)麥158和揚(yáng)麥20為Glu-B3g類型,鎮(zhèn)麥9號、鎮(zhèn)麥10號、鎮(zhèn)麥12號 、鎮(zhèn)麥15、鎮(zhèn)麥16和鎮(zhèn)麥18為Glu-B3f類型(圖4、表4)。
M、1~13見圖1注。
2.3 Wx基因分子標(biāo)記檢測
MAG264、BDFL/BRC1和BFC/BRC2、Wx-D1分子標(biāo)記可分別鑒定Wx-A1、Wx-B1和Wx-D1等位基因的分布特點(diǎn)。上述標(biāo)記在Wx-A1、Wx-B1和Wx-D1位點(diǎn)上,在野生材料和突變材料中分別對應(yīng)的目標(biāo)條帶大小為336 bp和317 bp、778 bp和668 bp、840 bp和260 bp,2種條帶同時(shí)出現(xiàn)的為雜合型材料,對應(yīng)的基因型分別為Wx-A1a和Wx-A1b、Wx-B1a和Wx-B1b、Wx-D1a和Wx-D1b [13-15]。以上3個(gè)位點(diǎn)的分子標(biāo)記檢測結(jié)果表明,13份試驗(yàn)材料均為Wx-A1a、Wx-B1a、Wx-D1a野生型,無突變型和雜合型(圖5、表4)。
2.4 面粉色澤相關(guān)基因分子標(biāo)記檢測
共顯性標(biāo)記PPO18,可用于區(qū)分控制高/低PPO活性的等位基因Ppo-A1a和Ppo-A1b,其對應(yīng)的目的片段大小分別為685 bp和876 bp[22]。標(biāo)記F-8可以區(qū)分Ppo-B1a和Ppo-B1b,擴(kuò)增出雙條帶(400 bp和600 bp)的與低PPO活性材料相關(guān),而只擴(kuò)增出單條帶(400 bp)的與高PPO活性材料相關(guān)[35]。標(biāo)記PPO16和PPO29分別能擴(kuò)增出713 bp和490 bp的靶片段,分別對應(yīng)的是Ppo-D1a(低PPO活性)和Ppo-D1b(高PPO活性)[6, 36]。以上4個(gè)分子標(biāo)記的檢測結(jié)果(圖6、表5)表明,Ppo-A1位點(diǎn)上,鎮(zhèn)麥11號、鎮(zhèn)麥17和鎮(zhèn)麥19為Ppo-A1a,對照揚(yáng)麥158和揚(yáng)麥20均為Ppo-A1a,其余8份材料為Ppo-A1b;Ppo-B1位點(diǎn)上,所有材料均為Ppo-B1a;Ppo-D1位點(diǎn)上,鎮(zhèn)麥11號、鎮(zhèn)麥19、揚(yáng)麥158和揚(yáng)麥20為Ppo-D1a,鎮(zhèn)麥17為雜合型,其余材料均為Ppo-D1b。另外一個(gè)Ppo-D1的功能標(biāo)記STS01,與低PPO活性密切相關(guān)[24],本研究中在Ppo-D1位點(diǎn)上表現(xiàn)為低PPO活性的材料有鎮(zhèn)麥11號、鎮(zhèn)麥17、鎮(zhèn)麥19、揚(yáng)麥158和揚(yáng)麥20,這與PPO16的擴(kuò)增結(jié)果一致。LOX16和LOX18能有效地檢測TaLox-B1基因,在高/低LOX活性材料中能擴(kuò)增出的靶片段大小分別為489 bp和791 bp,分別對應(yīng)TaLox-B1a和TaLox-B1b[28],標(biāo)記檢測結(jié)果(圖6)表明,鎮(zhèn)麥品種均為TaLox-B1b,無TaLox-B1a及雜合型。
