葛宏義,吳旭陽,蔣玉英,張 元,孫振雨,崔光遠(yuǎn),賈志遠(yuǎn)
·農(nóng)產(chǎn)品加工工程·
基于區(qū)塊鏈技術(shù)的糧油食品溯源研究進(jìn)展及展望
葛宏義1,2,3,吳旭陽1,2,3,蔣玉英1,2,4※,張 元1,2,3※,孫振雨1,2,3,崔光遠(yuǎn)1,2,3,賈志遠(yuǎn)1,2,3
(1. 河南工業(yè)大學(xué)糧食信息處理與控制教育部重點(diǎn)實(shí)驗(yàn)室,鄭州 450001;2. 河南工業(yè)大學(xué)河南省糧食光電探測與控制重點(diǎn)實(shí)驗(yàn)室,鄭州 450001;3. 河南工業(yè)大學(xué)信息科學(xué)與工程學(xué)院,鄭州 450001; 4. 河南工業(yè)大學(xué)人工智能與大數(shù)據(jù)學(xué)院,鄭州 450001)
糧油食品供應(yīng)鏈周期長、結(jié)構(gòu)復(fù)雜、利益相關(guān)者眾多,維護(hù)供應(yīng)鏈的安全具有挑戰(zhàn)性。近年來,特別是在糧食購銷領(lǐng)域,存在“以陳頂新”、“轉(zhuǎn)圈糧”、壓級壓價(jià)等現(xiàn)象,已嚴(yán)重威脅到糧食安全。追溯系統(tǒng)是一個(gè)能夠?qū)Ξa(chǎn)品實(shí)施正向、反向和非定向跟蹤的產(chǎn)品管理系統(tǒng),可以連接糧油食品供應(yīng)鏈的各個(gè)環(huán)節(jié),監(jiān)控原料采集、加工、儲運(yùn)、分銷與銷售過程,對糧食質(zhì)量安全有重要保障。傳統(tǒng)的追溯體系面臨數(shù)據(jù)中心化、信息不透明、數(shù)據(jù)容易偽造、極易形成信息孤島等問題。區(qū)塊鏈作為繼網(wǎng)絡(luò)之后的下一代顛覆性技術(shù),具備去中心化、分布式存儲、匿名性、數(shù)據(jù)公開透明、內(nèi)容不易篡改等新特點(diǎn),為糧油食品供應(yīng)鏈中的產(chǎn)品可追溯性問題帶來新的解決方案。該文首先介紹近年來區(qū)塊鏈智能合約、共識機(jī)制等關(guān)鍵技術(shù)的發(fā)展和應(yīng)用,其次,闡述區(qū)塊鏈技術(shù)應(yīng)用到糧油食品溯源等領(lǐng)域的研究進(jìn)展;最后,探討當(dāng)前糧油食品區(qū)塊鏈溯源在存儲、跨域與跨鏈、系統(tǒng)互操作性和可移植性等方面所面臨的挑戰(zhàn),對區(qū)塊鏈技術(shù)在糧油食品溯源領(lǐng)域中提高存儲性能、跨域跨鏈、可擴(kuò)展性等方面進(jìn)行展望,為區(qū)塊鏈技術(shù)在糧油食品中的創(chuàng)新應(yīng)用提供參考。
農(nóng)產(chǎn)品;溯源;區(qū)塊鏈;追溯體系;糧油食品;供應(yīng)鏈
中國作為農(nóng)產(chǎn)品貿(mào)易大國,近年來,出口農(nóng)產(chǎn)品質(zhì)量安全事故時(shí)有發(fā)生。在世界范圍內(nèi),各國政府高度關(guān)注,并出臺法律法規(guī)加強(qiáng)對可追溯性的管理,以保障農(nóng)產(chǎn)品質(zhì)量安全[1-3]。糧食作為農(nóng)產(chǎn)品的一個(gè)重要分支,糧油食品幾乎每天都占據(jù)著國人的餐桌,其中谷物是人體礦物質(zhì)、膳食纖維等營養(yǎng)素的重要食物來源,有助于預(yù)防心血管和代謝性疾病等[4]。油性食物可以提供人體所需的脂肪酸[5]。但糧油供應(yīng)鏈具有周期長、參與主體多、涉及面廣、環(huán)境較為復(fù)雜等特性,再加上傳統(tǒng)溯源體系中數(shù)據(jù)中心化、供應(yīng)鏈數(shù)據(jù)不透明、易篡改等問題,導(dǎo)致糧油食品安全事件仍然嚴(yán)峻,使中國農(nóng)業(yè)發(fā)展面臨重大挑戰(zhàn)[6-7]。
在糧油食品供應(yīng)鏈中,特別是在糧食購銷領(lǐng)域,存在諸多因監(jiān)管力度不足而引起的糧食安全問題?!稗D(zhuǎn)圈糧”、“以陳頂新”、“升溢糧”、壓級壓價(jià)等現(xiàn)象已嚴(yán)重影響到中國糧食供給安全[8]。因此,為解決傳統(tǒng)糧油食品溯源中存在的問題,急需一種先進(jìn)的溯源技術(shù)應(yīng)用到糧油食品溯源領(lǐng)域來保障糧油食品安全。
區(qū)塊鏈技術(shù)是一個(gè)跨學(xué)科創(chuàng)新技術(shù),狹義的講,區(qū)塊鏈?zhǔn)枪V羔樳B接到一起的交易區(qū)塊,廣義來說區(qū)塊鏈?zhǔn)且环N分布式賬本存儲技術(shù),被譽(yù)為下一個(gè)“信任的基石”[9-10]。其去中心化、不易篡改等特性可以有效解決傳統(tǒng)溯源中存在的問題。中國在區(qū)塊鏈溯源領(lǐng)域已有一些應(yīng)用,其中華為發(fā)布的“中國農(nóng)村沃土云平臺”;由京東自己開發(fā)的區(qū)塊鏈服務(wù)平臺—智臻鏈;五常市政府與天貓等開展全方位協(xié)作,引進(jìn)螞蟻金服區(qū)塊鏈追溯科技,使出售的每袋稻谷都有一張專屬的“身份證”等[11-12]。
基于當(dāng)前區(qū)塊鏈技術(shù)在溯源領(lǐng)域已取得的成果及應(yīng)用,本文闡述了區(qū)塊鏈技術(shù)應(yīng)用到糧油食品溯源等領(lǐng)域的研究進(jìn)展,探討了當(dāng)前糧油食品區(qū)塊鏈溯源面臨的挑戰(zhàn),對區(qū)塊鏈技術(shù)在糧油食品溯源領(lǐng)域中的應(yīng)用潛力進(jìn)行展望,以期為區(qū)塊鏈技術(shù)在糧油食品中的創(chuàng)新應(yīng)用提供參考。
2008年,一位名為“中本聰”的學(xué)者首次定義了比特幣[13]。比特幣網(wǎng)絡(luò)中的信息交流能夠在沒有其他第三方的情況下完成,其本質(zhì)是一個(gè)分布式數(shù)據(jù)庫系統(tǒng),包括所有參與成員間共同的交易記錄[14-15]。因?yàn)槊看谓灰锥际怯纱蠖鄶?shù)成員間共同確定的,使得虛假交易無法經(jīng)過集體證實(shí),一旦記錄被區(qū)塊鏈創(chuàng)建并接受,它就很難被篡改[16-17]。這也是區(qū)塊鏈應(yīng)用到糧油食品溯源領(lǐng)域重要原因之一。針對于不同的應(yīng)用場景,區(qū)塊鏈的發(fā)展歷程可分1.0-3.0階段,如表1所示。
表1 區(qū)塊鏈1.0-3.0階段發(fā)展歷程及應(yīng)用場景
區(qū)塊鏈分為公有鏈、私有鏈與聯(lián)盟鏈[19-20]。公有區(qū)塊鏈一般被看作是“徹底去中心化”的,即指每個(gè)節(jié)點(diǎn)都能夠隨時(shí)隨地加入到網(wǎng)絡(luò)系統(tǒng)中讀取數(shù)據(jù)、爭奪記賬權(quán)等[21-22]。私有區(qū)塊鏈的去中心化水平較低,其權(quán)限是由某個(gè)機(jī)構(gòu)或者管理者掌控,根據(jù)不同的需求對外選擇性開放讀寫權(quán)限,適用于特定機(jī)構(gòu)的內(nèi)部數(shù)據(jù)管理。聯(lián)盟鏈的去中心化程度介于上述2種鏈之間,其數(shù)據(jù)只允許聯(lián)盟成員訪問,實(shí)現(xiàn)“部分去中心化”功能[23-24]。
圖1 區(qū)塊結(jié)構(gòu)圖
區(qū)塊鏈具有去中心化、可追溯、不易篡改、匿名性等特征[25-26]。去中心化意味著不是將區(qū)塊鏈權(quán)限被某一個(gè)節(jié)點(diǎn)所控制,而是依賴共識機(jī)制負(fù)責(zé)驗(yàn)證和確認(rèn),這也使得節(jié)點(diǎn)想要篡改數(shù)據(jù)基本不可能實(shí)現(xiàn)[27]。區(qū)塊基本架構(gòu)由帶有時(shí)間戳的鏈?zhǔn)絽^(qū)塊組成,如圖1所示,具備極強(qiáng)的可溯源性,匿名性在一定程度上很好保護(hù)了用戶的隱私[28-29],但區(qū)塊鏈不能提供完全的隱私保護(hù),其中每一筆交易都可以被所有節(jié)點(diǎn)查看,通過分析每個(gè)地址發(fā)生的交易,就能發(fā)現(xiàn)很多用戶之間的關(guān)系。
