国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

耦合幾何參數(shù)與載荷參數(shù)的混流泵優(yōu)化

2023-05-15 07:58:16王夢(mèng)成夏鶴鵬顏紅勤蔣紅櫻袁建平陳松山
關(guān)鍵詞:混流輪緣輪轂

王夢(mèng)成,夏鶴鵬,顏紅勤,蔣紅櫻,袁建平,陳松山

耦合幾何參數(shù)與載荷參數(shù)的混流泵優(yōu)化

王夢(mèng)成1,夏鶴鵬2,顏紅勤2,蔣紅櫻2,袁建平3,陳松山1※

(1.揚(yáng)州大學(xué)電器與能源動(dòng)力工程學(xué)院,揚(yáng)州 225127;2.江蘇省水利工程科技咨詢(xún)股份有限公司,南京 210029;3. 江蘇大學(xué)國(guó)家水泵研究中心,鎮(zhèn)江 212013)

為進(jìn)一步提升混流泵優(yōu)化效果,并探究幾何參數(shù)和載荷參數(shù)與導(dǎo)葉式混流泵能量特性間的響應(yīng)關(guān)系,該研究結(jié)合正交試驗(yàn)與數(shù)值模擬,對(duì)比轉(zhuǎn)速為511的導(dǎo)葉式混流泵葉輪開(kāi)展參數(shù)優(yōu)化研究。在試驗(yàn)驗(yàn)證數(shù)值模擬準(zhǔn)確性的基礎(chǔ)上,采用反問(wèn)題設(shè)計(jì)方法,以0.85des和1.15des(des為設(shè)計(jì)流量)處泵段水力效率為優(yōu)化目標(biāo),以1.0des處泵段揚(yáng)程為約束條件,耦合軸面投影幾何參數(shù)與流線方向載荷參數(shù)進(jìn)行混流泵參數(shù)設(shè)計(jì)。研究結(jié)果表明:幾何參數(shù)h和S(前緣與輪轂及輪緣交點(diǎn)的軸坐標(biāo))與載荷參數(shù)h、Es、Cs和s(輪轂處中間直線斜率、輪緣處前緣載荷、輪緣處第一加載點(diǎn)橫坐標(biāo)和輪緣處中間直線段斜率)均對(duì)混流泵能量特性具有較大影響,在優(yōu)化設(shè)計(jì)中均應(yīng)被重點(diǎn)考慮;與原始模型相比,優(yōu)化模型在葉輪出口附近具有更加合理的流場(chǎng)分布,可有效減少葉輪下游部件水力損失,其在0.85des和1.15des處的泵段效率分別提升了0.90和2.25個(gè)百分點(diǎn)。研究方法可為渦輪機(jī)械的參數(shù)化優(yōu)化節(jié)約計(jì)算資源、最大化優(yōu)化效果提供參考。

混流泵;優(yōu)化;反問(wèn)題設(shè)計(jì);幾何參數(shù);載荷參數(shù);數(shù)值模擬;正交設(shè)計(jì)

0 引 言

混流泵由于其流量較大、揚(yáng)程適中的特點(diǎn),在大型泵站工程中得到了廣泛地應(yīng)用[1]。在泵站的實(shí)際運(yùn)行中,由于外部條件的頻繁變化,導(dǎo)致其需要在較大的流量范圍內(nèi)運(yùn)行,因此有必要對(duì)混流泵的多工況優(yōu)化進(jìn)行研究[2]。目前針對(duì)混流泵的設(shè)計(jì)方法可分為兩大類(lèi):基于幾何參數(shù)(如葉片角和葉片型線等)的傳統(tǒng)設(shè)計(jì)[3]和基于水動(dòng)力參數(shù)(如流線載荷和壓力分布等)的反問(wèn)題設(shè)計(jì)[4]。后者相比于前者具有設(shè)計(jì)參數(shù)少及參數(shù)與水力性能聯(lián)系更緊密等優(yōu)點(diǎn)[5]。此外,反問(wèn)題設(shè)計(jì)方法所獲得的結(jié)果對(duì)應(yīng)著最佳的流場(chǎng)分布,相比于傳統(tǒng)設(shè)計(jì)所得到的最佳幾何參數(shù)組合更具一般性,可以為旋轉(zhuǎn)機(jī)械的設(shè)計(jì)優(yōu)化提供更具普適性的參考[6]。