八氫番茄紅素合酶(PSY)基因Psy-A1對應(yīng)的標(biāo)記為YP7A-1、YP7A-2,Psy-B1對應(yīng)的標(biāo)記為YP7B-1、YP7B-2、YP7B-3、YP7B-4,Psy-D1對應(yīng)的標(biāo)記為YP7D-1、YP7D-2。其中YP7A-1在高、低黃色素含量的Psy-A1a/c和Psy-A1b上對應(yīng)的目標(biāo)片段大小分別為194 bp和231 bp,YP7A-2可進(jìn)一步區(qū)分Psy-A1a/b和Psy-A1c,其目標(biāo)片段分別為1 686 bp和1 001 bp。YP7B-1、YP7B-2、YP7B-3、YP7B-4可分別用于區(qū)分Psy-B1a和Psy-B1b、Psy-B1c、Psy-B1d和Psy-B1e,擴(kuò)增的片段分別為151 bp/156 bp、428 bp、884 bp和717 bp。YP7D-1和YP7D-2可以用來區(qū)分Psy-D1a和Psy-D1g,擴(kuò)增片段為1 074 bp/1 093 bp和967 bp/1 064 bp[41]。本研究檢測結(jié)果(圖7、表5)表明,13份試驗(yàn)材料均為Psy-A1b類型,鎮(zhèn)麥168、鎮(zhèn)麥12號和鎮(zhèn)麥16為Psy-B1d,鎮(zhèn)麥11號和鎮(zhèn)麥13為Psy-B1b,鎮(zhèn)麥9號、鎮(zhèn)麥10號、鎮(zhèn)麥15、鎮(zhèn)麥17、鎮(zhèn)麥18、鎮(zhèn)麥19、揚(yáng)麥158和揚(yáng)麥20為Psy-B1a,Psy-D1位點(diǎn)均為Psy-D1a。
白度分析結(jié)果表明供試材料的白度值為74.47~79.03(表5),其中11份鎮(zhèn)麥材料中,在Ppo-D1位點(diǎn)上含有低PPO活性的鎮(zhèn)麥11號、鎮(zhèn)麥17和鎮(zhèn)麥19面粉白度顯著高于鎮(zhèn)麥168等Psy-B1d基因型的品種。雖然鎮(zhèn)麥13和鎮(zhèn)麥18在Ppo-D1位點(diǎn)上含有高PPO活性,但其面粉白度為77.90和78.20,相對較高。對照品種揚(yáng)麥158含有Ppo-D1a,但其面粉白度相對較小。因此,面粉白度不僅與相關(guān)基因的基因型有關(guān),還受其他因素的影響,面粉色澤相關(guān)基因類型及其他因素與面粉白度的相關(guān)性,還需要進(jìn)一步研究。
3 討論
鎮(zhèn)麥品種的親本來源相對簡單,其中鎮(zhèn)麥168、鎮(zhèn)麥9號和鎮(zhèn)麥10號均來源于同一親本組合,鎮(zhèn)麥12號來源于鎮(zhèn)麥168系選株系,鎮(zhèn)麥18是以鎮(zhèn)麥168為母本選育而來。籽粒硬度基因Pina或Pinb中有一個(gè)發(fā)生突變都會導(dǎo)致小麥籽粒硬度變硬,影響小麥品質(zhì)[1-3]。鎮(zhèn)麥9號、鎮(zhèn)麥10號、鎮(zhèn)麥15和鎮(zhèn)麥18中可檢測到Pinb-D1b突變型,結(jié)合硬度指數(shù)測定結(jié)果來看,鎮(zhèn)麥168等硬度指數(shù)大于60的品種雖未檢測Pinb-D1b突變型,但通過測序比對發(fā)現(xiàn)其屬于Pinb-D1p突變型。蘇麥6號中可檢測到Pinb-D1b,因此,鎮(zhèn)麥9號和鎮(zhèn)麥10號的Pinb-D1基因型可能來源于蘇麥6號,在利用蘇麥6號等材料構(gòu)建的DH群體中,需加強(qiáng)Pinb-D1b的篩選,加強(qiáng)品質(zhì)育種中硬度指數(shù)高、有硬度基因突變的材料利用。