區(qū)塊鏈技術(shù)誕生以來,越來越多的研究人員從事相關(guān)技術(shù)的研究,當(dāng)前區(qū)塊鏈不僅有傳統(tǒng)的鏈?zhǔn)浇Y(jié)構(gòu),也存在有向無環(huán)圖(direct acyclic graph, DAG)架構(gòu)的區(qū)塊鏈[30]。區(qū)塊鏈關(guān)鍵技術(shù)包括分布式存儲技術(shù)、智能合約、共識機(jī)制等,如圖2所示。在供應(yīng)鏈溯源領(lǐng)域,區(qū)塊鏈技術(shù)在維護(hù)供應(yīng)鏈安全、保障數(shù)據(jù)隱私等方面發(fā)揮著至關(guān)重要的作用。
圖2 區(qū)塊鏈相關(guān)技術(shù)
2.1.1 區(qū)塊鏈存儲技術(shù)
由于區(qū)塊鏈技術(shù)具有多個(gè)網(wǎng)絡(luò)節(jié)點(diǎn)共同記錄和存儲的特點(diǎn),隨著用戶量的增加和數(shù)據(jù)的高冗余存儲,區(qū)塊鏈網(wǎng)絡(luò)越來越擁堵,效率也無法滿足要求,區(qū)塊空間的大小成為了限制區(qū)塊鏈發(fā)展的瓶頸[31-32]。目前已有不少學(xué)者開展基于區(qū)塊鏈存儲優(yōu)化的研究,主要有區(qū)塊鏈自身存儲結(jié)構(gòu)的優(yōu)化,包括區(qū)塊鏈分片技術(shù)等,也有部分研究將區(qū)塊鏈與星際文件系統(tǒng)(interplanetary file system,IPFS)、云存儲等相結(jié)合的方式提高存儲能力,區(qū)塊鏈多鏈架構(gòu)緩解存儲壓力也取得了一些研究成果。無論哪種研究方式,旨在提高區(qū)塊鏈技術(shù)的存儲能力。
DAI等[33]為了滿足快速增長的存儲需求,將網(wǎng)絡(luò)編碼(network coded,NC)和分布式存儲(distributed storage,DS)相結(jié)合,提出了一個(gè)NC-DS存儲的區(qū)塊鏈框架,該框架在節(jié)約存儲空間方面取得了顯著成績。XU等[34]為了滿足數(shù)據(jù)量大的應(yīng)用程序的存儲,提出了段區(qū)塊鏈概念,使節(jié)點(diǎn)存儲一個(gè)區(qū)塊鏈段的副本相比于傳統(tǒng)區(qū)塊鏈的存儲方式,存儲需求大大減小。ZHANG等[35]提出了一種基于區(qū)塊鏈技術(shù)的糧食供應(yīng)鏈系統(tǒng)架構(gòu),并設(shè)計(jì)了一種結(jié)合鏈存儲的多模式存儲機(jī)制,該機(jī)制在一定程度上減輕區(qū)塊鏈存儲壓力。KUMAR等[36]提供了一個(gè)基于IPFS的區(qū)塊鏈存放模式,礦工們將事件存放到IPFS分布式檔案管理系統(tǒng)內(nèi)存上,并把從事件中返回的IPFS哈希值放在區(qū)塊鏈塊中,減緩了區(qū)塊鏈存儲壓力。ZHANG等[37]建立了糧油食品供應(yīng)鏈模型,設(shè)計(jì)了多鏈存儲結(jié)構(gòu),建立可信溯源機(jī)制,解決了傳統(tǒng)溯源機(jī)制中存在的數(shù)據(jù)安全性低,共享差等問題。于華竟等[38]提出了基于區(qū)塊鏈多鏈架構(gòu)的雜糧追溯模型,建立多鏈數(shù)據(jù)存儲架構(gòu),設(shè)計(jì)了基于監(jiān)管授權(quán)組網(wǎng)建鏈的網(wǎng)絡(luò)準(zhǔn)入機(jī)制,通過智能合約實(shí)現(xiàn)數(shù)據(jù)的鏈前監(jiān)管與追溯節(jié)點(diǎn)的鏈上管控,驗(yàn)證了模型的有效性。
2.1.2 智能合約與共識機(jī)制
智能合約是區(qū)塊鏈基礎(chǔ)架構(gòu)中合約層的重要組成部分,可以作為一種嵌入式腳本語言內(nèi)置在任何區(qū)塊鏈的交易數(shù)據(jù)和數(shù)字資產(chǎn)上,形成一種可編程自動控制執(zhí)行的系統(tǒng),在溯源系統(tǒng)中,智能合約的應(yīng)用也很常見[39-40]。當(dāng)前區(qū)塊鏈智能合約研究主要有智能合約的運(yùn)行機(jī)制、基于智能合約的隱私保護(hù)、交易并發(fā)執(zhí)行效率、智能合約安全性等。
WANG等[41]提出了一個(gè)基于聯(lián)盟和智能合約的框架來跟蹤農(nóng)產(chǎn)品供應(yīng)鏈的工作流程,實(shí)現(xiàn)供應(yīng)鏈的可追溯性和可共享性,并盡可能地打破企業(yè)之間的信息孤島,消除對中央機(jī)構(gòu)和代理機(jī)構(gòu)的需要,提高交易記錄的完整性、可靠性和安全性。YU等[42]提出了一種利用聯(lián)盟區(qū)塊鏈和智能合約來高效執(zhí)行農(nóng)產(chǎn)品交易的方法,從而實(shí)現(xiàn)對農(nóng)產(chǎn)品在整個(gè)供應(yīng)鏈中的跟蹤。KTARI等[43]提出一種使用物聯(lián)網(wǎng)的多鏈橄欖油追溯系統(tǒng),并設(shè)計(jì)兩個(gè)智能合約,一個(gè)部署到系統(tǒng)參與者的私有區(qū)塊鏈,另一個(gè)部署到可以訪問該系統(tǒng)的公共區(qū)塊鏈,實(shí)現(xiàn)對橄欖油供應(yīng)鏈整條鏈的溯源。YAKUBU等[44]提出一個(gè)稻米供應(yīng)鏈框架,該框架能夠通過智能合約跟蹤和監(jiān)控稻米供應(yīng)鏈中所有利益相關(guān)者之間的交易信息,也包含一個(gè)客戶滿意度反饋系統(tǒng),使所有利益相關(guān)者能夠獲得最新的稻米質(zhì)量信息,使他們能夠作出更明智的供應(yīng)鏈決策。
共識機(jī)制是整個(gè)區(qū)塊鏈技術(shù)的核心,確保在分布式環(huán)境下節(jié)點(diǎn)間對系統(tǒng)狀態(tài)進(jìn)行的一致性確認(rèn),直接決定著整個(gè)區(qū)塊鏈體系的執(zhí)行效率。不同共識算法存在不同的優(yōu)缺點(diǎn),如工作量證明(proof of work,PoW)算法雖穩(wěn)定性較好,若出現(xiàn)惡意節(jié)點(diǎn)入侵區(qū)塊鏈系統(tǒng),需要付出極大的成本,且其會造成嚴(yán)重的資源浪費(fèi)和網(wǎng)絡(luò)性能低[45-46]。因此,不少研究人員開始改進(jìn)共識算法來提高區(qū)塊鏈系統(tǒng)的運(yùn)行效率,包括引入獎(jiǎng)懲機(jī)制、委員會節(jié)點(diǎn)等,但委員會節(jié)點(diǎn)會在一定程度上降低區(qū)塊鏈的去中心化能力。
LI等[47]實(shí)現(xiàn)了輕量級區(qū)塊鏈,提出了基于獎(jiǎng)懲策略的PBFT區(qū)塊鏈共識機(jī)制,根據(jù)每個(gè)節(jié)點(diǎn)的行為,獎(jiǎng)懲策略更新節(jié)點(diǎn)得分,并對每個(gè)節(jié)點(diǎn)的狀態(tài)進(jìn)行評估,依據(jù)每個(gè)節(jié)點(diǎn)的狀態(tài),篩選出參與協(xié)商一致過程的節(jié)點(diǎn),然后從這些協(xié)商一致節(jié)點(diǎn)中投票選出主節(jié)點(diǎn),減少了區(qū)塊鏈一致性確認(rèn)的時(shí)間。BRAVO-MARQUEZ等[48]介紹了一種新的分布式共識協(xié)議PoL(proof of learning),該算法通過對給定任務(wù)的機(jī)器學(xué)習(xí)系統(tǒng)進(jìn)行排序來實(shí)現(xiàn)分布式共識,減少了系統(tǒng)資源的浪費(fèi)。任守綱等[49]提出一種基于信譽(yù)監(jiān)督機(jī)制共識算法(credit-supervisor byzantine fault tolerance,CSBFT),提高聯(lián)盟鏈共識機(jī)制的安全性和效率,并設(shè)計(jì)智能合約,自動保存關(guān)鍵溯源信息,與傳統(tǒng)溯源平臺相比,應(yīng)用CSBFT算法的溯源平臺在溯源信息上鏈時(shí)具有更高的安全性和更小的時(shí)延。LI等[50]分析了糧食食品供應(yīng)鏈各環(huán)節(jié)的流程和數(shù)據(jù)特點(diǎn),提出了基于主從多鏈結(jié)構(gòu)的糧食食品區(qū)塊鏈可追溯信息管理模型,針對主鏈設(shè)計(jì)了基于Raft與改進(jìn)PoW算法相結(jié)合的PLEW共識算法,針對從鏈設(shè)計(jì)了基于可信信息度的CI-PBFT共識算法,并與區(qū)塊鏈單鏈結(jié)構(gòu)的交易吞吐量和可追溯效率進(jìn)行了比較,所設(shè)計(jì)實(shí)現(xiàn)的糧食溯源系統(tǒng)在各方面均優(yōu)于區(qū)塊鏈單鏈結(jié)構(gòu)。
2.1.3 訪問控制與隱私保護(hù)