反問(wèn)題設(shè)計(jì)方法的有效性在過(guò)往的研究中已得到了大量地驗(yàn)證。ZANGENEH等[7-8]采用三段式方程控制流線方向載荷分布,通過(guò)數(shù)值模擬與試驗(yàn)相結(jié)合的方法研究了輪緣與輪轂處載荷分布對(duì)混流泵導(dǎo)葉性能的影響。研究結(jié)果表明通過(guò)控制流線方向載荷分布,可以有效抑制導(dǎo)葉內(nèi)部二次流現(xiàn)象,進(jìn)而提升混流泵整體性能。楊魏等[9]以水力效率為目標(biāo),通過(guò)正交設(shè)計(jì)和數(shù)值模擬相結(jié)合的方法,研究了載荷分布對(duì)潛水軸流泵葉輪和導(dǎo)葉性能的影響。研究結(jié)果表明輪轂與輪緣處前加載有利于葉輪性能的提升;輪轂處中載,輪緣處前加載有利于導(dǎo)葉近壁面處渦分離現(xiàn)象的抑制。在隨后的研究中,楊魏等[10]通過(guò)改變載荷分布形式,研究了載荷分布對(duì)軸流泵葉頂間隙流及其誘導(dǎo)間隙渦流動(dòng)的影響。WANG等[11]以流線載荷與葉輪出口環(huán)量為設(shè)計(jì)參數(shù),結(jié)合拉丁超立方抽樣法、響應(yīng)面模型和非支配排序遺傳算法對(duì)混流泵的多目標(biāo)優(yōu)化進(jìn)行了研究,研究結(jié)果表明輪轂與輪緣處前加載有利于葉輪性能的提升,但會(huì)導(dǎo)致葉輪空化性能的輕微降低。LIU等[12]以輪轂與輪緣處載荷控制參數(shù)為設(shè)計(jì)參數(shù),對(duì)水泵水輪機(jī)的多目標(biāo)優(yōu)化設(shè)計(jì)進(jìn)行了研究。研究發(fā)現(xiàn)給予輪轂處中加載,輪緣處后加載,葉片高壓側(cè)較大的正傾斜角有利于葉輪性能的提升。WANG等[13]以反問(wèn)題設(shè)計(jì)方法為基礎(chǔ),在葉輪和導(dǎo)葉的耦合優(yōu)化中對(duì)葉輪出口與導(dǎo)葉進(jìn)口角動(dòng)量的選擇及流場(chǎng)的匹配計(jì)算進(jìn)行了研究。韓亞?wèn)|等[14]采用四次函數(shù)控制速度矩分布,對(duì)基于可變載荷的混流泵葉輪設(shè)計(jì)優(yōu)化進(jìn)行了研究。

盡管上述研究取得了一定的成果,但在設(shè)計(jì)優(yōu)化中,僅考慮了載荷參數(shù)對(duì)葉片性能的影響,而軸面投影圖等幾何參數(shù)對(duì)葉片性能的影響均被忽略,從而降低了優(yōu)化上限。為進(jìn)一步提升導(dǎo)葉式混流泵葉輪性能,并探究幾何參數(shù)與載荷參數(shù)耦合作用下兩者對(duì)其性能的影響,本文以反問(wèn)題設(shè)計(jì)方法為基礎(chǔ),結(jié)合正交設(shè)計(jì)與數(shù)值模擬,以幾何參數(shù)與載荷參數(shù)為設(shè)計(jì)參數(shù),以0.85des和1.15des(des為設(shè)計(jì)流量)處泵段效率為優(yōu)化目標(biāo),以1.0des處泵段揚(yáng)程為約束條件,對(duì)比轉(zhuǎn)速為511的導(dǎo)葉式混流泵葉輪進(jìn)行參數(shù)分析和優(yōu)化設(shè)計(jì)。

1 數(shù)值模擬與反問(wèn)題設(shè)計(jì)

1.1 數(shù)值模擬及試驗(yàn)驗(yàn)證

1.1.1 數(shù)值模擬及網(wǎng)格劃分

表1 參考模型設(shè)計(jì)規(guī)范

1.進(jìn)水管 2.葉輪 3.導(dǎo)葉 4.出水管 5.輪緣處網(wǎng)格 6.輪轂處網(wǎng)格

采用商業(yè)軟件ANSYS-CFX求解器對(duì)上述計(jì)算域進(jìn)行數(shù)值求解。泵段進(jìn)口條件設(shè)為質(zhì)量流量進(jìn)口;出口條件設(shè)為壓力出口,相對(duì)壓力設(shè)為101 325 Pa;轉(zhuǎn)子與定子間的數(shù)據(jù)傳遞采用凍結(jié)轉(zhuǎn)子,定子與定子間的數(shù)據(jù)傳遞采用普通交界面;湍流模型選用可準(zhǔn)確預(yù)測(cè)混流泵內(nèi)由于逆壓梯度所造成的流動(dòng)分離的SST-模型[18-19];綜合考慮計(jì)算時(shí)間和收斂精度,收斂標(biāo)準(zhǔn)設(shè)為5×10-5。

1.1.2 模型驗(yàn)證

采用上述計(jì)算設(shè)置及網(wǎng)格劃分對(duì)參考模型進(jìn)行計(jì)算,并將計(jì)算結(jié)果與南水北調(diào)天津同臺(tái)試驗(yàn)測(cè)試結(jié)果進(jìn)行對(duì)比[20],結(jié)果如圖2所示,圖中揚(yáng)程及效率分別由式(1)和(2)進(jìn)行計(jì)算。由圖2可知,在整個(gè)流量范圍內(nèi),模擬值與試驗(yàn)值變化趨勢(shì)基本一致,最大誤差不超過(guò)3%,因此,數(shù)值模擬精度滿(mǎn)足計(jì)算要求,足以保證后續(xù)優(yōu)化結(jié)果的可靠性。

注:Qdes表示設(shè)計(jì)流量,m3·s-1;Hdes表示設(shè)計(jì)揚(yáng)程,m。

1.2 反問(wèn)題設(shè)計(jì)方法

本文采用文獻(xiàn)[21]提出的以環(huán)量作為主要設(shè)計(jì)參數(shù)的三維反問(wèn)題設(shè)計(jì)方法對(duì)混流泵葉輪進(jìn)行參數(shù)優(yōu)化。在該方法中,使用渦片代替葉片對(duì)流體的作用,強(qiáng)度由周向平均環(huán)量表示:

