李劍浩 熊春賢 章云菊 余建華 孫洋洋 許越萍 劉承海
摘 要:三苯乙烯基苯酚聚氧乙烯醚(TSPOE-n)經(jīng)五氧化二磷酯化,水解后得到三苯乙烯基苯酚聚氧乙烯醚磷酸酯鹽(TSPOEP-n, n=13,16,20,29),以其作為分散劑用于分散染料的液體化。利用紅外光譜法表征了分散劑的化學結構;通過粒徑分析儀考察了TSPOEP-n中環(huán)氧乙烷(EO)數(shù)對液體分散染料貯存穩(wěn)定性的影響,并對比了液體與粉體分散染料染色性能的差異。結果表明:經(jīng)TSPOEP-n穩(wěn)定的液體分散染料的粒徑均小于215 nm,具有較好的貯存穩(wěn)定性和高溫(130℃)分散穩(wěn)定性,且上染率高于粉體分散染料,染色殘液化學需氧量(COD)遠低于粉體分散染料得到的對比樣。
關鍵詞:三苯乙烯基苯酚聚氧乙烯醚磷酸酯鹽;液體分散染料;分散穩(wěn)定性;化學需氧量(COD)
中圖分類號:TS193.5
文獻標志碼:A
文章編號:1009-265X(2023)03-0182-06
基金項目:浙江理工大學紹興柯橋研究院項目(KYY2022003G);嘉興市市級科技計劃項目(2021004)
作者簡介:李劍浩(1986—),男,浙江東陽人,工程師,主要從事功能高分子材料方面的研究。
在分散劑的作用下,通過對分散染料的研磨等后加工,制得的液體分散染料可降低滌綸印花面料的浮色,實現(xiàn)了少水洗甚至免水洗加工,對縮短加工流程、降低廢水中污染物濃度等方面具有重大的意義[1-3]。尤其近年來,隨著印染企業(yè)自動配料系統(tǒng)的安裝和對節(jié)能降耗要求的提高,液體分散染料及其配套工藝的開發(fā)正成為研究熱點[4-5]。與此同時,生產(chǎn)中也發(fā)現(xiàn),當液體分散染料用于滌綸高溫(130℃)浸染時,易產(chǎn)生色點、色漬等疵病,普遍認為這與高溫下液體分散染料的粒徑返粗、團聚析出等有關[6]。因此,提高液體分散染料的高溫分散穩(wěn)定性是現(xiàn)階段研究重點[7]。
眾多研究表明,分散劑的添加可提升液體分散染料的高溫分散穩(wěn)定性,減少染料顆粒分散不均勻、聚集、沉淀等現(xiàn)象[8-10]。根據(jù)分散劑的分子類型,市面商用的分散劑主要分為陰離子和非離子型兩種。例如張澤慧等[11]研究了陰離子分散劑對分散橙SE-RFL原染料的分散及其染色性能影響,表明陰離子分散劑能夠提高分散染料的分散高溫穩(wěn)定性。董霞等[12]研究了非離子分散劑結構對C.I.分散黃64分散穩(wěn)定性的影響,結果表明分散劑疏水端與染料顆粒的高牢度結合,以及分散劑適宜的親水親油平衡對提高分散體系的穩(wěn)定性至關重要。但非離子型分散劑分散能力相對較弱,在分散染料中用量極大,目前,在低分散劑用量下制備分散效率高、貯存穩(wěn)定性和高溫分散穩(wěn)定性好的液體分散染料的研究報道較少[13],因此,亟需開發(fā)可提升染料高溫分散穩(wěn)定性的高效分散劑。
基于對上述問題的分析,本文選用不同環(huán)氧乙烷(EO)數(shù)的三苯乙烯基苯酚聚氧乙烯醚(TSPOE-n)(n為EO,n=13,16,20,29)和五氧化二磷進行反應,合成了分散劑TSPOEP-n(n=13,16,20,29),并將其用于分散染料的液體化??疾觳煌珽O數(shù)分散劑制備的液體分散染料的貯存穩(wěn)定性和高溫分散穩(wěn)定性,并與粉體染料上染效果進行對比。研究結果可為高分散穩(wěn)定性能液體分散染料的制備提供參考。
1 實 驗
1.1 實驗材料與儀器
實驗材料:三苯乙烯基苯酚聚氧乙烯醚(TSPOE-n,n=13,16,20,29)(工業(yè)級,克萊恩化工科技(上海)有限公司);氫氧化鉀、酚酞和甲基紅(AR,天津市永大化學試劑有限公司);五氧化二磷(AR,上海麥克林有限公司);分散藍79濾餅(工業(yè)級,杭州帝凱化工有限公司);無水乙醇(AR,江陰泰隆環(huán)保科技有限公司);氯化鈣(AR,上海麥克林有限公司);滌綸(97 g/m2,萊美科技股份有限公司)。