在供應(yīng)鏈的管理中,如何維護(hù)用戶的管理權(quán)限、設(shè)計(jì)適合于供應(yīng)鏈的管理策略、做到細(xì)粒度訪問控制是一個(gè)巨大的挑戰(zhàn)[51-52]。區(qū)塊鏈技術(shù)可以為供應(yīng)鏈提供一種新的安全身份認(rèn)證方式,保障數(shù)據(jù)在用戶之間的安全共享。目前,基于區(qū)塊鏈的訪問控制研究主要有訪問權(quán)限的管理策略制定、細(xì)粒度訪問控制的設(shè)計(jì)與實(shí)施、供應(yīng)鏈中敏感數(shù)據(jù)的保護(hù)等。
ZHANG等[53]針對當(dāng)前谷物大米追溯體系所面臨的問題,設(shè)計(jì)了安全可靠的農(nóng)產(chǎn)品追溯系統(tǒng)的邏輯框架,使用數(shù)據(jù)加密和靈活的訪問控制來保護(hù)追溯系統(tǒng)中利益相關(guān)者的數(shù)據(jù)安全共享。TARIQ等[54]為實(shí)現(xiàn)橄欖油的細(xì)粒度訪問追溯,設(shè)計(jì)一種基于物聯(lián)網(wǎng)的多鏈追溯系統(tǒng),系統(tǒng)中的內(nèi)部參與者使用私有鏈,訪問系統(tǒng)的用戶使用公有鏈,實(shí)現(xiàn)橄欖油溯源數(shù)據(jù)的安全共享。ZHANG等[55]為了實(shí)現(xiàn)溯源數(shù)據(jù)的細(xì)粒度訪問控制,利用基于屬性加密算法來加密數(shù)據(jù)。使用密鑰管理服務(wù),使數(shù)據(jù)共享方法無需更新密文即可撤銷。總體而言,這些方法實(shí)現(xiàn)了隱私保護(hù)、可撤銷性和去中心化的細(xì)粒度訪問。
此外,隱私意味著用戶信息或數(shù)據(jù)必須受到保護(hù),在任何情況下未經(jīng)參與主體同意不能泄露[56]。區(qū)塊鏈網(wǎng)絡(luò)中數(shù)據(jù)完全公開透明,但是區(qū)塊鏈公開透明的特性也會導(dǎo)致用戶身份和數(shù)據(jù)隱私泄露問題[57],其中訪問控制在一定程度上也對用戶隱私或數(shù)據(jù)隱私起到一定的保護(hù)作用。當(dāng)前供應(yīng)鏈研究中隱私保護(hù)主要包含身份隱私保護(hù)和數(shù)據(jù)隱私保護(hù),其中應(yīng)用混幣技術(shù)、各種加密算法已成為供應(yīng)鏈隱私保護(hù)的趨勢。
陳邦越[58]設(shè)計(jì)了基于區(qū)塊鏈的水稻全供應(yīng)鏈溯源系統(tǒng),針對敏感數(shù)據(jù)、隱私數(shù)據(jù)上鏈問題,搭建敏感數(shù)據(jù)溯源模型和區(qū)塊鏈隱私數(shù)據(jù)共享模型,實(shí)現(xiàn)在區(qū)塊鏈網(wǎng)絡(luò)中共享隱私數(shù)據(jù)。范茂順[59]基于微眾銀行FISCO區(qū)塊鏈框架,采用基格密碼的可連接環(huán)簽名技術(shù)替代傳統(tǒng)簽名技術(shù),實(shí)現(xiàn)區(qū)塊鏈上用戶身份信息的隱私保護(hù)。ZHOU等[60]利用了同態(tài)加密,隱私共享以及零知識證明技術(shù)建立了一種開放可驗(yàn)證的安全性MPC協(xié)定,該協(xié)定由鏈上運(yùn)算階段和鏈下預(yù)處理階段2個(gè)部分構(gòu)成,并把該協(xié)定整合在超級賬本結(jié)構(gòu)的鏈碼中,以保障交易數(shù)據(jù)的隱私性。WANG等[61]針對大米供應(yīng)鏈各個(gè)環(huán)節(jié)建立關(guān)鍵信息分類表,利用各種加密算法保護(hù)供應(yīng)鏈上企業(yè)的敏感數(shù)據(jù),滿足監(jiān)管機(jī)構(gòu)高效監(jiān)管的需要。MALIK等[62]提出了一個(gè)隱私保護(hù)框架PrivChain,使用零知識證明保護(hù)區(qū)塊鏈上的敏感數(shù)據(jù),PrivChain提供來源和可追溯性,不會向終端消費(fèi)者或供應(yīng)鏈實(shí)體透露任何敏感信息,這對于農(nóng)產(chǎn)品溯源建立隱私保護(hù)有很大啟發(fā)。李莉等[63]針對區(qū)塊鏈溯源中數(shù)據(jù)可追溯與用戶隱私保護(hù)難以平衡的問題,提出一種區(qū)塊鏈可監(jiān)管雙重隱私保護(hù)方案,用戶選擇對數(shù)據(jù)進(jìn)行屬性加密,實(shí)現(xiàn)鏈上數(shù)據(jù)的隱私保護(hù)。
2.1.4 區(qū)塊鏈+物聯(lián)網(wǎng)
由于區(qū)塊鏈技術(shù)的迅速發(fā)展,有效緩解了傳統(tǒng)供應(yīng)鏈追溯的問題,但在實(shí)際應(yīng)用中存在無法保證供應(yīng)鏈溯源數(shù)據(jù)在上鏈之前的準(zhǔn)確性,有人為篡改的可能性[64]。物聯(lián)網(wǎng)技術(shù)能有效避免這一問題。將區(qū)塊鏈技術(shù)與物聯(lián)網(wǎng)技術(shù)相結(jié)合能夠更好把控供應(yīng)鏈在溯源過程中數(shù)據(jù)采集、數(shù)據(jù)傳輸?shù)綌?shù)據(jù)應(yīng)用的真實(shí)性,真正實(shí)現(xiàn)從“農(nóng)田到餐桌”全區(qū)鏈條溯源[65]。目前供應(yīng)鏈中應(yīng)用到的物聯(lián)網(wǎng)技術(shù)主要有傳感器技術(shù)、RFID等。
劉丹等[66]將物聯(lián)網(wǎng)和區(qū)塊鏈結(jié)合起來建立農(nóng)產(chǎn)品溯源系統(tǒng),通過物聯(lián)網(wǎng)設(shè)備進(jìn)行信息采集,應(yīng)用ZigBee技術(shù)、二維碼技術(shù)等,實(shí)現(xiàn)了對農(nóng)產(chǎn)品的全過程追溯。XU等[67]基于區(qū)塊鏈的特點(diǎn),應(yīng)用物聯(lián)網(wǎng)技術(shù),建立城市水果可追溯模型,實(shí)現(xiàn)水果品質(zhì)全過程的真實(shí)記錄和跟蹤,有效提高智慧城市的服務(wù)水平。WU等[68]將區(qū)塊鏈技術(shù)、機(jī)器學(xué)習(xí)和RFID相結(jié)合,搭建了基于機(jī)器學(xué)習(xí)的區(qū)塊鏈物聯(lián)網(wǎng)茶葉可追溯系統(tǒng),確保鏈上信息的真實(shí)性,實(shí)現(xiàn)了對茶葉供應(yīng)鏈的全程可追溯。MONDAL等[69]建立一個(gè)基于區(qū)塊鏈和物聯(lián)網(wǎng)的架構(gòu),RFID提供數(shù)據(jù)的唯一標(biāo)識,有助于實(shí)施質(zhì)量監(jiān)控;區(qū)塊鏈體系結(jié)構(gòu)有助于創(chuàng)建每個(gè)實(shí)例的食品包裝防篡改數(shù)字?jǐn)?shù)據(jù)庫,并對此架構(gòu)進(jìn)行了詳細(xì)的安全分析。
2.2.1 糧油食品供應(yīng)鏈管理
在新冠疫情、俄烏沖突的大背景下,全球糧食供應(yīng)鏈也面臨前所未有的挑戰(zhàn)。面對突發(fā)事件,糧食應(yīng)急調(diào)度效率低、不及時(shí)的問題較為嚴(yán)重;各種糧油食品原料和成品的供應(yīng)受到威脅,全球市場糧油食品價(jià)格有所上漲[70]。中國作為糧食生產(chǎn)大國,要切實(shí)保障糧食質(zhì)量安全和供應(yīng)鏈安全,一個(gè)可靠的糧油食品供應(yīng)鏈管理體系,對人民群眾生命健康和社會和諧發(fā)展具有重要意義。當(dāng)前基于區(qū)塊鏈的糧油食品供應(yīng)鏈管理包括國家糧油主管部門、各級糧油主管部門,利用新一代信息化技術(shù)建立糧油食品溯源平臺,實(shí)現(xiàn)穿透式監(jiān)管,避免“轉(zhuǎn)圈糧”、“升溢糧”、“以陳頂新”、壓級壓價(jià)等現(xiàn)象發(fā)生;針對糧油食品供應(yīng)鏈溯源,主要是對溯源數(shù)據(jù)的管控,確保數(shù)據(jù)的真實(shí)性和可靠性;對參與主體的管理主要是用戶身份認(rèn)證、跨域與跨鏈的訪問控制等。通過部署智能合約、建立可信的管理機(jī)制與監(jiān)督機(jī)制,確保整條供應(yīng)鏈的安全。
