国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于土壤碳平衡的黑土區(qū)縣域種養(yǎng)規(guī)模優(yōu)化

2023-05-15 05:37侯瑞星李澤紅歐陽竹
關(guān)鍵詞:養(yǎng)殖業(yè)縣域糞便

杭 勝,侯瑞星,李澤紅,歐陽竹

基于土壤碳平衡的黑土區(qū)縣域種養(yǎng)規(guī)模優(yōu)化

杭 勝1,4,侯瑞星1,2※,李澤紅1,2,歐陽竹1,3

(1. 中國科學(xué)院地理科學(xué)與資源研究所,北京 100101;2. 中國科學(xué)院大學(xué),北京 100049;3. 中國科學(xué)院地理科學(xué)與資源研究所,黃河三角洲農(nóng)業(yè)工程實(shí)驗(yàn)室,東營 257509;4. 中國農(nóng)業(yè)大學(xué)有機(jī)循環(huán)研究院(蘇州),蘇州 215000)

東北黑土區(qū)是中國商品糧的主產(chǎn)區(qū),近年來存在耕地“變薄、變瘦、變硬”等土壤質(zhì)量下降問題。農(nóng)業(yè)廢棄物作為碳源高效還田是提升土壤質(zhì)量的重要途徑,但目前缺少基于農(nóng)業(yè)-牧業(yè)碳素循環(huán)調(diào)控的區(qū)域農(nóng)業(yè)生產(chǎn)系統(tǒng)模式,以促進(jìn)碳素高效還田和黑土地地力提升。為了探討基于土壤碳收支平衡來調(diào)整農(nóng)牧規(guī)模的方法,該研究選取位于松嫩平原腹地的齊齊哈爾市作為研究對象,核算齊齊哈爾市各縣域土壤碳收支狀況,以土壤碳排放和碳輸入相平衡為目標(biāo),通過多目標(biāo)線性規(guī)劃方法構(gòu)建齊齊哈爾市的農(nóng)牧業(yè)碳平衡農(nóng)業(yè)模式。結(jié)果表明,各縣域主要調(diào)整方案為種植業(yè)需要減少水稻種植面積,增加玉米的種植面積,養(yǎng)殖業(yè)需要增加奶牛養(yǎng)殖規(guī)模。調(diào)整后種植業(yè)和養(yǎng)殖業(yè)的廢棄物得到全量化利用后,農(nóng)田土壤碳庫不再下降??h域尺度農(nóng)牧規(guī)模需因地制宜的調(diào)整,以土壤碳虧損較大的訥河縣為例,在保證碳輸入及農(nóng)業(yè)經(jīng)濟(jì)收益的基礎(chǔ)上,增加46%的玉米種植面積,減少63%的黃牛養(yǎng)殖規(guī)模,增加85%的奶牛,54%的生豬,76%的羊及71%的家禽養(yǎng)殖規(guī)模,可保持土壤碳平衡。種植業(yè)和養(yǎng)殖業(yè)規(guī)模調(diào)整后的有機(jī)物料還田可替代33%~49%的化肥氮投入,除克東縣和克山縣的玉米種植外,3種主栽作物的土壤氮承載力均呈現(xiàn)上升趨勢。研究提出農(nóng)業(yè)“碳平衡”發(fā)展模式,可為黑土區(qū)農(nóng)業(yè)-牧業(yè)發(fā)展實(shí)現(xiàn)農(nóng)業(yè)資源的高效利用和中國“雙碳”戰(zhàn)略提供科學(xué)依據(jù)。