實驗儀器:RW-20數(shù)顯電動攪拌機(德國IKA集團);Nano-ZS 90粒度分析儀(英國Malvern公司);VERTEX70傅里葉變換紅外光譜儀(德國Bruker公司);SF850型測色配色儀(美國Datacolor公司);DYE-24紅外染色機(上海千立自動化設備有限公司);臥式砂磨機(東莞市瑯菱機械有限公司);UV-8000型紫外-可見分光光度計(上海精密儀器儀表有限公司);DGB-401型多參數(shù)水質分析儀(上海儀電科學儀器股份有限公司)。
1.2 實驗方法
1.2.1 分散劑TSPOEP-n的制備
不同EO數(shù)TSPOEP-n的制備方法相同,以制備TSPOEP-16為例,簡述如下:
將20 g的TSPOE-16加入裝有攪拌器的三口燒瓶中,開啟攪拌器,加熱至50℃后保溫1 h,保溫期間通過減量法將1.4 g的P2O5分批次加入到三口燒瓶中,繼續(xù)升溫至80℃,反應4 h。反應結束后向該反應瓶中加入0.6 g水進行水解,水解2 h后冷卻至室溫。之后使用NaOH溶液調(diào)節(jié)其pH值為7~8之間,得到淺黃色液狀TSPOEP-16。
1.2.2 液體分散染料的制備
稱取分散藍79染料濾餅45 g,分散劑10 g,加水稀釋至300 g,先用RW-20電動攪拌機預研磨30 min后,轉移至砂磨機中繼續(xù)研磨3 h,砂磨機轉速為2800 r/min。
1.2.3 滌綸織物染色
在浴比1∶20情況下,粉體分散藍79的質量分數(shù)分別選用1%、2%、3%、4%、5%,用冰醋酸將染液的pH調(diào)至5.5,將滌綸織物分別放入染液中,將溫度從80℃提高到130℃,速率為2℃/min,并保持50 min。染色后,將染色織物在熱水中徹底沖洗,然后用自來水洗滌,后110℃烘干。
1.3 測試方法
化學需氧量(COD值)測試:采用DGB-401型多參數(shù)水質分析儀測定染色后殘液的COD值。
貯存穩(wěn)定性測試:將液體分散染料樣品置于室溫下,每隔一段時間測其粒徑及PDI。
K/S值及染色不勻度測試:采用測色配色儀測定織物的K/S 值,參考文獻[14]中的方法評測染色不勻度。評價標準:不勻度值為0~0.05,均勻性好;不勻度值為0.05~0.08(不包含0.05和0.08),均勻性較好;不勻度值為0.08~0.10,均勻性較差;不勻度值大于0.10,均勻性差。
高溫分散穩(wěn)定性測試:依照GB/T 5541—2017《分散染料 高溫分散穩(wěn)定性的測定 雙層濾紙過濾法》測試。評級分1~5級,1級表示高溫分散性最差,5級表示高溫分散性優(yōu)良。
FT-IR分析:將室溫下干燥的膜狀樣品移入60℃真空烘箱,烘干去除殘余水分,用VERTEX70傅里葉變換紅外光譜儀測試。
粒徑和Zeta電位測試:將分散劑分散的液體染料用去離子水稀釋1000倍后用采用Nano-ZS 90粒度分析儀在25℃下測量其粒徑和Zeta電位。
2 結果與討論
2.1 TSPOEP-n乳液膠膜的結構表征
以TSPOEP-16為例,測試了水解產(chǎn)物TSPOEP-n的紅外光譜,并與原料TSPOE-16譜圖進行了對比,結果如圖1所示。TSPOE-16和TSPOEP-16均在2875 cm-1處出現(xiàn)—CH3的伸縮振動峰。此外,與TSPOE-16相比,TSPOEP-16譜圖在3450 cm-1處的—OH(羥基)伸縮振動峰減弱,并分別在1255 cm-1處和984 cm-1處新增PO和C—O—P的伸縮振動峰,表明TSPOE-16成功進行了酯化反應,即合成得到了分散劑TSPOEP-16。
2.2 TSPOEP-n對液體分散染料粒徑及Zeta電位的影響
分散劑TSPOEP-n中的EO數(shù)對液體分散染料粒徑及Zeta電位的影響如表1所示。由表1可知,各EO數(shù)分散劑TSPOEP-n(n=13,16,20,29)制備的液體分散染料均達到納米級,平均粒徑介于175~215 nm之間,PDI為0.2左右,表明TSPOEP-n的研磨穩(wěn)定效率較高。進一步觀察發(fā)現(xiàn),隨著EO數(shù)的增大,液體分散染料的粒徑持續(xù)增加,其原因可能是因為EO數(shù)的增大提高了TSPOEP-n的水溶性,降低了TSPOEP-n在“染料-水”界面的吸附趨勢和吸附量,即分散劑降低界面張力的能力和對疏水性物質的潤濕能力減弱,使得其對分散染料的分散效率降低。