式中?為葉片表面壓差,Pa;m為軸面速度,m/s;為歸一化流線,=0表示葉片前緣,=1表示葉片尾緣。

輪轂及輪緣處載荷分布采用文獻(xiàn)[21]所提出的三段式曲線進(jìn)行控制,如圖3所示,圖中縱坐標(biāo)載荷由葉片尾緣輪緣處角動(dòng)量ss作無(wú)量綱化處理。

注:LE為前緣載荷,NC為第一加載點(diǎn)橫坐標(biāo),ND為第二加載點(diǎn)橫坐標(biāo),K為中間直線斜率,下標(biāo)中的h與s分別代表輪轂與輪緣。

2 葉輪的正交設(shè)計(jì)優(yōu)化

2.1 優(yōu)化目標(biāo)及約束條件

根據(jù)運(yùn)行資料統(tǒng)計(jì)分析,本文所研究泵站常年運(yùn)行于0.85des和1.15des之間,為使優(yōu)化后混流泵模型具有更為廣闊的高效區(qū),且比轉(zhuǎn)速基本不變,本研究以0.85des和1.15des處泵段效率為優(yōu)化目標(biāo),以1.0des處泵段揚(yáng)程為約束條件,對(duì)原始模型進(jìn)行參數(shù)優(yōu)化。

2.2 設(shè)計(jì)參數(shù)選擇

在泵站工程中,為便于混流泵葉輪葉片的變角度調(diào)節(jié),輪轂與輪緣處型線通常由兩個(gè)半徑不同的圓弧來(lái)構(gòu)成??紤]到優(yōu)化后葉輪與導(dǎo)葉間的匹配問(wèn)題[22],在本研究中,不對(duì)葉輪輪轂比進(jìn)行更改,因此,其軸面投影圖的參數(shù)化只需如圖4所示的4個(gè)幾何參數(shù)h、S、h和S完成。

輪轂及輪緣處流線方向載荷分布采用如圖3所示的三段式方程進(jìn)行控制。

ZHU等[23]通過(guò)研究指出,葉片尾緣傾角對(duì)混流泵葉輪內(nèi)的流態(tài)影響較大,因此,在本研究中,葉片尾緣相對(duì)傾角T也被作為設(shè)計(jì)參數(shù)。

注:X軸表示葉輪旋轉(zhuǎn)軸,Y軸垂直于X軸;Lh和LS分別表示前緣與輪轂及輪緣交點(diǎn)的X軸坐標(biāo);Th和TS分別表示尾緣與輪轂及輪緣交點(diǎn)的X軸坐標(biāo)。

2.3 正交設(shè)計(jì)

正交設(shè)計(jì)[24-25]具有試驗(yàn)安排合理、次數(shù)少、周期短和成本低的優(yōu)點(diǎn)。在本研究中,設(shè)計(jì)參數(shù)總數(shù)為13,因素水平設(shè)定為3,不考慮各因素間的交互作用,因此,選擇L27(313)標(biāo)準(zhǔn)正交表進(jìn)行試驗(yàn)設(shè)計(jì),設(shè)計(jì)參數(shù)的取值及其對(duì)應(yīng)水平數(shù)如表2所示,其中,載荷參數(shù)的取值標(biāo)準(zhǔn)為避免葉片對(duì)流體做負(fù)功(即除葉片前緣外,載荷值出現(xiàn)負(fù)值),而幾何參數(shù)的取值標(biāo)準(zhǔn)為避免葉片過(guò)于扭曲,導(dǎo)致反問(wèn)題設(shè)計(jì)計(jì)算發(fā)散。正交設(shè)計(jì)及計(jì)算結(jié)果如表3所示。

表2 設(shè)計(jì)參數(shù)數(shù)值及其水平數(shù)

2.4 極差分析

計(jì)算結(jié)果如表3所示,在本次正交設(shè)計(jì)的27個(gè)方案中,共計(jì)18個(gè)方案揚(yáng)程有所提升,8個(gè)方案在小流量工況處效率有所提升,21個(gè)方案在大流量工況處效率有所提升。

為確定各設(shè)計(jì)參數(shù)對(duì)優(yōu)化目標(biāo)及約束條件的影響程度,采用敏感性分析中常用的極差分析法對(duì)計(jì)算結(jié)果進(jìn)行處理[26],結(jié)果如表4所示。由表4最大差值可知各設(shè)計(jì)參數(shù)對(duì)0.85des下的效率影響由大到小依次為:h、S、Ds、Es、Cs、T、Ch、h、s、S、Dh、Eh、h;為最大化0.85des下的效率,上述參數(shù)取值應(yīng)分別為:?1.6、?126、0.7、?0.2、0.5、20、0.3、?85.5、0、?76、0.9、0和?18。各設(shè)計(jì)參數(shù)對(duì)1.15des下的效率影響由大到小依次為:Es、h、Eh、h、S、s、Dh、S、Cs、Ch、Ds、T、h;為最大化1.15des下的效率,上述參數(shù)取值應(yīng)分別為:0.2、?1.6、0.2、?85.5、?126、?1.6、0.5、?76、0.1、0.5、0.7、0和?16。各設(shè)計(jì)參數(shù)對(duì)1.0des下的揚(yáng)程影響由大到小依次為:Dh、h、Cs、T、s、Ds、Es、S、S、h、Ch、Eh、h。此外,對(duì)比表4中大流量和小流量工況下泵段效率的變化范圍可知設(shè)計(jì)參數(shù)對(duì)大流量工況處泵段效率具有更大的影響。

表3 正交設(shè)計(jì)及計(jì)算結(jié)果

注:Eh、Ch、Dh、h、Es、Cs、Ds、s、T、h、S、h和S分別表示參數(shù)Eh、Ch、Dh、h、Es、Cs、Ds、s、T、h、S、h和S的水平數(shù)。

Note:Eh、Ch、Dh、h、Es、Cs、Ds、s、T、h、S、handSrepresent the level of the parametersEh、Ch、Dh、h、Es、Cs、Ds、s、T、h、S、handS, respectively.