HMW-GS和LMW-GS在強(qiáng)筋小麥品種選育中能改進(jìn)小麥面筋品質(zhì)[43-44]。胡琳等[45]研究結(jié)果表明不同位點(diǎn)優(yōu)異HMW-GS的品質(zhì)效應(yīng)可以累加,對于強(qiáng)筋小麥選育而言,1/7+8/5+10組合的面筋指數(shù)、形成時(shí)間和面筋強(qiáng)度均處于較高水平,此外,1/7+9/5+10、Null/7+8/2+12等組合的面筋強(qiáng)度也較好。強(qiáng)筋小麥的面團(tuán)彈性和延展性可以通過LMW-G的優(yōu)異組合來改善和提高[5],其中Glu-3位點(diǎn)的不同LMW-GS對面團(tuán)彈性和加工品質(zhì)影響最大的是Glu-B3,其次是Glu-A3[46],而Glu-D3位點(diǎn)差異對小麥品質(zhì)的影響不大。優(yōu)質(zhì)的LMW-GS主要有Glu-A3d、Glu-B3b、Glu-B3g和Glu-B3i [47-48],因此在優(yōu)質(zhì)小麥品質(zhì)育種中,可以加強(qiáng)這些優(yōu)質(zhì)亞基的應(yīng)用。本研究使用的鎮(zhèn)麥品種中可以檢測到部分優(yōu)質(zhì)的HMW-GS和LMW-GS的亞基,如7+8、5+10、Glu-A3d、Glu-B3b,但沒有檢測到1/7+8/5+10優(yōu)異組合,鎮(zhèn)麥168等中強(qiáng)筋、強(qiáng)筋小麥品種的HMW-GS組合類型均為1/7+9/5+10。而含HMW-GS和LMW-GS相對優(yōu)質(zhì)亞基的材料有鎮(zhèn)麥168和鎮(zhèn)麥13(1/7+9/5+10,Glu-A3c/Glu-B3g),這可能是鎮(zhèn)麥168和鎮(zhèn)麥13在長江中下游麥區(qū)種植時(shí)品質(zhì)穩(wěn)定的原因。因此,后續(xù)小麥新品種選育中可以通過聚合7+8和5+10組合及優(yōu)質(zhì)的LMW-GS亞基,優(yōu)化小麥品種的面筋特性。揚(yáng)麥158和揚(yáng)麥20的HMW-GS和LMW-GS檢測結(jié)果及本研究中其他品質(zhì)相關(guān)基因的檢測結(jié)果均與已發(fā)表文章中的結(jié)果一致[49]。
鎮(zhèn)麥品種中均未檢測到Wx基因的突變型,想要選育出低直鏈淀粉含量面條專用小麥品種可通過聚合Wx-B1突變基因降低面粉中的直鏈淀粉含量,降低面粉糊化溫度,改善面條品質(zhì)[50-52]。小麥籽粒中PSY、PPO、LOX等氧化酶降解色素類物質(zhì)影響面粉色澤、磨粉品質(zhì)等品質(zhì)性狀[53-55]。PPO含量低,對面粉、面制品加工和保存過程中色澤褐變有重要作用[56]。鎮(zhèn)麥168等8份鎮(zhèn)麥品種在Ppo-A1、Ppo-B1位點(diǎn)均含有低PPO活性基因片段,而在Ppo-D1位點(diǎn),這些材料則含有高PPO活性基因片段。鎮(zhèn)麥11號、鎮(zhèn)麥17和鎮(zhèn)麥19在Ppo-A1位點(diǎn)則可以檢測到高PPO活性基因片段,而在Ppo-D1位點(diǎn)則可以檢測到低PPO活性基因片段。結(jié)合面粉白度分析結(jié)果,Ppo-D1位點(diǎn)上的高PPO活性,可能是造成鎮(zhèn)麥168等品種的面粉白度值偏小的重要原因。因此,在小麥品種選育過程中加強(qiáng)Ppo-A1和Ppo-D1位點(diǎn)上低PPO活性基因聚合,對面粉白度大的強(qiáng)筋小麥品種選育有重要作用。LOX催化不飽和脂肪酸的氧化,通過氧化降解色素類物質(zhì)來影響面粉及面制品顏色[57]。本研究中鎮(zhèn)麥品種材料均為低LOX活性品種,其面粉白度小及面制品顏色偏深也可能與LOX活性低有直接關(guān)系。