此外,不同EO數(shù)的TSPOEP-n制備的液體分散染料的Zeta電位的絕對值均大于25 mV,說明分散染料顆粒間的靜電排斥作用較為顯著,染料具有良好的穩(wěn)定性。
2.3 TSPOEP-n制備的液體分散染料的貯存穩(wěn)定性能
對比了不同EO數(shù)TSPOEP-n穩(wěn)定的液體分散染料貯存穩(wěn)定性,結果如圖2所示。120 d貯存期間,染料均有較明顯的粒徑增大和粒徑分布變寬的趨勢,表明研磨結束后,染料顆粒間聚并團聚仍有發(fā)生,這主要是由于納米級染料顆粒具有較大的比表面積和比表面能,驅動了染料顆粒間的聚集,使得貯存期內(nèi)的穩(wěn)定性有所降低。
貯存100 d后,分散染料的粒徑及分布趨于穩(wěn)定。當EO數(shù)分別為13、16、20和29時,分散染料粒徑增幅(ΔD)分別為35.3、20.2、34.4、58.8 nm,平均粒徑均小于350 nm,可滿足染色的要求[15]。說明制備的液體分散染料具有較高的貯存穩(wěn)定性能,并且以TSPOEP-16分散研磨穩(wěn)定的染料穩(wěn)定性最佳。一方面,是因為該分散劑制備的染料體系的Zeta電位較高;另一方面,可能是該結構分散劑具有有利于染料穩(wěn)定的較優(yōu)“親水段/疏水段”比例。
2.4 分散劑TSPOEP-n結構對染料高溫分散穩(wěn)定性的影響
考察了TSPOEP-n中EO數(shù)改變時,130℃下液體分散染料的分散穩(wěn)定性,結果如表2所示。EO數(shù)改變時,液體分散染料經(jīng)雙層濾紙過濾后,濾紙表面僅存有少量的染料顆粒,此部分染料量受EO數(shù)的影響較?。蝗玖线^濾時間(級)/殘留物評級(級)達到了C/3以上,表明TSPOEP-n對分散染料具有較好的高溫分散穩(wěn)定性。
2.5 TSPOEP-n制備的液體分散染料的染色性能
以分散劑TSPOEP-20為例,將以其穩(wěn)定的液體分散染料與粉體分散染料分別用于滌綸織物染色,并測試了染色性能,結果如表3所示。由表3可知,隨著染料用量的增加,液體分散藍79和粉末分散藍79染色織物的K/S值變化趨勢一致:隨著染料用量的增高,染色織物K/S值均逐漸增大,當達到4%以后,趨于穩(wěn)定。但在相等染料用量下,液體分散藍79染色織物的K/S值明顯高于粉末分散藍79染色織物,表明液體分散染料上染率更高。
在染料質量分數(shù)為1%~5%時,液體分散染料染色織物的不勻度略高于粉體染料染色樣品;此外,隨著液體染料用量的增加,不勻度降低,染料勻染性提高,當染料質量分數(shù)大于2%時,染色不勻度值小于0.05,染色勻染性好。
進一步測試了液體分散藍79和粉末分散藍79染色殘液的COD,結果如表4所示。由表4可知,液體分散染料殘液COD較粉體染料降低了約35.7%,即液體分散染料可有效減少污水處理成本。
3 結 論
將五氧化二磷酯化、水解后得到三苯乙烯基苯酚聚氧乙烯醚磷酸酯鹽(TSPOEP-n)用作分散藍79研磨液體化時的分散劑,考察了TSPOEP-n的EO數(shù)(n值)對液體分散染料穩(wěn)定性的影響,并考察了染料的染色性能,研究表明:n值為13、16、20和29時,制得的分散劑對染料顆粒均具有較高的分散穩(wěn)定效率,4種液體分散染料平均粒徑小于215 nm;常溫貯存期間,液體分散染料雖因聚集而出現(xiàn)粒徑增大,但100 d后粒徑趨于穩(wěn)定,且染料具有較好的高溫分散穩(wěn)定性。當采用n=16的TSPOEP-16為分散劑時,染料常溫貯存的粒徑增幅僅為20.2 nm,且上染率顯著高于粉體分散染料,其染色后殘液COD較粉體料降幅高達35.7%。
參考文獻:
[1]蔣俊浩,卜廣玖,殷允杰,等.滌綸印花用免水洗液體分散染料的制備及應用工藝研究[J].染料與染色,2020,57(4):12-15.