2.5 回歸分析

為構(gòu)建設(shè)計(jì)參數(shù)與優(yōu)化目標(biāo)和約束條件間的響應(yīng)關(guān)系,對(duì)表4中數(shù)據(jù)進(jìn)行線性回歸分析[27-28]。各設(shè)計(jì)參數(shù)與優(yōu)化目標(biāo)間的函數(shù)關(guān)系如式(5)、(6)和(7)所示,它們所對(duì)應(yīng)的決定系數(shù)2(用于評(píng)估回歸方程擬合優(yōu)度的指標(biāo))分別為0.85、0.95和0.88。因此,上述回歸方程具有較高的預(yù)測(cè)精度,可為后續(xù)研究中混流泵的設(shè)計(jì)優(yōu)化提供參考。

對(duì)表3中數(shù)據(jù)進(jìn)行極差分析[29],結(jié)果如表4所示。以泵段效率為例,在小流量工況下,h、S、Ds、Es、Cs和T與泵段效率之間存在顯著關(guān)聯(lián);在大流量工況下,Es、h、Eh、h、S、s、Dh和S與泵段效率之間存在顯著關(guān)聯(lián)。值表明,在混流泵葉輪的設(shè)計(jì)優(yōu)化中,幾何參數(shù)h和S對(duì)混流泵能量特性也有較大影響。因此,在基于反問(wèn)題設(shè)計(jì)的混流泵的設(shè)計(jì)優(yōu)化中,不僅需要考慮載荷參數(shù)對(duì)優(yōu)化結(jié)果的影響,幾何參數(shù)對(duì)優(yōu)化結(jié)果的影響也需要被考慮。

2.6 優(yōu)化模型的構(gòu)建

為最大化混流泵效率,根據(jù)極差分析與回歸分析結(jié)果,最終選定Eh、Ch、Dh、h、Es、Cs、Ds、s、T、h、S、h和S的值分別為0.2、0.5、0.7、?1.6、0、0.3、0.7、?1.6、0、?94.5、?140、?126、?18和?76。原始模型與優(yōu)化模型的葉片外形及軸面投影圖對(duì)比如圖5所示。相比于原始模型,優(yōu)化模型葉片長(zhǎng)度在輪緣處有所減小,在輪轂處則基本不變,但整體向葉輪出口方向偏移。

表4 各流量工況泵段效率和揚(yáng)程極差分析

注:< 0.05表示與性能顯著關(guān)聯(lián)。

Note:<0.05 indicates a significant correlation with performance.

圖5 原始模型與優(yōu)化模型葉片外形和軸面投影對(duì)比

3 性能分析

3.1 能量特性對(duì)比

為驗(yàn)證上述優(yōu)化的有效性,采用1.1節(jié)所述計(jì)算設(shè)置對(duì)優(yōu)化模型進(jìn)行計(jì)算,并將所得結(jié)果與原始模型計(jì)算結(jié)果進(jìn)行對(duì)比,對(duì)比結(jié)果如圖6所示。相比于原始模型,優(yōu)化模型的泵段效率在整個(gè)流量范圍內(nèi)均有所提高,且提升幅度隨著流量的增加而增加。以0.85des和1.15des處泵段效率為例,優(yōu)化模型泵段效率分別為83.02%和83.89%,相比于原始模型泵段效率82.12%和81.64%,分別增加了0.90和2.25個(gè)百分點(diǎn)。此外,在設(shè)計(jì)流量及大流量工況處,兩者揚(yáng)程基本一致;然而,在小流量工況處,優(yōu)化模型揚(yáng)程略低于原始模型。效率與揚(yáng)程的變化表明優(yōu)化模型相比于原始模型在整個(gè)流量范圍內(nèi)具有更小的軸功率與更為節(jié)能的特性。因此,優(yōu)化模型滿(mǎn)足效率提升而比轉(zhuǎn)速基本不變的優(yōu)化要求。

圖6 原始模型與優(yōu)化模型性能對(duì)比

3.2 流場(chǎng)分析

為闡明優(yōu)化模型與原始模型性能差異產(chǎn)生的根本原因,對(duì)兩者內(nèi)部流場(chǎng)進(jìn)行對(duì)比分析??紤]到大流量工況下兩者效率差異更大,內(nèi)部流態(tài)區(qū)別可能更為明顯,因此,以下對(duì)比分析均建立在1.15des工況處。

圖7為原始模型與優(yōu)化模型葉片工作面上速度矢量分布及壓力分布。與原始模型相比,優(yōu)化模型葉片表面壓力分布更加均勻,壓力梯度方向與主流方向基本一致,且葉片前緣輪緣附近的低壓區(qū)范圍得到了明顯減弱。此外,在原始模型的葉片工作面區(qū)域A中觀測(cè)到了明顯的H-S型二次流[30-31](輪轂到輪緣),而在優(yōu)化模型中,該二次流現(xiàn)象幾乎被消除,如優(yōu)化模型區(qū)域B所示。