PSY是影響黃色素合成的限速酶,抑制Psy基因的功能對改良面粉及面粉制品顏色具有推動作用[58]。鎮(zhèn)麥品種在Psy-A1/D1位點(diǎn)上均為Psy-A1b/Psy-D1a基因型,為低黃色素含量的材料,而鎮(zhèn)麥168、鎮(zhèn)麥12號和鎮(zhèn)麥16在Psy-B1位點(diǎn)為高黃色素含量的基因型Psy-B1d。我們在利用鎮(zhèn)麥品種面粉制作面包、面條等面制品的時(shí)候也觀察到鎮(zhèn)麥168、鎮(zhèn)麥12號和鎮(zhèn)麥16相應(yīng)的面制品的顏色相對較深,而這3份材料的面粉白度值也較小。面粉色澤相關(guān)基因的基因型以及PPO和黃色素等的含量對面粉白度的影響,還需要進(jìn)一步研究。
4 結(jié)論
在11份鎮(zhèn)麥品種中,鎮(zhèn)麥9號、鎮(zhèn)麥10號、鎮(zhèn)麥15和鎮(zhèn)麥18均可檢測到Pinb-D1b硬度突變基因,鎮(zhèn)麥168、鎮(zhèn)麥12號、鎮(zhèn)麥13和鎮(zhèn)麥16均可檢測到Pinb-D1p硬度突變基因,且上述材料的硬度指數(shù)均大于60。HMW-GS組合類型:鎮(zhèn)麥168等8份中強(qiáng)筋、強(qiáng)筋小麥品種均為1/7+9/5+10組合,鎮(zhèn)麥11號、鎮(zhèn)麥17和鎮(zhèn)麥19分別為1/7+8/2+12、Null/7+8/2+12、Null/7+8/2+12組合。LMW-GS組合類型:鎮(zhèn)麥11號的組合為Glu-A3d/Glu-B3g,鎮(zhèn)麥19為Glu-A3c/Glu-B3b,鎮(zhèn)麥168、鎮(zhèn)麥13和鎮(zhèn)麥17為Glu-A3c/Glu-B3g,其余鎮(zhèn)麥品種均為Glu-A3c/Glu-B3f。鎮(zhèn)麥品種中未檢測到Wx基因突變,均為野生型。面粉色澤相關(guān)基因分布特點(diǎn):鎮(zhèn)麥168等8份材料表現(xiàn)為Ppo-A1b/Ppo-B1a/Ppo-D1b/TaLox-B1b,鎮(zhèn)麥11號和鎮(zhèn)麥19為Ppo-A1a/Ppo-B1a/Ppo-D1a/TaLox-B1b,鎮(zhèn)麥17為Ppo-A1a/Ppo-B1a/Ppo-D1a/b/TaLox-B1b;鎮(zhèn)麥168、鎮(zhèn)麥12號和鎮(zhèn)麥16為Psy-A1b/Psy-B1d/Psy-D1a,鎮(zhèn)麥11號和鎮(zhèn)麥13為Psy-A1b/Psy-B1b/Psy-D1a,其余6份鎮(zhèn)麥品種為Psy-A1b/Psy-B1a/Psy-D1a。鎮(zhèn)麥材料的面粉白度值為74.47~78.70,整體偏小。鎮(zhèn)麥品種品質(zhì)優(yōu)良,但Wx蛋白、面粉色澤相關(guān)的部分品質(zhì)仍需進(jìn)一步改良,對已存在的優(yōu)異基因片段,在后續(xù)品種改良中要充分利用,硬度、色澤等相關(guān)性狀需進(jìn)一步加強(qiáng)研究。而在強(qiáng)筋小麥品質(zhì)育種中,需注重7+8、5+10亞基和Pinb-D1b變異位點(diǎn),以及低PPO和低黃色素含量基因等標(biāo)記的篩選與聚合,優(yōu)化鎮(zhèn)麥品種品質(zhì)特性。
參考文獻(xiàn):
[1] GIROUX M J, MORRIS C F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin[J]. Theoretical & Applied Genetics, 1997, 95: 857-864.