土壤;秸稈;氮;黑土地;碳平衡;承載力;規(guī)模優(yōu)化;可持續(xù)發(fā)展

0 引 言

東北黑土區(qū)是中國的糧食生產(chǎn)基地和商品糧輸出基地,黑土區(qū)在保障國家糧食安全中具有舉足輕重的地位,是國家糧食安全的“壓艙石”。黑土區(qū)農(nóng)業(yè)長期高強(qiáng)度開發(fā),不合理的農(nóng)業(yè)管理措施以及自然環(huán)境的變化,導(dǎo)致黑土變薄、變硬、變瘦,土壤質(zhì)量持續(xù)下降[1]。近30年,受到高緯度低溫下秸稈腐解慢、效益低等因素影響,東北黑土區(qū)成為全國通過秸稈還田輸入土壤碳儲量最低的地區(qū)[2]。據(jù)統(tǒng)計(jì),東北黑土區(qū)擁有著全國21.63%的秸稈資源以及12%的糞便資源,但資源化綜合利用率不到60%,農(nóng)業(yè)廢棄物得不到有效處理也給環(huán)境帶來了巨大壓力[3-4],但同時也代表東北地區(qū)農(nóng)業(yè)固廢資源化應(yīng)用潛力非常大。近年來,隨著黑土區(qū)養(yǎng)殖業(yè)不斷快速發(fā)展,秸稈飼料化和資源化利用的比例逐年增加,但低溫環(huán)境下秸稈直接還田存在自然降解效率低的問題,秸稈結(jié)合畜禽糞便堆腐還田的方式成為保證土壤碳儲量收支平衡的有效途徑,也是保障黑土區(qū)土壤有機(jī)質(zhì)含量穩(wěn)定,響應(yīng)國家碳達(dá)峰、碳中和“雙碳”戰(zhàn)略的重要舉措[5]。

農(nóng)牧規(guī)模調(diào)整可以提高土壤外源碳的輸入量及輸入方式,是決定土壤有機(jī)碳庫變化的主要因素。土壤外源碳的主要來源包括植物根系、秸稈和糞肥還田[6-7],并受溫度、水分及植被類型的影響[8],高溫條件下(25 ℃)玉米秸稈直接還田比低溫條件下(18 ℃),土壤碳累積增加2.1%~97.7%[9]。黑土區(qū)溫度低導(dǎo)致秸稈直接還田分解效率低,作物秸稈冬春季低溫腐解率約為30%,年度腐解率僅約60%,未分解的秸稈影響下一季作物種植,秸稈過腹或堆腐還田是東北冷涼地區(qū)提高秸稈碳還田的有效途徑,其在養(yǎng)分供應(yīng)和改善土壤理化性質(zhì)方面也優(yōu)于農(nóng)業(yè)固廢直接還田[10]。土壤有機(jī)碳儲量達(dá)到穩(wěn)定狀態(tài)前與土壤碳外源輸入量呈正相關(guān)[11],通過調(diào)整區(qū)域種植業(yè)和養(yǎng)殖業(yè)的規(guī)模,改變土壤碳的輸入方式和輸入量可以提高土壤碳的轉(zhuǎn)化效率,以解決土壤有機(jī)質(zhì)降低及過度施用化肥導(dǎo)致的土壤氮承載力過低問題。郭薇儀等[12]分析了不同耕地類型的畜禽糞污消納潛力,認(rèn)為可以通過擴(kuò)大有機(jī)肥對化肥的替代比例以及增加不同類型糞污消納地類,提升土壤畜禽糞污消納能力。合理利用耕地資源、化肥、機(jī)械和灌溉等的不同投入會產(chǎn)生不同程度的碳排放,如何實(shí)現(xiàn)耕地利用系統(tǒng)的最優(yōu)要素組合和合力最大化,是中國不同空間尺度土地宏觀調(diào)控過程中急需解決的重要問題之一[13]。