由圖7可知優(yōu)化模型和原始模型靠近輪轂處壓力及速度矢量分布均較為相似,而輪緣處差異則較大。原始模型和優(yōu)選模型輪轂及跨中處速度云圖分布基本相同,而輪緣處速度云圖分布差異較大,因此,為了凸顯兩模型的流場(chǎng)差異,取原始模型與優(yōu)化模型0.95倍葉高處周向展開(kāi)圖速度云圖分布進(jìn)行對(duì)比,結(jié)果如圖8所示。在原始模型葉片工作面前緣附近,觀測(cè)到因入流角與葉片安放角不匹配所引起的低流速區(qū)域C,速度的快速變化意味著該處流態(tài)的惡化[32]。在優(yōu)化模型中,該低速區(qū)則得到了良好的抑制,如區(qū)域D所示。

圖7 葉片表面速度矢量與壓力分布

圖8 0.95倍葉高處速度云圖

葉輪出口翼展方向總壓分布可在一定程度上反映葉片不同葉高處做功能力[33],因此,有必要對(duì)原始模型和優(yōu)化模型葉輪出口處總壓分布進(jìn)行對(duì)比分析,結(jié)果如圖9所示,圖中縱坐標(biāo)為歸一化翼展相對(duì)位置。與原始模型相比,優(yōu)化模型輪轂側(cè)壓力得到了較大提升,輪緣側(cè)壓力則有所降低;在整個(gè)翼展方向,優(yōu)化模型具有更加均勻的壓力分布,特別是在0.15~0.85倍翼展處,優(yōu)化模型總壓分布幾乎保持不變。更加均勻的壓力分布意味著更為理想的流態(tài),其也將有利于葉輪下游部件中因流體的混合碰撞而造成的水力損失的減少。

圖9 葉輪出口處翼展方向總壓分布

為驗(yàn)證葉輪出口處流態(tài)對(duì)葉輪下游部件水力性能的影響,對(duì)兩模型導(dǎo)葉內(nèi)的流態(tài)進(jìn)行對(duì)比分析。圖10為原始模型和優(yōu)化模型導(dǎo)葉跨中處流線分布,在原始模型導(dǎo)葉葉片背面區(qū)域E中,出現(xiàn)了一明顯的因流動(dòng)分離所導(dǎo)致的低速區(qū),且其存在著向?qū)~出口擴(kuò)散的趨勢(shì)。在優(yōu)化模型中,該低速區(qū)被完全消除,流線分布整體較為光順,如區(qū)域F所示。

圖10 導(dǎo)葉跨中處流線分布

上述對(duì)比分析直觀地展示了優(yōu)化模型性能提升的根本原因,即葉輪內(nèi)流態(tài)的改善及其出口處流態(tài)改善所誘導(dǎo)的葉輪下游部件流態(tài)的改善。為定量分析上述各部件內(nèi)流態(tài)改善對(duì)泵段整體能量特性提升的貢獻(xiàn)度,對(duì)原始模型與優(yōu)化模型各部件內(nèi)的水力損失(即各部件總壓降低百分比)進(jìn)行定量分析,結(jié)果如圖11所示。與原始模型相比,優(yōu)化模型葉輪內(nèi)的水力損失下降了1.09個(gè)百分點(diǎn);導(dǎo)葉及出水管內(nèi)的水力損失則分別下降了0.85個(gè)百分點(diǎn)和0.29個(gè)百分點(diǎn);而在進(jìn)水管中,兩者水力損失基本相等。由計(jì)算結(jié)果可知,葉輪出口流態(tài)改善所導(dǎo)致的葉輪下游部件水力損失的減小為泵段整體能量特性的提升提供了超過(guò)50%的貢獻(xiàn)率。因此,在混流泵葉輪的優(yōu)化設(shè)計(jì)中,不僅需要關(guān)注葉輪內(nèi)水力損失的減小,還需要注意葉輪出口處流態(tài)的改變對(duì)葉輪下游部件水力性能的影響。

圖11 各部件水力損失

4 結(jié) 論

本文以反問(wèn)題設(shè)計(jì)方法為基礎(chǔ),以幾何參數(shù)與載荷參數(shù)為設(shè)計(jì)參數(shù),以0.85des和1.15des處泵段效率為優(yōu)化目標(biāo),以1.0des處泵段揚(yáng)程為約束條件,采用正交設(shè)計(jì)與數(shù)值模擬相結(jié)合的方法對(duì)混流泵葉輪進(jìn)行了參數(shù)化優(yōu)化,并對(duì)優(yōu)化模型與原始模型的性能進(jìn)行了對(duì)比分析。主要結(jié)論如下:

1)極差分析與值分析結(jié)果表明,葉片前緣與輪轂和輪緣的交點(diǎn)位置、輪轂及輪緣處載荷控制曲線中的中間直線斜率、輪緣處載荷控制曲線中的前緣載荷值和第一加載點(diǎn)位置均對(duì)混流泵的泵段效率具有較大影響。因此,在基于反問(wèn)題設(shè)計(jì)方法的混流泵多工況優(yōu)化設(shè)計(jì)中,同時(shí)考慮幾何參數(shù)與水動(dòng)力參數(shù)對(duì)混流泵性能的影響,有利于優(yōu)化效果的進(jìn)一步提升。