[2] CHEN F, ZHANG F, CHENG X Y, et al. Association of puroindoline b-2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of the Yellow and Huai Valleys of China[J]. Journal of Cereal Science, 2010, 52(2): 247-253.
[3] MORRIS C F, BHAVE M. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data[J]. Journal of Cereal Science, 2008, 48(2): 277-287.
[4] SONG W F, REN Z Y, ZHANG Y B, et al. Effects of allelic variation in glutenin subunits and gliadins on baking-quality in near-isogenic lines of common wheat cv. Longmai 19[J]. Cereal Research Communications, 2015, 43: 284-294.
[5] VERAVERBEKE W S, DELCOUR J A. Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality[J]. Critical Review in Food Techology, 2002, 42(3): 179-208.
[6] LIU S, CHAO S, ANDERSON J A. New DNA markers for high molecular weight glutenin subunits in wheat[J]. Theoretical & Applied Genetics, 2008, 118(1): 177-183.
[7] D′OVIDIO R, ANDERSON O D. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality[J]. Theoretical & Applied Genetics 1994, 88(6/7):759-763.
[8] LEI Z S, GALE K R, HE Z H, et al. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat[J]. Journal of Cereal Science, 2006, 43(1): 94-101.
[9] BUTOW B J, GALE K R, IKEA J, et al. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC[J]. Theoretical & Applied Genetics, 2004, 109(7): 1525-1535.
[10]RAGUPATHY R, NAEEM H A, REIMER E, et al. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit[J]. Theoretical & Applied Genetics, 2008, 116(2): 283-296.
[11]WANG L H, LI G Y, PENA R J, et al. Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.) [J]. Journal of Cereal Science, 2010, 51(3): 305-312.
[12]WANG L H, ZHAO X L, HE Z H, et al. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.) [J]. Theoretical & Applied Genetics, 2009, 118(3): 525-539.
[13]劉迎春,朱惠蘭,程順和,等. 小麥Wx-A1和Wx-D1位點(diǎn)的PCR分子標(biāo)記[J]. 麥類作物學(xué)報(bào), 2005, 25(1): 1-5.
[14]SAITO M, VRINTEN P, ISHIKAWA G, et al. A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs[J]. Molecular Breeding, 2009, 23: 209-217.
[15]NAKAMURA T, VRINTEN P, SAITO M, et al. Rapid classification of partial waxy wheats using PCR-based markers[J]. Genome, 2002, 45(6): 1150-1156.
[16]周淼平,任麗娟,蔡士賓,等. 小麥糯質(zhì)基因的分子標(biāo)記輔助選擇[J]. 麥類作物學(xué)報(bào),2006, 26(5): 10-15.
[17]陳東升, KIRIBUCHI-OTOBE C, 徐兆華, 等. Waxy蛋白缺失對小麥淀粉特性和中國鮮面條品質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué), 2005, 38(5): 865-873.
[18]LINTIG J V, WELSCH R, BONK M, et al. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings[J]. The Plant Journal, 1997, 12(3): 625-634.
[19]ZILIC S, DODIG D, SUKALOVIC H T, et al. Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidase activities[J]. International Journal of Food Science & Technology, 2010, 45(7): 1360-1367.