JIANG Junhao, BU Guangjiu, YIN Yunjie, et al. Prepara-tion and application of liquid disperse dyes for polyester printing[J]. Dyestuffs and Coloration, 2020, 57(4): 12-15.
[2]酈少奇,蔣慧,姜建堂,等.氟硅改性聚丙烯酸酯乳液在液體分散染料免水洗印花中的應用[J].染料與染色,2019,56(6):35-38.
Ll Shaoqi, JIANG Hui, JIANG Jiantang, et al. Application of fluorosilicon modified polyacrylate emulsion in water-free printing of liquid disperse dyes[J]. Dyestuffs and Colo-ration, 2019, 56(6): 35-38.
[3]YU L X, YU J, MO W J, et al. Etherification to improve the performance of lignosulfonate as dye dispersant[J]. RSC Advances, 2016, 6(75): 70863-70869.
[4]胡會娜,石瑜博,朱亞偉,等.高力份分散橙288液體染料制備、穩(wěn)定性及染色性能[J].絲綢,2021,58(1):8-12.
HU Huina, SHl Yubo, ZHU Yawei, et al. Preparation, stability and dyeing performance of high strength disperse orange 288 liquid dye[J]. Journal of Silk, 2021, 58(1): 8-12.
[5]艾麗,朱亞偉.液體分散染料的技術進步及應用[J].印染,2019,45(24):47-52.
AI Li, ZHU Yawei. The development of liquid disperse dye and its application[J]. China Dyeing & Finishing, 2019, 45(24): 47-52.
[6]ADEEL S, GUL K S, SHAHID S, et al. Sustainable dyeing of microwave treated polyester fabric using disperse yellow 211 dye[J]. Journal of the Mexican Chemical Society, 2018, 62(1): 1-9.
[7]吳遠明,姚繼明.液體分散靛藍染料的制備及染色性能[J].印染,2014,40(6):20-23,26.
WU Yuanming, YAO Jiming. Preparation and dyeing properties of liquid Indigo dyes[J].China Dyeing & Finishing, 2014, 40(6): 20-23, 26.
[8]涂志丹.滌/錦/棉織物的分散染料/涂料染色和阻燃整理研究[D].蘇州:蘇州大學,2019.
TU Zhidan. Study on Dyeing with Disperse Dyes/Pigments and Flame Retardant Finishing of Polyester/Nylon/Cotton[D]. Suzhou: Soochow University, 2019.
[9]QIAN T, ZHONG Y, MAO Z P, et al. The comb-like modified styrene-maleic anhydride copolymer dispersant for disperse dyes[J]. Journal of Applied Polymer Science, 2019, 136(16): 47330.
[10]HE J J, LUO Y. Novel carboxylate comb-like dispersant used in disperse dyes[J]. Journal of Applied Polymer Science, 2022, 139(20): 52147.
[11]張澤慧,郝昆玥,莫林祥,等.陰離子分散劑對分散橙SE-RFL原染料的分散及其染色性能影響[J].紡織科學與工程學報,2018,35(4):71-75.
ZHANG Zehui, HAO Kunyue, MO Linxiang, et al. Effects of anionic dispersant on the dispersion and dyeing properties of disperse orange SE-RFL raw dyes[J]. Journal of Textile Science and Engineering, 2018, 35(4): 71-75.
[12]董霞,阮迪,鄭兆和,等.非離子分散劑的結構對C.I.分散黃64穩(wěn)定性的影響[J].印染助劑,2010,27(3):11-15.
DONG Xia, RUAN Di, ZHENG Zhaohe, et al. The influence of nonionic dispersant structure on the dispersion stability of C.I. Disperse Yellow 64[J]. Textile Auxiliaries, 2010, 27(3): 11-15.