2)根據(jù)正交設(shè)計(jì)得到的優(yōu)化模型能夠有效滿(mǎn)足優(yōu)化要求。與初始模型相比,優(yōu)化模型在0.85des和1.15des處的泵段效率分別提升了0.90和2.25個(gè)百分點(diǎn),在1.0des泵段揚(yáng)程則基本不變。內(nèi)流分析表明,優(yōu)化模型具有更為合理的流場(chǎng)分布。流動(dòng)損失分析表明葉輪出口流態(tài)的改善對(duì)泵段整體性能的提升具有重要作用。

[1] 王夢(mèng)成,袁建平,李彥軍,等. 混流泵葉輪的三維反問(wèn)題設(shè)計(jì)多目標(biāo)優(yōu)化[J]. 哈爾濱工程大學(xué)學(xué)報(bào),2020,41(12):1854-1860. WANG Mengcheng, YUAN Jianping, LI Yanjun, et al. Multi-objective optimization of mixed-flow pump impeller based on 3-D inverse design[J]. Journal of Harbin Engineering University, 2020, 41(12): 1854-1860. (in Chinese with English abstract)

[2] 菅鴻飛. 混流泵葉輪反設(shè)計(jì)研究[D]. 大連:大連理工大學(xué),2021. JIAN Hongfei. Study on Inverse Design of Mixed-Flow Pump Impeller[D]. Dalian: Dalian University of Technology, 2021. (in Chinese with English abstract)

[3] 張成虎. 導(dǎo)葉式混流泵變工況內(nèi)流數(shù)值模擬及魯棒性?xún)?yōu)化設(shè)計(jì)研究[D]. 鎮(zhèn)江:江蘇大學(xué),2018. ZHANG Chenghu. Numerical Simulation of Flow in A Mixed-Flow Pump with Guide Vanes under Variable Working Conditions and Robust Optimization Design[D]. Zhenjiang: Jiangsu University, 2018. (in Chinese with English abstract)

[4] WANG P. Multi-objective Design of A Transonic Turbocharger Compressor with Reduced Noise and Increase Efficiency[D]. London: University of London, 2017.

[5] HUANG R F, LUO X W, JI B, et al. Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm[J]. Science China: Technological Sciences, 2015, 58(12): 2122-2130.

[6] WANG M C, LI Y J, YUAN J P, et al. Effects of different vortex designs on optimization results of mixed-flow pump[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 36-57.

[7] ZANGENEH M, GOTO A, TAKEMURA T. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method: part 1-design and numerical validation[J]. Journal of Turbomachinery, 1996, 118(3): 536-543.

[8] GOTO A, TAKEMURA T, ZANGENEH M. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method: part 2-experimental validation[J]. Journal of Turbomachinery, 1996, 118(3): 544-551.

[9] 楊魏,雷曉宇,張志民,等. 基于載荷分布的潛水軸流泵葉輪與導(dǎo)葉水力設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):179-187. YANG Wei, LEI Xiaoyu, ZHANG Zhimin, et al. Hydraulic design of submersible axial-flow pump based on blade loading distributions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 179-187. (in Chinese with English abstract)

[10] 楊魏,楊科迪,伏澤,等. 不同載荷分布型式下軸流泵葉頂間隙流特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(6):177-183. YANG Wei, YANG Kedi, FU Ze, et al. Numerical study of blade loading effects on tip leakage flow in axial-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery,2022, 53(6): 177-183. (in Chinese with English abstract)

[11] WANG M C, LI Y J, YUAN J P, et al. Influence of spanwise distribution of impeller exit circulation on optimization results of mixed flow pump[J]. Applied Sciences, 2021, 11(2): 507.

[12] LIU L H, ZHU B S, BAI L, et al. Parametric design of an ultrahigh-head pump-turbine runner based on multi-objective optimization[J].Energies, 2017, 10(8): 1169.

[13] WANG M C, LI Y J, YUAN J P, et al. Matching optimization of a mixed flow pump impeller and diffuser based on the inverse design method[J]. Processes, 2021, 9(2): 260.

[14] 韓亞?wèn)|,譚磊,劉亞斌. 基于可控載荷的混流泵葉輪設(shè)計(jì)及試驗(yàn)研究[J]. 清華大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,62(12):1930-1937. HAN Yadong, TAN Lei, LIU Yabin. Mixed-flow pump impeller design based on the controllable blade load distribution[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(12): 1930-1937. (in Chinese with English abstract)

[15] 李彥軍,王夢(mèng)成,袁建平,等. 環(huán)量分布對(duì)基于反問(wèn)題設(shè)計(jì)的混流泵優(yōu)化結(jié)果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(20):44-52. LI Yanjun, WANG Mengcheng, YUAN Jianping, et al. Influence of circulation distribution on the optimization results of mixed-flow pump based on inverse design[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 44-52. (in Chinese with English abstract)

[16] ROACHE P. Perspective: A method for uniform reporting of grid refinement studies[J]. Journal of Fluids Engineering, 1994, 116(3): 405-413.

[17] ROACHE P. Quantification of uncertainty in computational fluid dynamics[J]. Annual Review Fluid Mechanics, 1997, 29(1): 123-160.