[20]張福彥,陳 鋒,張建偉,等. 逆境脅迫下小麥脂肪氧化酶基因表達(dá)的qRT-PCR分析[J]. 麥類作物學(xué)報(bào), 2016, 36(9): 1153-1158.
[21]RAMAN R, RAMAN H, JOHNSTONE K, et al. Genetic and in silico comparative mapping of the polyphenol oxidase gene in bread wheat (Triticum aestivum L.) [J]. Functional & Integrative Genomics, 2005, 5(4): 185-200.
[22]SUN D J, HE Z H, XIA X C, et al. A novel STS marker for polyphenol oxidase activity in bread wheat[J]. Molecular Breeding, 2005, 16(3):209-218.
[23]SI H Q, ZHOU Z L, WANG X B, et al. A novel molecular marker for the polyphenol oxidase gene located on chromosome 2B in common wheat[J]. Molecular Breeding, 2012, 30(3):1371-1378.
[24]王曉波,馬傳喜,何克勤,等. 小麥2D染色體上多酚氧化酶(PPO)基因STS標(biāo)記的開發(fā)與應(yīng)用[J]. 中國農(nóng)業(yè)科學(xué), 2008, 41(6): 1583-1590.
[25]HE X Y, HE Z H, ZHANG L P, et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat[J]. Theoretical and Applied Genetics,2007, 115(1): 47-58.
[26]SERPEN A, GKMEN V. Effects of β-carotene on soybean lipoxygenase activity: kinetic studies[J]. European Food Research & Technology, 2007, 224(6): 743-748.
[27]MERCIER M, GELINAS P. Effect of lipid oxidation on dough bleaching[J]. Cereal Chemistry, 2001, 78(1): 36-38.
[28]GENG H W, XIA X C, ZHANG L P, et al. Development of functional markers for a lipoxygenase gene TaLox-B1 on chromosome 4BS in common wheat[J]. Crop Science, 2012,52(2):568-576.
[29]HE X Y, ZHANG Y L, HE Z H, et al. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker[J]. Theoretical and Applied Genetics, 2008, 116(2): 213-221.
[30]HE X Y, HE Z H, MA W, et al. Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour[J]. Molecular Breeding, 2009, 23(4): 553-563.
[31]張平平,周淼平,馬鴻翔. 小麥種子高分子量谷蛋白亞基的高通量檢測方法[J]. 分子植物育種, 2015, 13(11):2593-2598.
[32]MA W, ZHANG W, GALE K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat[J]. Euphytica, 2003, 134(1): 51-60.
[33]CHEN F, ZHANG F Y, MORRIS C, et al. Molecular characterization of the Puroindoline a-D1b allele and development of an STS marker in wheat (Triticum aestivum L.) [J]. Jouunal of Cereal Science, 2010, 52(1): 80-82.
[34]CHEN F, ZHANG F Y, XIA X C, et al. Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai Valley of China and discovery of a novel puroindoline a allele without PINA protein[J]. Molecular Breeding, 2012, 29(2): 371-378.
[35]CHEN F, LI H H, CUI D C. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.) [J]. BMC Plant Biology, 2013, 13: 125.
[36]CHEN F, HE Z H, XIA X C, et al. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars[J]. Theoretical and Applied Genetic,2006, 112: 400-409.
[37]SCHWARZ G, FELSENSTEIN F G, WENZEL G. Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat[J]. Theoretical and Applied Genetic, 2004, 109(5): 1064-1069.
[38]LIU S, CHAO S, ANDERSON J A. New DNA markers for high molecular weight glutenin subunits in wheat[J]. Theoretical and Applied Genetic, 2008,118(1): 177-183.
[39]SI H Q, ZHOU Z L, WANG X B, et al. A novel molecular marker for the polyphenol oxidase gene located on chromosome 2B in common wheat[J]. Molecular Breeding, 2012, 30(3): 1371-1378.