農(nóng)業(yè)生產(chǎn)目標(biāo)的多樣性和農(nóng)牧業(yè)之間關(guān)系的復(fù)雜性導(dǎo)致農(nóng)業(yè)發(fā)展問題難以通過決策者的經(jīng)驗(yàn)管理解決。以數(shù)學(xué)模型為基礎(chǔ)對傳統(tǒng)農(nóng)業(yè)生產(chǎn)管理進(jìn)行優(yōu)化與決策,是農(nóng)業(yè)管理者從經(jīng)驗(yàn)管理向科學(xué)理論轉(zhuǎn)向的抓手。近年來,線性規(guī)劃、動態(tài)規(guī)劃、遺傳算法、粒子群優(yōu)化、多目標(biāo)規(guī)劃等數(shù)學(xué)模型和規(guī)劃技術(shù)已廣泛應(yīng)用于解決農(nóng)業(yè)結(jié)構(gòu)和規(guī)模調(diào)整問題[14]。通過調(diào)整農(nóng)牧規(guī)??梢杂行岣咿r(nóng)業(yè)生產(chǎn)中經(jīng)濟(jì)效益、改善環(huán)境影響和提高農(nóng)業(yè)資源利用效率。吳雅欣等[15]從自然適宜度和產(chǎn)業(yè)優(yōu)勢度兩個維度,構(gòu)建了量化評估指標(biāo)體系,對江蘇省稻田種養(yǎng)產(chǎn)業(yè)化的空間優(yōu)先級進(jìn)行優(yōu)化調(diào)整。多目標(biāo)線性規(guī)劃模型可以滿足農(nóng)業(yè)決策者在農(nóng)業(yè)生產(chǎn)過程中的不同需求[16],得到了廣泛的應(yīng)用。但基于土壤碳收支平衡來調(diào)整農(nóng)牧規(guī)模的研究較少,面對黑土區(qū)土壤有機(jī)質(zhì)流失等問題和推動國家雙碳目標(biāo)的實(shí)現(xiàn),亟需利用數(shù)學(xué)模型從土壤碳平衡的角度調(diào)整農(nóng)牧規(guī)模使土壤碳收支達(dá)到平衡?;诖?,本研究擬運(yùn)用多目標(biāo)線性規(guī)劃方法構(gòu)建土壤碳平衡模型,以黑土區(qū)農(nóng)田土壤碳平衡和農(nóng)業(yè)經(jīng)濟(jì)效益最高為目標(biāo),對齊齊哈爾的農(nóng)牧業(yè)規(guī)模進(jìn)行優(yōu)化,保障農(nóng)業(yè)可持續(xù)發(fā)展。

1 研究方法與數(shù)據(jù)來源

1.1 研究區(qū)域

本研究以黑龍江省齊齊哈爾市(122~126°E,45~48°N)為研究區(qū)域,種植業(yè)主要以水稻、玉米、大豆為主,養(yǎng)殖業(yè)以黃牛、奶牛、羊、家禽和豬為主。齊齊哈爾市位于黑龍江省西部松嫩平原腹地,是國家重要的商品糧基地和畜牧業(yè)生產(chǎn)基地,糧食產(chǎn)能約占全國的2%?!笆濉逼陂g,齊齊哈爾現(xiàn)代化農(nóng)牧業(yè)發(fā)展迅速,截止2020年末生豬養(yǎng)殖規(guī)模近800萬頭,占全省總量的1/5;預(yù)計(jì)到2025年,全市高品質(zhì)肉類產(chǎn)品年供應(yīng)能力比“十三五”末提高34%。齊齊哈爾冬長嚴(yán)寒,更適合以秸稈飼料化、過腹還田模式增加土壤碳素和改善土壤結(jié)構(gòu)。全市包括7個區(qū)9個縣,其中市內(nèi)7個區(qū)中農(nóng)業(yè)生產(chǎn)主要集中在梅里斯區(qū)、鐵峰、富區(qū)、龍沙和碾子山區(qū)共5個區(qū),即本研究中的市五區(qū),九縣包括泰來縣、依安縣、拜泉縣、訥河縣、克山縣、克東縣、甘南縣、富??h及龍江縣。

1.2 數(shù)據(jù)來源與方法

數(shù)據(jù)主要來源于齊齊哈爾市農(nóng)業(yè)農(nóng)村局2020年的調(diào)研數(shù)據(jù)、地方統(tǒng)計(jì)年鑒以及文獻(xiàn)數(shù)據(jù)。農(nóng)牧業(yè)結(jié)構(gòu)優(yōu)化方法選取線性規(guī)劃方法,線性規(guī)劃及在系列約束條件下,把有限的資源在許多可動選擇的活動之間進(jìn)行最優(yōu)分配,使特定的目標(biāo)達(dá)到最大(或最?。?。通常包括超過2個以上的目標(biāo)函數(shù),以及若干個約束條件。