PENG等[71]基于多鏈協(xié)同管理供應(yīng)鏈,對大米供應(yīng)鏈信息管控進(jìn)行研究,構(gòu)建“區(qū)塊鏈+子鏈”供應(yīng)鏈模型,設(shè)計(jì)可信鏈機(jī)制、多級子鏈加密機(jī)制、可信監(jiān)督機(jī)制和分層共識機(jī)制,這些機(jī)制共同服務(wù)于大米供應(yīng)鏈溯源數(shù)據(jù)管理。ALKHUDARY等[72]針對橄欖油供應(yīng)鏈中存在的有關(guān)質(zhì)量和欺詐等問題,提出區(qū)塊鏈與物聯(lián)網(wǎng)和智能合約相結(jié)合的架構(gòu),保障橄欖油質(zhì)量安全和供應(yīng)鏈安全管理。
2.2.2 傳統(tǒng)糧油食品供應(yīng)鏈溯源
在傳統(tǒng)糧油食品溯源系統(tǒng)中,大部分溯源系統(tǒng)是內(nèi)部溯源,雖然傳統(tǒng)溯源系統(tǒng)結(jié)合了物聯(lián)網(wǎng)技術(shù),如圖3a所示,但還存在以下幾方面的問題:
1)信息不對稱,出現(xiàn)嚴(yán)重的信息孤島問題[73]。供應(yīng)商在各個(gè)環(huán)節(jié)中維護(hù)著自己所在節(jié)點(diǎn)的生產(chǎn)信息,使供應(yīng)商內(nèi)部產(chǎn)生了中心化的數(shù)據(jù)庫結(jié)構(gòu),各節(jié)點(diǎn)間信息銜接更加困難,追溯過程耗費(fèi)大量時(shí)間。
2)信息易被篡改。傳統(tǒng)糧油食品供應(yīng)鏈?zhǔn)且粋€(gè)中心化的溯源體系,企業(yè)可能存在為了利益而修改糧油食品關(guān)鍵追溯信息。
3)追溯條碼可復(fù)制[74]。傳統(tǒng)糧油食品追溯條碼并不是唯一的,每個(gè)環(huán)節(jié)都可能會有一個(gè)追溯條碼,有被復(fù)制的可能,造成糧油食品摻假的問題。
4)難以確認(rèn)責(zé)任主體。在糧油食品發(fā)生質(zhì)量安全問題時(shí),由于傳統(tǒng)追溯體系的復(fù)雜性,很難實(shí)現(xiàn)精準(zhǔn)和快速確認(rèn)責(zé)任主體。
圖3 糧油食品追溯不同框架
2.2.3 基于區(qū)塊鏈的糧油食品供應(yīng)鏈溯源
區(qū)塊鏈的可追溯性,可以滿足追蹤糧油食品信息的需求[75]。區(qū)塊鏈技術(shù)一開始并沒有和其他技術(shù)結(jié)合應(yīng)用到追溯領(lǐng)域,只是作為一種單一的技術(shù),把追溯的各個(gè)環(huán)節(jié)數(shù)據(jù)上傳到區(qū)塊鏈網(wǎng)絡(luò)[76],如圖3b所示。但人為上傳數(shù)據(jù)存在被篡改的可能,使得上鏈的數(shù)據(jù)從源頭開始就不真實(shí),這與區(qū)塊鏈之所以能應(yīng)用到追溯體系相悖論。
之所以對糧油食品供應(yīng)鏈溯源,其目的為保障整個(gè)糧油食品供應(yīng)鏈安全。糧油作為農(nóng)產(chǎn)品的一個(gè)重要分支,是人們?nèi)债a(chǎn)生活中的必需品。但不同品類的農(nóng)產(chǎn)品溯源工作也存在一定差異。其中糧油食品供應(yīng)鏈周期長,參與主體多,在溯源過程中會注重溯源數(shù)據(jù)的真實(shí)性、溯源工作的效率以及供應(yīng)鏈各個(gè)環(huán)節(jié)內(nèi)部的規(guī)范化[77]。果蔬在生長過程中存在噴灑農(nóng)藥等情況,會側(cè)重源頭溯源信息的透明度[78];奶制品由于保存時(shí)間不宜過長,會注重溯源工作的時(shí)效性[79];煙草受嚴(yán)格國家管控,其重點(diǎn)為煙草供應(yīng)商的身份認(rèn)證和溯源數(shù)據(jù)標(biāo)準(zhǔn)性[80];冷鏈?zhǔn)称酚捎谠谖锪鱾}儲環(huán)節(jié)有相關(guān)要求,更加側(cè)重物流和倉儲信息更新的及時(shí)性與溯源信息查詢效率[81]。
PENG等[82]分析了大米供應(yīng)鏈中溯源數(shù)據(jù)特點(diǎn)以及在不同并行區(qū)塊鏈中存儲的不同類型的數(shù)據(jù),提出一種基于“數(shù)據(jù)加密+智能合約+中繼鏈”的跨鏈數(shù)據(jù)管理機(jī)制,以及一種適用于多鏈共識算法,通過仿真實(shí)驗(yàn),該模型具有較好的安全性、跨鏈效率和可擴(kuò)展性。董云峰等[83]構(gòu)建了基于區(qū)塊鏈的糧油食品供應(yīng)鏈模型,解決了當(dāng)前追溯系統(tǒng)中心化程度高、信息孤島等問題,在此基礎(chǔ)上,開發(fā)了糧油食品供應(yīng)鏈原型系統(tǒng),并應(yīng)用實(shí)際場景論證模型的可行性和有效性。
2.2.4 基于區(qū)塊鏈+物聯(lián)網(wǎng)的糧油食品供應(yīng)鏈溯源
為了解決源頭數(shù)據(jù)不真實(shí)的問題,往往是區(qū)塊鏈技術(shù)和物聯(lián)網(wǎng)技術(shù)一起應(yīng)用到供應(yīng)鏈溯源系統(tǒng)中[84],如圖3c所示。其中較多溯源系統(tǒng)應(yīng)用傳感技術(shù)、射頻識別技術(shù)等通信技術(shù)。
區(qū)塊鏈技術(shù)不僅應(yīng)用于糧油食品領(lǐng)域,在金融、工業(yè)物聯(lián)網(wǎng)等領(lǐng)域應(yīng)用也較為廣泛[85]。雖然都是利用區(qū)塊鏈技術(shù)賦能相關(guān)領(lǐng)域,但不同領(lǐng)域結(jié)合區(qū)塊鏈技術(shù)的側(cè)重點(diǎn)有所不同。在糧油食品溯源領(lǐng)域,涉及主體多,每個(gè)環(huán)節(jié)的數(shù)據(jù)類型不同,且都有大量的非結(jié)構(gòu)化數(shù)據(jù),如何利用上鏈技術(shù)將每個(gè)環(huán)節(jié)的非結(jié)構(gòu)化數(shù)據(jù)上鏈?zhǔn)且粋€(gè)巨大挑戰(zhàn)。另外,數(shù)據(jù)存儲壓力在糧油食品區(qū)塊鏈溯源中也是一個(gè)顯著問題。在金融區(qū)塊鏈領(lǐng)域,非結(jié)構(gòu)化數(shù)據(jù)較少,更多利用區(qū)塊鏈技術(shù)防篡改、去中心化等特征保障數(shù)據(jù)安全、降低服務(wù)成本。在工業(yè)物聯(lián)網(wǎng)領(lǐng)域中,更加側(cè)重用保障網(wǎng)絡(luò)安全和提高整個(gè)工業(yè)流程效率,其中區(qū)塊鏈共識機(jī)制替代中心認(rèn)證機(jī)制,整個(gè)網(wǎng)絡(luò)節(jié)點(diǎn)無需第三方信任平臺,上鏈數(shù)據(jù)需網(wǎng)絡(luò)節(jié)點(diǎn)達(dá)成共識才可被記錄,降低網(wǎng)絡(luò)被攻擊的可能性,保護(hù)整個(gè)工業(yè)物聯(lián)網(wǎng)的安全[86-87]。
XU等[88]提出了區(qū)塊鏈和工業(yè)物聯(lián)網(wǎng)連接器應(yīng)用于糧油溯源的概念,基于這一理念,構(gòu)建了可靠的糧油質(zhì)量安全追溯模型。最后,設(shè)計(jì)了可靠的小麥質(zhì)量安全追溯樣機(jī)系統(tǒng),并驗(yàn)證了模型的系統(tǒng)實(shí)現(xiàn)。LU等[89]提出了一種基于區(qū)塊鏈和物聯(lián)網(wǎng)的食品防偽溯源系統(tǒng)。該系統(tǒng)利用區(qū)塊鏈技術(shù)存儲食品生產(chǎn)、銷售和運(yùn)輸過程中的溯源數(shù)據(jù),同時(shí),通過物聯(lián)網(wǎng)技術(shù)保證區(qū)塊鏈源數(shù)據(jù)的真實(shí)可靠,該系統(tǒng)具有更高的安全性和更低的通信成本。
3.1.1 數(shù)據(jù)上鏈存儲壓力大
糧油食品供應(yīng)鏈參與主體多,有大量的溯源數(shù)據(jù),其中包含結(jié)構(gòu)化溯源數(shù)據(jù)和非結(jié)構(gòu)化溯源數(shù)據(jù)。區(qū)塊鏈自身存儲性能不足已無法滿足整條供應(yīng)鏈溯源數(shù)據(jù)的存儲,容易遇到存儲瓶頸。在視頻溯源數(shù)據(jù)上鏈存儲中,特別是糧油食品供應(yīng)鏈中糧庫視頻監(jiān)管數(shù)據(jù),無論是從圖像質(zhì)量還是視頻分辨率,國家對其有較高的要求,導(dǎo)致視頻數(shù)據(jù)占有較大的存儲空間,其上鏈存儲對整條糧油食品供應(yīng)鏈來說是一個(gè)巨大的挑戰(zhàn)。
3.1.2 系統(tǒng)操作性和可移植性差