[18] SHIM H S, AFZAL A, KIM K Y, et al. Three-objective optimization of a centrifugal pump with double volute to minimize radial thrust at off-design conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 236(5): 598-615.

[19] ELLIOTT M, SPENCE S, SEILER M, et al. Performance improvement of a mixed flow turbine using 3D blading[J]. Journal of Turbomachinery, 2022, 144(10): 101004.

[20] 王夢(mèng)成,李彥軍,袁建平,等. 葉輪出口環(huán)量非線性分布條件下混流泵性能研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(11):211-218. WANG Mengcheng, LI Yanjun, YUAN Jianping, et al. Performance of mixed flow pump under condition of non-linear distribution of impeller exit circulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 211-218. (in Chinese with English abstract).

[21] ZANGENEH M. A compressible three-dimensional design method for radial and mixed flow turbomachinery blades[J]. International Journal for Numerical Methods in Fluids, 1991, 13(5): 599-624.

[22] MENG F, LI Y J ,YUAN S Q, et al. Multiobjective combination optimization of an impeller and diffuser in a reversible axial-flow pump based on a two-layer artificial neural network[J]. Processes, 2020, 8(3): 309.

[23] ZHU B S, TAN L, WANG X H, et al. Investigation on flow characteristics of pump-turbine runners with large blade lean[J]. Journal of Fluids Engineering, 2018, 140(3): 031101-031110.

[24] BAI L, YANG Y, ZHOU L, et al. Optimal design and performance improvement of an electric submersible pump impeller based on Taguchi approach[J]. Energy, 2022, 252: 124032.

[25] YANG Y, ZHOU L, HANG J W, et al. Energy characteristics and optimal design of diffuser meridian in an electrical submersible pump[J]. Renewable Energy, 2021, 167: 718-727.

[26] 鄭源,孫奧冉,楊春霞,等. 軸流泵多目標(biāo)優(yōu)化正交試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):129-136. ZHENG Yuan, SUN Aoran, YANG Chunxia, et al. Multi-objective optimization design and test of axial-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 129-136. (in Chinese with English abstract)

[27] 賀登輝,李芮林,孫帥輝,等. 基于機(jī)器學(xué)習(xí)的離心泵氣液兩相壓升預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(4):33-41. HE Denghui, LI Ruilin, SUN Shuaihui, et al. Prediction of gas-liquid two-phase pressure increment of a centrifugal pump based on machine learning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(4): 33-41. (in Chinese with English abstract)

[28] 湯攀,任妮,易中懿,等. 比例施肥泵吸肥活塞結(jié)構(gòu)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(21):33-41. TANG Pan, REN Ni, YI Zhongyi, et al. Optimization and experiment of the suction piston structure for proportional fertilization pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 33-41. (in Chinese with English abstract)

[29] 劉明,譚磊,曹樹(shù)良. 基于分段四次速度矩分布的葉片式氣液混輸泵導(dǎo)葉設(shè)計(jì)方法[J]. 機(jī)械工程學(xué)報(bào),2022,58(10):280-288. LIU Ming, TAN Lei, CAO Shuliang. Design method of diffuser in rotodynamic multiphase pump based on fourth-order distribution of velocity moment[J]. Journal of Mechanical Engineering, 2022, 58(10): 280-288. (in Chinese with English abstract)

[30] WANG C Y, WANG F J, AN D S, et al. A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers[J]. Science China Technological Sciences, 2020, 64(4): 898-918.

[31] 苗森春,羅文,王曉暉,等. 雙吸泵作液力透平時(shí)葉輪內(nèi)部能量損失機(jī)理分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(22):12-22. MIAO Senchun, LUO Wen, WANG Xiaohui, et al. Impeller internal energy loss mechanism for a double-suction pump as the turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 12-22. (in Chinese with English abstract)

[32] 許哲,鄭源,闞闞,等. 基于熵產(chǎn)理論的超低揚(yáng)程雙向臥式軸流泵裝置飛逸特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(17):49-57. XU Zhe, ZHENG Yuan, KAN Kan, et al. Runaway characteristics of bidirectional horizontal axial flow pump with super low head based on entropy production theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 49-57. (in Chinese with English abstract)

[33] 張子龍. 混流泵裝置內(nèi)部流動(dòng)及水動(dòng)力特性研究[D].鎮(zhèn)江:江蘇大學(xué),2020.

ZHANG Zilong. Study on Internal Flow and Hydrodynamic Characteristics of Mixed Flow Pump Device[D]. Zhenjiang: Jiangsu University, 2020. (in Chinese with English abstract)

Optimization of the mixed flow pumps with coupled geometric and loading parameters

WANG Mengcheng1, XIA Hepeng2, YAN Hongqin2, JIANG Hongying2, YUAN jianping3, CHEN Songshan1※

(1.,,225127,; 2.,210029,; 3.,,212023,)