[13]卜廣玖,王震,陸前進,等.滌綸浸染用高固色率液體分散染料[J].印染,2020,46(4):27-30,34.
BU Guangjiu, WANG Zhen, LU Qianjin, et al. Liquid disperse dyes with high fixation yield for exhaust dyeing of polyester[J]. China Dyeing & Finishing, 2020, 46(4): 27-30, 34.
[14]陳娟.滌綸織物的熱熔染色工藝研究[D].蘇州:蘇州大學,2017.
CHEN Juan. Study on Thermosol Dyeing Technology of Polyester Fabric[D]. Suzhou: Soochow University, 2017.
[15]朱軍峰.梳型聚羧酸鹽分散劑化學結構與水煤漿流變相關性及與煤作用機理研究[D].西安:陜西科技大學,2012.
ZHU Junfeng. Relation of Chemical Structure of Comb-like Polycarboxylate Dispersant and Rheology of Coal Water Slurry and Its Interaction Mechanism with Coals[D]. Xi'an: Shanxi University of Science & Technology, 2012.
Abstract: Liquid disperse dyes have become a research hotspot in recent years because they are able to meet the requirements of automation of printing and dyeing, batching systems, as well as energy saving in production. However, the liquid disperses dyes with a low dosage of dispersant are easy to be coarse and even coagulated and precipitated. In the process of immersion dyeing, the dispersion stability at high temperatures is poor, and the dye precipitates out, which leads to a problem of uneven dyeing and poor reproducibility. So, the dispersant is the key to preparing high-performance liquid to disperse dyes.
The tristyrenylphenol polyoxyethylene ether (TSPOE-n) was esterified with phosphorus pentoxide, and hydrolyzed to obtain the tristyrenylphenol polyoxyethylene ether phosphate (TSPOEP-n; n=13,16,20 and 29), which was used as a dispersant for the liquidation of disperse dyes. The chemical structure of the dispersant was characterized by the infrared spectrum. The effect of ethylene oxide (EO) number in TSPOEP-n on the storage stability of liquid dispersed dyes was investigated by particle size analyzer, and the dyeing properties of liquid and powder disperse dyes were compared.
The liquid disperse dyes prepared by dispersant TSPOEP-n (n=13,16,20 and 29) with EO numbers were all nanoscale and the average particle size was 175~215 nm. The PDI was about 0.2, and the absolute value of Zeta potential was greater than 25 mV. After 100 days of storage, when the EO number was 13, 16, 20, and 29, the dispersed dye particle size increased by 35.3, 20.2, 34.4, and 58.8 nm, respectively. Disperse dyes' particle size and distribution tended to be stable. And the average particle size was less than 350 nm, which could meet the dyeing requirements. After the dispersed dyes were heat treated at a high temperature (130℃) and filtered by double-layer filter paper, there were a small number of dye particles on the filter paper and the dye filtration time (stage)/residue rating (stage) reached C/3 or above. When the dye mass fraction was 1%~5%, the unevenness of the fabric dyed by liquid disperse dye was slightly higher than that of the sample dyed by powder dye. In addition, with the increase in the amount of the liquid dye, the unevenness decreased while the dye evenness improved significantly. On the other hand, When the dye mass fraction was greater than 2% and the dyeing unevenness value was less than 0.05, which indicated good dyeing evenness. Also, the COD of the residual liquid of liquid disperse dye was about 35.7% lower than that of powder dye.
The tristyrenylphenol polyoxyethylene ether phosphate (TSPOEP-n) obtained from the esterification and hydrolysis of phosphorus pentoxide was used as the dispersant for the grinding and fluidization of dispersed blue 79. The results show that when n values were 13, 16, 20, and 29, the dispersant prepared has high dispersion and the stability efficiency for dye particles is significant. The average particle size of the four liquid disperse dyes is less than 215 nm. During normal temperature storage, the particle size of liquid disperse dyes tends to be stable at about 100 days, and the dyes have good high-temperature dispersion stability. When TSPOEP-16 is used as a dispersant, the particle size increase of dyes stored at room temperature is only 20.2 nm, and the dye uptake is significantly higher than that of powder disperse dyes. The COD of the dye residue after dyeing is reduced by 35.7% compared with that of powder dyes.
Keywords: tristylphenol polyoxyethylene ether phosphate; liquid disperse dye; dispersion stability; chemical oxygen demand(COD)