目前很多行業(yè)都應(yīng)用了區(qū)塊鏈技術(shù),在糧油食品供應(yīng)鏈中,參與主體較多,在部分供應(yīng)鏈溯源系統(tǒng)中沒有標(biāo)準(zhǔn)協(xié)議可以讓它們互相協(xié)作和集成,這不利于糧油食品區(qū)塊鏈的發(fā)展。盡管開發(fā)人員可以用不同的平臺編寫代碼,但存在一些區(qū)塊鏈網(wǎng)絡(luò)孤立的情況,難以滿足系統(tǒng)之間的交互。此外,一部分供應(yīng)鏈系統(tǒng)由于沒有標(biāo)準(zhǔn)化的管理策略與高效的轉(zhuǎn)化機(jī)制,系統(tǒng)移植性差,無法保證移植后的系統(tǒng)仍具備與其他系統(tǒng)的互操作性。
3.1.3 糧油食品溯源監(jiān)管難度大
糧油食品供應(yīng)鏈具有周期長、利益相關(guān)者眾多、結(jié)構(gòu)復(fù)雜的特點(diǎn)。對于監(jiān)管部門來說,糧油食品供應(yīng)鏈中每個(gè)環(huán)節(jié)的監(jiān)管方式與監(jiān)管內(nèi)容存在不同,收購環(huán)節(jié)是對糧食質(zhì)量數(shù)據(jù)的監(jiān)測,倉儲環(huán)節(jié)則是對糧食存儲環(huán)境進(jìn)行監(jiān)測,因監(jiān)管力度不足存在的“轉(zhuǎn)圈糧”、“升溢糧”“以陳頂新”、壓級壓價(jià)等糧食安全問題已嚴(yán)重影響到糧油食品供應(yīng)鏈的安全。除糧油食品外,不同農(nóng)產(chǎn)品溯源工作也存在一定的差異,監(jiān)管的重心也有所不同,對不同的農(nóng)產(chǎn)品監(jiān)管力度也不易掌控。
3.1.4 跨域與跨鏈實(shí)施困難
糧油食品供應(yīng)鏈中利益相關(guān)者眾多,存在諸多可信域,一些可信域彼此之間互不信任,如何將這些可信域之間建立信任,滿足用戶跨域訪問,對糧油食品供應(yīng)鏈來說是一個(gè)挑戰(zhàn)。目前在糧油食品供應(yīng)鏈中,單鏈的跨域訪問已有一些研究成果[90-91]。隨著供應(yīng)鏈中參與主體的增多,單鏈在糧油食品供應(yīng)鏈中可能已無法滿足用戶的需求。跨鏈技術(shù)存在智能合約不通用、用戶身份可能存在重復(fù)等問題,對糧油食品區(qū)塊鏈而言,跨域與跨鏈實(shí)施較為困難。
3.2.1 提高糧油食品區(qū)塊鏈的存儲性能和可擴(kuò)展性
在整個(gè)糧油食品供應(yīng)鏈溯源中有大量的溯源數(shù)據(jù)需要上鏈存儲,其中包含一些非結(jié)構(gòu)化的視頻數(shù)據(jù)。區(qū)塊鏈在自身存儲方面存在缺陷,當(dāng)前已有不少學(xué)者提出不同的方法來提高區(qū)塊鏈存儲能力,但多數(shù)方法會增加糧油食品供應(yīng)鏈的成本開銷,其中也存在鏈下數(shù)據(jù)庫存儲數(shù)據(jù)丟失或者損壞的可能性。如何構(gòu)建一個(gè)適合于糧油食品供應(yīng)鏈的高容量、安全共享的存儲架構(gòu)是一個(gè)重要課題。其次,區(qū)塊鏈可擴(kuò)展性差和吞吐量低一直以來都是一個(gè)比較難解決的問題[92]。比特幣網(wǎng)絡(luò)每秒能處理的交易數(shù)量約為7筆,以太坊約網(wǎng)絡(luò)約為20筆交易,而傳統(tǒng)網(wǎng)絡(luò)Visa可以處理1 700~2 000筆交易[93-94]。有向無環(huán)圖(direct acyclic graph, DAG)架構(gòu)的區(qū)塊鏈技術(shù)是不同于傳統(tǒng)區(qū)塊鏈的一種分布式賬本技術(shù),其具有系統(tǒng)延展性高和交易速度快的明顯優(yōu)勢,但安全性和一致性相對傳統(tǒng)區(qū)塊鏈還有待驗(yàn)證[95]。當(dāng)前DAG架構(gòu)的區(qū)塊鏈已在數(shù)據(jù)管理[96-97]、數(shù)據(jù)安全[98-99]、6G網(wǎng)絡(luò)服務(wù)[100-101]等領(lǐng)域有所應(yīng)用,其在供應(yīng)鏈溯源領(lǐng)域研究相對較少,因此,加大對DAG架構(gòu)區(qū)塊鏈在糧油食品供應(yīng)鏈溯源的研究也是勢在必行。
3.2.2 加強(qiáng)糧油食品供應(yīng)鏈常態(tài)化穿透式監(jiān)管
糧油食品供應(yīng)鏈周期長,參與主體多,對各個(gè)環(huán)節(jié)實(shí)現(xiàn)全方位的監(jiān)管難度較大,特別是在糧食購銷領(lǐng)域因監(jiān)管力度不夠出現(xiàn)的糧食安全問題。將區(qū)塊鏈技術(shù)應(yīng)用到糧油食品溯源領(lǐng)域可以減少供應(yīng)鏈監(jiān)管缺失缺位的問題,其去中心化可以實(shí)現(xiàn)對糧油食品供應(yīng)鏈中質(zhì)量安全的實(shí)時(shí)監(jiān)控,確保溯源數(shù)據(jù)的安全性和完整性;共識機(jī)制也可以提高糧食安全監(jiān)管的效率。如何利用區(qū)塊鏈技術(shù)建立糧油食品供應(yīng)鏈常態(tài)化穿透式監(jiān)管機(jī)制,是未來糧油食品溯源領(lǐng)域的一個(gè)重要研究方向。
3.2.3 融合區(qū)塊鏈+IoT+人工智能
相比糧油食品溯源架構(gòu)中將區(qū)塊鏈技術(shù)與物聯(lián)網(wǎng)技術(shù)結(jié)合,其他前沿技術(shù)與區(qū)塊鏈結(jié)合應(yīng)用到溯源架構(gòu)的研究較少。融合區(qū)塊鏈、IoT、人工智能,應(yīng)用到糧油食品供應(yīng)鏈?zhǔn)且粋€(gè)重要研究方向。將機(jī)器學(xué)習(xí)應(yīng)用到糧油食品區(qū)塊鏈共識算法領(lǐng)域,通過建立模型將共識節(jié)點(diǎn)聚類,加快共識節(jié)點(diǎn)的選取,提高溯源系統(tǒng)的效率;利用深度學(xué)習(xí)優(yōu)化訪問控制策略,解決用戶之間的訪問策略沖突問題;利用人工智能算法對糧油區(qū)塊鏈中智能合約進(jìn)行安全分析和漏洞檢測,確保合約執(zhí)行結(jié)果的完整性和可靠性。
3.2.4 面向多系統(tǒng)的跨域與跨鏈訪問
在糧油食品區(qū)塊鏈溯源中,如何利用區(qū)塊鏈技術(shù)在各個(gè)可信系統(tǒng)之間建立低成本的信任機(jī)制,滿足不同用戶之間跨域訪問需求,在糧油食品區(qū)塊鏈未來發(fā)展中是一個(gè)重要的研究方向。但是,糧油食品區(qū)塊鏈中有大量的溯源數(shù)據(jù)需要管理和維護(hù),僅僅通過單鏈來實(shí)現(xiàn)所有數(shù)據(jù)管理較為困難,那么多鏈并行協(xié)同管理各系統(tǒng)溯源數(shù)據(jù)勢在必行。因此,如何解決多鏈之間智能合約不匹配、用戶訪問策略沖突,在未來糧油食品區(qū)塊鏈溯源研究中也是一個(gè)重要研究課題。
傳統(tǒng)的糧油食品追溯體系存在著數(shù)據(jù)中心化、信息不透明、數(shù)據(jù)共享困難、溯源成本高等問題,且監(jiān)管部門對糧油食品溯源信息并不能實(shí)施全方位的監(jiān)管,在糧食購銷領(lǐng)域出現(xiàn)“轉(zhuǎn)圈糧”、“升溢糧”、“以陳頂新”、壓級壓價(jià)等糧食安全問題。區(qū)塊鏈具有其去中心化、防止偽造、數(shù)據(jù)透明化和可溯源性等優(yōu)點(diǎn),結(jié)合物聯(lián)網(wǎng)技術(shù)保證鏈上數(shù)據(jù)的真實(shí)性和完整性,實(shí)現(xiàn)對糧油食品供應(yīng)鏈全鏈條的追溯與監(jiān)管,確保糧油食品供應(yīng)鏈安全。本文總結(jié)了區(qū)塊鏈技術(shù)應(yīng)用到糧油食品溯源等領(lǐng)域的研究進(jìn)展,指出當(dāng)前糧油食品區(qū)塊鏈溯源面臨的挑戰(zhàn),并對區(qū)塊鏈技術(shù)在糧油食品溯源領(lǐng)域中的應(yīng)用潛力進(jìn)行展望,為區(qū)塊鏈技術(shù)在糧油食品中的創(chuàng)新應(yīng)用提供有益參考。
[1] LIU J G, ZHANG H M, ZHEN L. Blockchain technology in maritime supply chains: Applications, architecture and challenges[J/OL]. International Journal of Production Research, 2021: 1-17. https://doi.org/10.1080/00207543.2021. 1930239.