Mixed flow pumps have been widely used in agricultural irrigation and drainage, industrial water circulation, and ship propulsion systems, due to their excellent overall performance. It is a high demand to optimize mixed-flow pumps for better energy conversion efficiency in recent years. This study aims to explore the influence of geometric and loading parameters on the energy characteristics, and then to further improve the optimization upper limit of the guide vane mixed flow pump. A parametric optimization was also carried out on the impeller of a guide vane mixed-flow pump with a specific speed of 511. Among them, the geometric and the loading parameters were taken as the design parameters, whereas, the pump section efficiencies at 0.85desand 1.15deswere taken as the optimization objectives, and the pump section head under the design condition was as the constraint condition. Taguchi design and numerical simulation were also combined in this case. The inverse design method was adopted to verify the accuracy of numerical simulation. The results show that only 27 schemes needed to be constructed in the optimal design of 13 design parameters with 2 optimization objectives and 1 constraint using orthogonal design. Therefore, Taguchi design performed better in the multi-factor coupling optimization, which effectively reduced the amount of calculation. The extreme difference analysis showed that the effect of each parameter on the efficiency at 0.85deswas ranked in the descending order ofh,s,Ds,s,Cs,T,Ch,h,s,s,Dh,Eh, andh(Eis the leading edge loading,Cis the horizontal coordinates of first loading point,Dis the horizontal coordinates of second loading point,is the slope of middle straight,handSrepresent theaxis horizontal coordinates of the intersection point of the blade leading edge with hub and shroud,handSrepresent theaxis horizontal coordinates of the intersection point of the blade trailing edge with hub and shroud, the subscripts h and s represent hubs and shroud, respectively.), in order to maximize the efficiency at 0.85desin the levels of 1, 3, 2, 1, 3, 2, 3, 2, and 1, respectively. Similarly, the effect of each parameter on the efficiency at 1.15deswas ranked in the descending order of theEs,h,Eh,h,s,s,Dh,s,Cs,Ch,Ds,T, andh, in order to maximize the efficiency at 1.15deswith the levels of 3, 1, 3, 3, 3, 1, 1, 3, 1, 3, 2, 2, and 2, respectively. The effect of each parameter on the head at 1.0deswas ranked in the order ofDh,h,Cs,T,s,Ds,Es,s,s,h,Ch,Eh, andh. According to the influence of each parameter on the optimization objectives and constraint, the geometric parameters (hands) and the load parameters (h,Es,Csands) posed a significant impact on the performance of the mixed-flow pump, which should be considered in the optimization design. Compared with the original, the pump section head of the optimal model was basically unchanged at 1.0des, which fully met the constraint requirements. Meanwhile, the pump section efficiencies at 0.85desand 1.15desincreased by 0.90 and 2.25 percentage points, respectively, which fully meeting the optimization requirements. The internal flow analysis showed that the pressure and velocity distribution near the blade leading edge of the optimized model was significantly improved, compared with the original. In addition, the hydraulic losses of downstream components were also significantly reduced in the optimized model, which was mainly due to the improvement of the uniformity of flow field distribution at the outlet of the impeller. In conclusion, this finding can provide an important reference for the parameterized optimization of turbomachinery, in order to save computational resources and maximize the optimization effect.

mixed-flow pump; optimization; inverse design; geometric parameter; loading parameter; numerical simulation; orthogonal design

10.11975/j.issn.1002-6819.202210194

TH313

A

1002-6819(2023)-05-0026-09

王夢(mèng)成,夏鶴鵬,顏紅勤,等. 耦合幾何參數(shù)與載荷參數(shù)的混流泵優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(5):26-34.doi:10.11975/j.issn.1002-6819.202210194 http://www.tcsae.org

WANG Mengcheng, XIA Hepeng, YAN Hongqin, et al. Optimization of the mixed flow pumps with coupled geometric and loading parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 26-34. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210194 http://www.tcsae.org

2022-10-25

2023-02-14

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFB0606103)

王夢(mèng)成,博士,講師,研究方向?yàn)樗谜?、反設(shè)計(jì)優(yōu)化。Email:jdwmc2018@163.com

陳松山,博士,教授,研究方向?yàn)榱黧w機(jī)械及泵站工程。Email:yzcss08@163.com

猜你喜歡
混流輪緣輪轂
導(dǎo)葉式混流泵空化特性?xún)?yōu)化研究
高比速混流泵葉輪切割特性分析及試驗(yàn)研究
淺談液態(tài)和固態(tài)輪緣潤(rùn)滑裝置的差異性
抗壓痕透明粉在精車(chē)鋁輪轂上的應(yīng)用研究
上海涂料(2021年5期)2022-01-15 06:09:26
地鐵車(chē)輛輪緣厚度偏磨問(wèn)題研究
關(guān)于優(yōu)化四方平臺(tái)動(dòng)車(chē)組輪對(duì)踏面旋修的研究
干式輪緣潤(rùn)滑器對(duì)地鐵車(chē)輛車(chē)輪保護(hù)效果的研究
基于CPS 的汽車(chē)輪轂制造系統(tǒng)設(shè)計(jì)
基于ANSYS的輪轂支架結(jié)構(gòu)設(shè)計(jì)
風(fēng)電輪轂鑄造技術(shù)研究
大型鑄鍛件(2015年1期)2016-01-12 06:33:29
肇庆市| 襄樊市| 凌源市| 星子县| 宁德市| 库伦旗| 曲周县| 罗田县| 逊克县| 嵩明县| 凤台县| 荔浦县| 浦江县| 荥经县| 阿拉尔市| 星子县| 县级市| 北宁市| 罗源县| 高州市| 罗山县| 资溪县| 分宜县| 灌南县| 通榆县| 五家渠市| 潮州市| 土默特左旗| 呼伦贝尔市| 曲松县| 张家港市| 定兴县| 郁南县| 镶黄旗| 武威市| 射阳县| 泌阳县| 宝兴县| 珠海市| 钟祥市| 于都县|