[40]HE X Y, HE Z H, ZHANG L P, et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat[J]. Theoretical and Applied Genetic, 2007, 115(1): 47-58.
[41]WANG J W, HE X Y, HE Z H, et al. Cloning and phylogenetic analysis of phytoene synthase 1 (Psy 1) genes in common wheat and related species[J]. Hereditas, 2010, 146(5): 208-256.
[42]周艷華,何中虎,閻 俊,等. 中國小麥硬度分布及遺傳分析[J]. 中國農(nóng)業(yè)科學(xué), 2002, 35(10) :1177-1185.
[43]SONG W F, REN Z Y, ZHANG Y B, et al. Effects of allelic variation in glutenin subunits and gliadins on baking-quality in near-isogenic lines of common wheat cv. Longmai 19[J]. Cereal Research Communication, 2015, 1(1): 1-11.
[44]HE Z H, LIU L, XIA X C, et al. Composition of HMW and LMW glutenin subunits and their effects on dough properties, Pan bread, and noodle quality of Chinese bread wheats[J]. Cereal Chemistry, 2005, 82(4): 345-350.
[45]胡 琳,蓋鈞鎰,許為鋼,等. 小麥不同高分子量谷蛋白亞基對面筋數(shù)量和質(zhì)量的影響[J]. 麥類作物學(xué)報(bào), 2007, 26(6): 57-58.
[46]王林海. 普通小麥及其近緣種低分子量麥谷蛋白基因克隆與STS標(biāo)記開發(fā)[D]. 北京:中國農(nóng)業(yè)科學(xué)院, 2009.
[47]ZHANG X F, JIN H, ZHANG Y, et al. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat[J]. Bmc Plant Biology, 2012, 12(1): 229-243.
[48]周 陽,劉建軍,何中虎,等. Glu-1和Glu-3等位變異及1BL/1RS易位與面包和面條品質(zhì)關(guān)系的研究[J]. 中國農(nóng)業(yè)科學(xué), 2004, 37(9): 1265-1273.
[49]張 曉,張伯橋,江 偉,等. 揚(yáng)麥系列品種品質(zhì)性狀相關(guān)基因的分子檢測[J]. 中國農(nóng)業(yè)科學(xué), 2015, 48(19): 3779-3793.
[50]WICKRAMASINGHE H A M, MIURA H. Gene dosage effect of the wheat Wx alleles and their interaction on amylose synthesis in the endosperm[J]. Euphytica, 2003, 132(3):303-310.
[51]翟紅梅,田紀(jì)春. 小麥Wx基因突變體的建立及其淀粉特性的研究[J]. 作物學(xué)報(bào), 2007, 33(7): 1059-1066.
[52]MIURA H, WICKRAMASINGHE M H A, SUBASINGHE R M, et al. Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties[J]. Euphytica, 2002,123(3): 353-359.
[53]CRAWFORD A C, STEFANOVA K, LAMBE W, et al. Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes[J]. Theoretical and Applied Genetics, 2011, 123(1): 95-108.
[54]CHANG C, ZHANG H P, XU J, et al. Variation in two PPO genes associated with polyphenol oxidase activity in seeds of common wheat[J]. Euphytica, 2007, 154(1/2): 181-193.
[55]WANG X M, LU Z X. Research advance on lipoxygenase application in the agri-food[J]. Journal of Nucelar Agricultural Sciences, 2013, 27(1): 1547-1552.
[56]ANDERSON J V, MORRIS C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity[J]. Crop Science, 2001, 41(6): 1697-1705.
[57]MARES D J. Mapping components of flour and noodle colour in Australian wheat[J]. Australian Journal of Agricultural Research, 2001, 52(12): 1297-1309.
[58]孫建喜. 小麥籽粒多酚氧化酶活性和黃色素含量性狀的基因檢測[D]. 鄭州:河南農(nóng)業(yè)大學(xué), 2014.
(責(zé)任編輯:張震林)