[2] ETEMADI N, BORBON-GALVEZ Y, STROZZI F, et al. Supply chain disruption risk management with blockchain: A dynamic literature review[J]. Information, 2021, 12(2): 70.
[3] KUMVENJI D C E, CHAMBA M V M, LUNGU K. Effectiveness of food traceability system in the supply chain of local beef and beef sausages in Malawi: A food safety perspective[J]. Food Control, 2022, 137: 108839.
[4] CHUNG S W, HWANG J T, PARK S H. Physiological effects of bioactive compounds derived from whole grains on cardiovascular and metabolic diseases[J]. Applied Sciences, 2022, 12(2): 658.
[5] XU Y, LI J, ZHAO J, et al. Hempseed as a nutritious and healthy human food or animal feed source: A review[J]. International Journal of Food Science & Technology, 2021, 56(2): 530-543.
[6] 吳曉彤,柳平增,王志鏵. 基于區(qū)塊鏈的農(nóng)產(chǎn)品溯源系統(tǒng)研究[J]. 計(jì)算機(jī)應(yīng)用與軟件,2021,38(5):42-48.
WU Xiaotong, LIU Pingzeng, WANG Zhihua. Traceability system of agricultural products based on blockchain[J].Computer Applications and Software, 2021, 38(5): 42-48. (in Chinese with English abstract)
[7] JAGTAP S, TROLLMAN H, TROLLMAN F, et al. The Russia-Ukraine conflict: Its implications for the global food supply chains[J]. Foods, 2022, 11(14): 2098.
[8] 中國紀(jì)委國家監(jiān)委. 中央紀(jì)委國家監(jiān)委公開通報(bào)十起糧食購銷領(lǐng)域違紀(jì)違法典型案例[EB/OL]. 2023-01-29[2023-02-12]. https://www.ccdi.gov.cn/toutiaon/202301/t20230129_243305.html.
[9] DUAN J, ZHANG C, GONG Y, et al. A content-analysis based literature review in blockchain adoption within food supply chain[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1784.
[10] ETEMADI N, VAN GELDER P, STROZZI F. An ism modeling of barriers for blockchain/distributed ledger technology adoption in supply chains towards cybersecurity[J]. Sustainability, 2021, 13(9): 4672.
[11] LIU P. Investment decisions of blockchain-based anti-counterfeiting traceability services in a high-quality fresh supply chain of china[J]. Agriculture, 2022, 12(6): 829.
[12] JOO J, HAN Y. An evidence of distributed trust in blockchain-based sustainable food supply chain[J]. Sustainability, 2021, 13(19): 10980.
[13] BUDISH E B. The economic limits of Bitcoin and anonymous, decentralized trust on the blockchain[J]. University of Chicago, Becker Friedman Institute for Economics Working Paper, 2022(83): 1-56.
[14] RUAN P, DINH T T A, LOGHIN D, et al. Blockchains vs. distributed databases: Dichotomy and fusion[C]//Proceedings of the 2021 International Conference on Management of Data, New York, USA: ACM Conference, 2021: 1504-1517.
[15] LIAO D, DONG X, XU Z, et al. An efficient storage architecture based on blockchain and distributed database for public security big data[C]//International Conference on Computer Science, Engineering and Education Applications. Springer, Cham, 2022: 350-362.
[16] LI X, WU L, ZHAO R, et al. Two-layer adaptive blockchain-based supervision model for off-site modular housing production[J]. Computers in Industry, 2021, 128: 103437.
[17] ZHANG Y, WANG T, YUEN K V. Construction site information decentralized management using blockchain and smart contracts[J]. Computer‐Aided Civil and Infrastructure Engineering, 2022, 37(11): 1450-1467.
[18] CHENG H K, HU D, PUSCHMANN T, et al. The landscape of blockchain research: Impacts and opportunities[J]. Information Systems and e-Business Management, 2021, 19(3): 749-755.
[19] 錢建平,范蓓蕾,史云,等. 基于區(qū)塊鏈的農(nóng)產(chǎn)品可信追溯系統(tǒng)框架構(gòu)建[J]. 中國農(nóng)業(yè)信息,2019,31(3):48-57.
QIAN Jianping, FAN Beilei, SHI Yun, et al. The structure of credible traceability system for agricultural products based on blockchain[J]. China Agricultural Informatics, 2019, 31(3): 48-57. (in Chinese with English abstract)
[20] KERESZTES é R, KOVáCS I, HORVáTH A, et al. Exploratory analysis of blockchain platforms in supply chain management[J]. Economies, 2022, 10(9): 206.
[21] SAI A R, BUCKLEY J, FITZGERALD B, et al. Taxonomy of centralization in public blockchain systems: A systematic literature review[J]. Information Processing & Management, 2021, 58(4): 102584.
[22] FENG H, WANG X, DUAN Y, et al. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges[J]. Journal of Cleaner Production, 2020, 260: 121031.
[23] RATTA P, KAUR A, SHARMA S, et al. Application of blockchain and internet of things in healthcare and medical sector: Applications, challenges, and future perspectives[J/OL]. Journal of Food Quality, 2021: 7608296. https://doi.org/ 10.1155/2021/7608296.
[24] 郭上銅,王瑞錦,張鳳荔. 區(qū)塊鏈技術(shù)原理與應(yīng)用綜述[J]. 計(jì)算機(jī)科學(xué),2021,48(2):271-281.
GUO Shangtong, WANG Jinrui, ZHANG Fengli. Summary of principle and application of blockchain[J]. Computer Science, 2021, 48(2): 271-281. (in Chinese with English abstract)
[25] BHUTTA M N M, KHWAJA A A, NADEEM A, et al. A survey on blockchain technology: Evolution, architecture and security[J]. IEEE Access, 2021, 9: 61048-61073.
[26] 伍德倫,饒?jiān)?,許磊,等.農(nóng)產(chǎn)品區(qū)塊鏈信息可信評估差異化共享模型設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(11):309-317.
WU Delun, RAO Yuan, XU Lei, Design and implementation of the trusted evaluation and differentiated sharing model for agricultural blockchain information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 309-317. (in Chinese with English abstract)
[27] DEMESTICHAS K, PEPPES N, ALEXAKIS T, et al. Blockchain in agriculture traceability systems: A review[J]. Applied Sciences, 2020, 10(12): 4113.
[28] FENG Q, HE D, ZEADALLY S, et al. A survey on privacy protection in blockchain system[J]. Journal of Network and Computer Applications, 2019, 126: 45-58.
[29] SHAO W, JIA C, XU Y, et al. Attrichain: Decentralized traceable anonymous identities in privacy-preserving permissioned blockchain[J]. Computers & Security, 2020, 99: 102069.
[30] WU H Y, YANG X, YUE C, et al. Chain or DAG? Underlying data structures, architectures, topologies and consensus in distributed ledger technology: A review, taxonomy and research issues[J]. Journal of Systems Architecture, 2022: 102720.
[31] WANG Z, WANG L, XIAO F, et al. A traditional Chinese medicine traceability system based on lightweight blockchain[J]. Journal of medical Internet research, 2021, 23(6): e25946.
[32] 楊信廷,王明亭,徐大明,等. 基于區(qū)塊鏈的農(nóng)產(chǎn)品追溯系統(tǒng)信息存儲模型與查詢方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):323-330.
YANG Xinting, WANG Mingting XU Daming, et al. Data storage and query method of agricultural products traceability information based on blockchain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 323-330. (in Chinese with English abstract)
[33] DAI M, ZHANG S, WANG H, et al. A low storage room requirement framework for distributed ledger in blockchain[J]. IEEE Access, 2018, 6: 22970-22975.
[34] XU Y, HUANG Y. Segment blockchain: A size reduced storage mechanism for blockchain[J]. IEEE Access, 2020, 8: 17434-17441.
[35] ZHANG X, SUN P, XU J, et al. Blockchain-based safety management system for the grain supply chain[J]. IEEE Access, 2020, 8: 36398-36410.
[36] KUMAR R, TRIPATHI R. Implementation of distributed file storage and access framework using IPFS and blockchain[C]//2019 Fifth International Conference on Image Information Processing (ICIIP). Shimla, India: IEEE, 2019: 246-251.
[37] ZHANG X, LI Y, PENG X, et al. Information traceability model for the grain and oil food supply Chain based on trusted identification and trusted blockchain[J]. International Journal of Environmental Research and Public Health, 2022, 19(11): 6594.
[38] 于華竟,徐大明,羅娜,等.雜糧供應(yīng)鏈區(qū)塊鏈多鏈追溯監(jiān)管模型設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(20):323-332.
YU Huajing, XU Daming, LUO Na, et al. Design of the blockchain multi-chain traceability supervision model for coarse cereal supply chain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 323-332. (in Chinese with English abstract)
[39] SALAH K, NIZAMUDDIN N, JAYARAMAN R, et al. Blockchain-based soybean traceability in agricultural supply chain[J]. IEEE Access, 2019, 7: 73295-73305.
[40] LIU X, BARENJI A V, LI Z, et al. Blockchain-based smart tracking and tracing platform for drug supply chain[J]. Computers & Industrial Engineering, 2021, 161: 107669.
[41] WANG L, XU L, ZHENG Z, et al. Smart contract-based agricultural food supply chain traceability[J]. IEEE Access, 2021, 9: 9296-9307.
[42] YU C T, ZHAN Y Z, LI Z Y. Using blockchain and smart contract for traceability in agricultural products supply chain[C]//2020 International Conference on Internet of Things and Intelligent Applications (ITIA). Zhenjiang, China: IEEE, 2020: 1-5.
[43] KTARI J, FRIKHA T, CHAABANE F, et al. Agricultural lightweight embedded blockchain system: A case study in olive oil[J]. Electronics, 2022, 11(20): 3394.
[44] YAKUBU B M, LATIF R, YAKUBU A, et al. RiceChain: secure and traceable rice supply chain framework using blockchain technology[J]. PeerJ Computer Science, 2022, 8: e801.
[45] 靳世雄,張瀟丹,葛敬國,等. 區(qū)塊鏈共識算法研究綜述[J]. 信息安全學(xué)報(bào),2021,6(2):85-100.
JIN Shixiong, ZHANG Xiaodan, GE Jingguo, et al. Overview of blockchain consensus algorithm[J]. Journal of Information Security, 2021, 6(2): 85-100. (in Chinese with English abstract)
[46] 景旭,劉滋雨,秦源澤. 基于區(qū)塊鏈中繼技術(shù)的集群式農(nóng)產(chǎn)品供應(yīng)鏈溯源模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(11):299-308.
JING Xu, LIU Ziyu, Qin Yuanze. Traceability model of cluster agricultural product supply chains based on blockchain relay technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 299-308. (in Chinese with English abstract)
[47] LI C, ZHANG J, YANG X, et al. Lightweight blockchain consensus mechanism and storage optimization for resource-constrained IoT devices[J]. Information Processing & Management, 2021, 58(4): 102602.
[48] BRAVO-MARQUEZ F, REEVES S, UGARTE M. Proof-of-learning: A blockchain consensus mechanism based on machine learning competitions[C]//2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON). Newark, CA, USA: IEEE, 2019: 119-124.
[49] 任守綱,何自明,周正己,等.基于CSBFT區(qū)塊鏈的農(nóng)作物全產(chǎn)業(yè)鏈信息溯源平臺設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):279-286.
REN Shougang, HE Ziming, ZHOU Zhengji, et al. Design and implementation of information tracing platform for crop whole industry chain based on CSBFT-Blockchain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 279-286. (in Chinese with English abstract)
[50] LI Y, ZHANG X, ZHAO Z, et al. Research on grain food blockchain traceability information management model based on master-slave multichain[J/OL]. Computational Intelligence and Neuroscience, 2022: 7498025. https://doi.org/10.1155/2022/7498025.
[51] GAO H, MA Z, LUO S, et al. BSSPD: A blockchain-based security sharing scheme for personal data with fine-grained access control[J/OL]. Wireless Communications and Mobile Computing, 2021: 6658920. https://doi.org/10.1155/2021/ 6658920.
[52] LU X, FU S, JIANG C, et al. A fine-grained IoT data access control scheme combining attribute-based encryption and blockchain[J]. Security and Communication Networks, 2021: 5308206. https://doi.org/10.1155/2021/5308206.
[53] ZHANG G, CHEN X, FENG B, et al. Research on a safe and reliable agricultural product traceability system driven by permissioned blockChain technology[C]//The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021). Singapore: Springer, 2022: 955-966.
[54] TARIQ F, KHAN Z A, SULTANA T, et al. Leveraging fine-grained access control in blockchain-based healthcare system[C]//International Conference on Advanced Information Networking and Applications. Caserta, Italy, Springer, Cham, 2020: 106-115.
[55] ZHANG L, KAN H, XU Y, et al. Revocable data sharing methodology based on SGX and blockchain[C]//International Conference on Network and System Security. Tianjin, China: Springer, Cham, 2021: 61-78.
[56] LEI M, XU L, LIU T, et al. Integration of privacy protection and blockchain-based food safety traceability: potential and challenges[J]. Foods, 2022, 11(15): 2262.
[57] HASSAN M U, REHMANI M H, CHEN J. Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions[J]. Future Generation Computer Systems, 2019, 97: 512-529.
[58] 陳邦越. 基于區(qū)塊鏈的水稻全供應(yīng)鏈溯源系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D]. 長春:吉林農(nóng)業(yè)大學(xué),2021.
CHEN Bangyue. Design and Implementation of A Blockchain-Based Whole Supply Chain Traceability System for Rice[D]. Changchun:Jilin Agricultural University, 2021. (in Chinese with English abstract)
[59] 范茂順. 基于區(qū)塊鏈的隱私保護(hù)農(nóng)產(chǎn)品溯源系統(tǒng)研究與實(shí)現(xiàn)[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2021.
FAN Maoshun. Research and Implementation of Privacy-Preserving Agricultural Product Traceability System Based on Blockchain[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese with English abstract)
[60] ZHOU J, FENG Y, WANG Z, et al. Using secure multi-party computation to protect privacy on a permissioned blockchain[J]. Sensors, 2021, 21(4): 1540.
[61] WANG J, ZHANG X, XU J, et al. Blockchain-based information supervision model for rice supply chains[J]. Computational Intelligence and Neuroscience, 2022: 2914571. https://doi.org/10.1155/2022/2914571.
[62] MALIK S, DEDEOGLU V, KANHERE S S, et al. Privchain: Provenance and privacy preservation in blockchain enabled supply chains[C]//2022 IEEE International Conference on Blockchain, Espoo, Finland: IEEE, 2022: 157-166.
[63] 李莉,杜慧娜,李濤. 基于群簽名與屬性加密的區(qū)塊鏈可監(jiān)管隱私保護(hù)方案[J]. 計(jì)算機(jī)工程,2022,48(6):132-138.
LI Li, DU Huina, LI Tao. Blockchain supervisable privacy protection scheme based on group signature and attribute encryption[J].Computer Engineering, 2022, 48(6): 132-138. (in Chinese with English abstract)
[64] 錢建平,吳文斌,楊鵬. 新一代信息技術(shù)對農(nóng)產(chǎn)品追溯系統(tǒng)智能化影響的綜述[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):182-191.
QIAN Jianping, WU Wenbin, YANG Peng. Review on agricultural products smart traceability system affected by new generation information technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 182-191. (in Chinese with English abstract)
[65] 李佳利,陳宇,錢建平,等. 融合HACCP體系的農(nóng)產(chǎn)品區(qū)塊鏈追溯系統(tǒng)精準(zhǔn)上鏈機(jī)制改進(jìn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(20):276-285.
LI Jiali, CHEN Yu, QIAN Jianping, et al. Improvement of the precise up-chain mechanism of the agricultural products blockchain traceability system integrating the HACCP system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 276-285. (in Chinese with English abstract)
[66] 劉丹,竇津津,胡建斌. 基于“區(qū)塊鏈+物聯(lián)網(wǎng)”融合的農(nóng)產(chǎn)品溯源系統(tǒng)[J]. 軟件工程,2021,24(7):39-42.
LIU Dan, DOU Jinjin, HU Jianbin. Agricultural product traceability system based on integration of “blockchain + internet of things”[J]. Software Engineering, 2021, 24(7): 39-42. (in Chinese with English abstract)
[67] XU C, CHEN K, ZUO M, et al. Urban fruit quality traceability model based on smart contract for Internet of Things[J]. Wireless Communications and Mobile Computing, 2021: 9369074. https://doi.org/10.1155/2021/9369074.
[68] WU Y, JIN X, YANG H, et al. Blockchain-based internet of things: Machine learning tea sensing trusted traceability system[J]. Journal of Sensors, 2022: 8618230. https://doi.org/10.1155/2022/8618230.
[69] MONDAL S, WIJEWARDENA K P, KARUPPUSWAMI S, et al. Blockchain inspired RFID-based information architecture for food supply chain[J]. IEEE Internet of Things Journal, 2019, 6(3): 5803-5813.
[70] JAGTAP S, TROLLMAN H, TROLLMAN F, et al. The Russia-Ukraine conflict: Its implications for the global food supply chains[J]. Foods, 2022, 11(14): 2098.
[71] PENG X, ZHANG X, WANG X, et al. Multi-Chain collaboration-based information management and control for the rice supply chain[J]. Agriculture, 2022, 12(5): 689.
[72] ALKHUDARY R, BRUSSET X, NASERALDIN H, et al. Enhancing the competitive advantage via blockchain: an olive oil case study[J]. IFAC-PapersOnLine, 2022, 55(2): 469-474.
[73] ZHANG X, SUN P, XU J, et al. Blockchain-based safety management system for the grain supply chain[J]. IEEE Access, 2020, 8: 36398-36410.
[74] PENG W, YI L, FANG L, et al. Secure and traceable copyright management system based on blockchain[C]//2019 IEEE 5th International Conference on Computer and Communications (ICCC). Chengdu, China: IEEE, 2019: 1243-1247.
[75] AIELLO G, ENEA M, MURIANA C. The expected value of the traceability information[J]. European Journal of Operational Research, 2015, 244(1): 176-186.
[76] 潘慧萍,李寶安,呂學(xué)強(qiáng),等. 湘冷鏈——基于區(qū)塊鏈的冷鏈溯源系統(tǒng)[J]. 食品與機(jī)械,2021,37(9):145-152.
PAN Huiping, LI Baoan, LV Xueqiang, et al. Hunan cold chain: Cold chain traceability system based on blockchain[J]. Food & Machinery, 2021, 37(9): 145-152. (in Chinese with English abstract)
[77] GARCíA-OLIVEIRA P, FRAGA-CORRAL M, PEREIRA A G, et al. Solutions for the sustainability of the food production and consumption system[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(7): 1765-1781.
[78] GHOSH S, PUDALE S. Traceable and reliable food supply chain through blockchain-based technology in association with marginalized farmers[M]// New York: Apple Academic Press, 2022: 431-457.
[79] VARAVALLO G, CARAGNANO G, BERTONE F, et al. Traceability platform based on green blockchain: An application case study in dairy supply chain[J]. Sustainability, 2022, 14(6): 3321.
[80] CHEN C L, LIM Z Y, LIAO H C, et al. A traceable and verifiable tobacco products logistics system with gps and rfid technologies[J]. Applied Sciences, 2021, 11(11): 4939.
[81] BAMAKAN S M H, MOGHADDAM S G, MANSHADI S D. Blockchain-enabled pharmaceutical cold chain: Applications, key challenges, and future trends[J]. Journal of Cleaner Production, 2021, 302: 127021.
[82] PENG X, ZHANG X, WANG X, et al. Research on the cross-chain model of rice supply chain supervision based on parallel blockchain and smart contracts[J]. Foods, 2022, 11(9): 1269.
[83] 董云峰,張新,許繼平,等. 基于區(qū)塊鏈的糧油食品全供應(yīng)鏈可信追溯模型[J]. 食品科學(xué),2020,41(9):30-36.
DONG Yunfeng, ZHANG Xin, XU Jiping, et al. Blockchain- based traceability model for grains and oils whole supply Chain[J]. Food Science, 2020, 41(9): 30-36. (in Chinese with English abstract)
[84] 李旭東,楊千河,姚竟發(fā),等. 基于區(qū)塊鏈的農(nóng)產(chǎn)品溯源技術(shù)研究綜述[J]. 江蘇農(nóng)業(yè)科學(xué),2022,50(6):16-24.
LI Xudong, YANG Qianhe, YAO Jingfa, et al. Study on traceability technology of agricultural products based on blockchain: A review[J]. Jiangsu Agricultural Science, 2022, 50(6): 16-24. (in Chinese with English abstract)
[85] MALIK N, ALKHATIB K, SUN Y, et al. A comprehensive review of blockchain applications in industrial Internet of Things and supply chain systems[J]. Applied Stochastic Models in Business and Industry, 2021, 37(3): 391-412.
[86] LATIF S, IDREES Z, E HUMA Z, et al. Blockchain technology for the industrial Internet of Things: A comprehensive survey on security challenges, architectures, applications, and future research directions[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(11): e4337.
[87] GORKHALI A, CHOWDHURY R. Blockchain and the evolving financial market: A literature review[J]. Journal of Industrial Integration and Management, 2022, 7(1): 47-81.
[88] XU J, HAN J, QI Z, et al. A reliable traceability model for grain and oil quality safety based on blockchain and industrial internet[J]. Sustainability, 2022, 14(22): 15144.
[89] LU Y, LI P, XU H. A Food anti-counterfeiting traceability system based on Blockchain and Internet of Things[J]. Procedia Computer Science, 2022, 199: 629-636.
[90] SUN S, DU R, CHEN S, et al. Blockchain-based IoT access control system: Towards security, lightweight, and cross-domain[J]. IEEE Access, 2021, 9: 36868-36878.
[91] ZHANG H, CHEN X, LAN X, et al. BTCAS: A blockchain-based thoroughly cross-domain authentication scheme[J]. Journal of Information Security and Applications, 2020, 55: 102538.
[92] MAZLAN A A, DAUD S M, SAM S M, et al. Scalability challenges in healthcare blockchain system: A systematic review[J]. IEEE Access, 2020, 8: 23663-23673.
[93] YAQOOB I, SALAH K, JAYARAMAN R, et al. Blockchain for healthcare data management: opportunities, challenges, and future recommendations[J/OL]. Neural Computing and Applications, 2021: 1-16. https://link.springer.com/article/ 10.1007/s00521-020-05519-w.
[94] KHAN U, AN Z Y, IMRAN A. A blockchain ethereum technology-enabled digital content: Development of trading and sharing economy data[J]. IEEE Access, 2020, 8: 217045-217056.
[95] FERRARO P, KING C, SHORTEN R. On the stability of unverified transactions in a DAG-based distributed ledger[J]. IEEE Transactions on Automatic Control, 2019, 65(9): 3772-3783.
[96] YANG W, DAI X, XIAO J, et al. LDV: A lightweight DAG-based blockchain for vehicular social networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 5749-5759.
[97] CHEN W, YANG X, ZHANG H, et al. Big data architecture for scalable and trustful DNS based on sharded DAG blockchain[J]. Journal of Signal Processing Systems, 2021, 93: 753-768.
[98] LU Y, HUANG X, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311.
[99] JAYABALAN J, JEYANTHI N. Scalable blockchain model using off-chain IPFS storage for healthcare data security and privacy[J]. Journal of Parallel and Distributed Computing, 2022, 164: 152-167.
[100] XIE J, ZHANG K, LU Y L, et al. Resource-efficient DAG blockchain with sharding for 6G networks[J]. IEEE Network, 2021, 36(1): 189-196.
[101] ZHANG H, LENG S, WU F, et al. A DAG blockchain-enhanced user-autonomy spectrum sharing framework for 6G-enabled IoT[J]. IEEE Internet of Things Journal, 2021, 9(11): 8012-8023.
Research progress and prospect of grain and oil food traceability based on blockchain technology
GE Hongyi1,2,3, WU Xuyang1,2,3, JIANG Yuying1,2,4※, ZHANG Yuan1,2,3※, SUN Zhenyu1,2,3, CUI Guangyuan1,2,3, JIA Zhiyuan1,2,3
(1.,,,450001,; 2.,,450001,; 3.,,450001,; 4.,,450001,)
Grains and oils have been one of the most important branches of agricultural products in the basic necessity of daily life. The safety accidents of cereal and oil food occur frequently in recent years, leading to a gradual weakening of the consumers' trust in cereal and oil food quality and supply chain. There is a long cycle in the supply chain of cereals, oils, and foodstuffs, particularly for the complex structure and many stakeholders. It is still challenging to maintain the safety of the supply chain, especially in the field of grain purchase and sale. There are some risks to food security, such as "topping new with old", "revolving grain", and pressure on grade and price. The traceability system can serve as the product management to implement forward, reverse, and non-directional tracking of products, in order to connect all aspects of grain, oil, and food distribution. As such, an important guarantee can be provided for the quality and safety in the process of raw material collection, manufacturing, processing, storage, and transportation, as well as distribution and sales. The traditional traceability system cannot fully meet the large-scale production in recent years, such as data centralization, opaque information, easy data falsification, and easy formation of information silos. Blockchain can be taken as a next-generation disruptive technology after the Internet, with new features such as decentralization, distributed storage, anonymity, open and transparent data, and content not easily tampered with, bringing new solutions to product traceability in the grain and oil food supply chain. The article first introduced the basic meaning of blockchain technology, and then listed the development stages of blockchain 1.0-3.0, including the characteristics and application scenarios of each stage. Blockchain technology was summarized in the blockchain traceability field of grain and oil food over the past five years, with emphasis on the different architectures. The progress of blockchain-related technology was described in such fields as grain and oil food traceability, including combining blockchain and Internet of Things (IoT) technologies. The traceability system was then optimized for the blockchain storage performance for the traceability system. The basic architecture of blockchain was applied to the grain and oil food traceability, including blockchain alone and the blockchain + IoT. Some differences and difficulties were proposed to apply the blockchain in the field of grain, oil, and foodstuffs traceability, compared with the financial and industrial IoT fields. Traceability was used for the different categories of agricultural products. The current challenges were elaborated, in terms of storage performance, interoperability, traceability system portability, supervision difficulty, cross-chain, and cross-domain. The blockchain storage performance enhanced the blockchain scalability and throughput, and then integrated blockchain+IoT+artificial intelligence, as well as the cereal and oil food blockchain in the cross-domain and cross-chain. An outlook was given on the future field of cereal and oil food traceability. The finding can also provide a strong reference for the innovative application of blockchain technology in cereal and oil food.
agricultural products; traceability; blockchain; traceability system; grain and oil food; supply chain
10.11975/j.issn.1002-6819.202209205
TP301
A
1002-6819(2023)-05-0214-10
葛宏義,吳旭陽,蔣玉英,等. 基于區(qū)塊鏈技術(shù)的糧油食品溯源研究進(jìn)展及展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(5):214-223.doi:10.11975/j.issn.1002-6819.202209205 http://www.tcsae.org
GE Hongyi, WU Xuyang, JIANG Yuying, et al. Research progress and prospect of grain and oil food traceability based on blockchain technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 214-223. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202209205 http://www.tcsae.org
2022-09-26
2023-02-24
國家自然科學(xué)基金項(xiàng)目(61975053, 62271191);河南工業(yè)大學(xué)糧食信息處理與控制教育部重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(KFJJ2020103, KFJJ2021102);河南省自然科學(xué)基金項(xiàng)目(222300420040);河南省高校科技創(chuàng)新人才支持計(jì)劃項(xiàng)目(22HASTIT017, 23HASTIT024);河南省重大公益專項(xiàng)(201300210100)
葛宏義,博士,副教授,研究方向?yàn)橄冗M(jìn)傳感技術(shù)、區(qū)塊鏈技術(shù)。Email:gehongyi2004@163.com
蔣玉英,博士,副教授,研究方向?yàn)橹悄苄畔⑻幚?。Email:jiangyuying11@163.com
張?jiān)?,教授,博士生?dǎo)師,研究方向?yàn)橹悄苄畔⑴c信號處理、電磁波探測技術(shù)。Email:zhangyuan@haut.edu.cn