1.2.1 參數(shù)選取

選取齊齊哈爾市主要的種植業(yè)和養(yǎng)殖業(yè)種類作為模型的決策變量,對應(yīng)的數(shù)據(jù)均來自齊齊哈爾市實(shí)際調(diào)研數(shù)據(jù),齊齊哈爾市主要的農(nóng)業(yè)種植種類有水稻、玉米和大豆;養(yǎng)殖種類為黃牛、奶牛、羊、豬和家禽,不同縣域的種植業(yè)和養(yǎng)殖業(yè)結(jié)構(gòu)與規(guī)模存在差異(表1)。不同縣域的種植業(yè)和養(yǎng)殖業(yè)結(jié)構(gòu)不同,農(nóng)業(yè)廢棄物資源數(shù)量和結(jié)構(gòu)存在不匹配的問題。因此,需要針對每個縣域的實(shí)際生產(chǎn)情況,因地制宜優(yōu)化區(qū)域內(nèi)種植業(yè)和養(yǎng)殖業(yè)規(guī)模。

表1 2019年齊齊哈爾市各縣主要種植業(yè)與養(yǎng)殖業(yè)規(guī)模

1.2.2 農(nóng)業(yè)廢棄物資源潛力計(jì)算

草谷比法是計(jì)算農(nóng)作物秸稈產(chǎn)量的最常用的方法,指農(nóng)作物地上莖稈產(chǎn)量與經(jīng)濟(jì)產(chǎn)量之比[17],水稻、玉米和大豆在東北地區(qū)的草谷比分別為0.97、1.86以及1.70,秸稈資源潛力計(jì)算式為

=W/W(1)

式中為草谷比;W為農(nóng)作物秸稈產(chǎn)量(即秸稈資源量或秸稈資源潛力),萬t;W農(nóng)作物經(jīng)濟(jì)產(chǎn)量,萬t。

根據(jù)式((2))計(jì)算禽糞便產(chǎn)生量[18]為

=/103(2)

式中為年糞便產(chǎn)生量(即糞便資源量或糞便資源潛力),萬t;為畜禽的排泄系數(shù);為畜禽年末出欄和存欄量之和,頭;為飼養(yǎng)周期,d。豬、肉牛、奶牛、家禽和羊的排泄系數(shù)因區(qū)域不同而有所差異。前人在東北地區(qū)的研究表明[18],奶牛、黃牛、豬、羊和家禽的排泄系數(shù)分別為27.24、13.89、1.51、2.38、0.13 kg/(頭·d),飼養(yǎng)周期按一個周年365 d 計(jì)算。

通常,農(nóng)業(yè)廢棄物資源匹配程度較高的區(qū)域,對縣域外的廢棄物資源需求量較小,而廢棄物匹配度較低的區(qū)域?qū)h域外廢棄物資源需求較高,高資源潛力匹配區(qū)也是低資源潛力區(qū)域廢棄物資源的主要來源。2021年5月對齊齊哈爾市典型的好氧堆肥有機(jī)肥生產(chǎn)企業(yè)進(jìn)行走訪調(diào)研,得知以現(xiàn)有的好氧堆肥有機(jī)肥生產(chǎn)技術(shù)為例,1.8 t糞便結(jié)合1.2 t秸稈可以生產(chǎn)出1 t深加工有機(jī)肥,因此以糞便和秸稈資源的配比0.67,作為糞便秸稈資源匹配指數(shù)。根據(jù)式(3)核算各縣域的資源匹配程度。

Q=(0.67W-M)/M(3)

式中Q為縣域的資源匹配指數(shù);W為縣域的秸稈資源潛力,萬t;M為縣域的糞便資源潛力,萬t。Q越高代表資源匹配度越差。

1.2.3 土壤固碳潛力計(jì)算

根據(jù)齊齊哈爾市人民政府于2020年發(fā)布的《齊齊哈爾市突出商品化打造秸稈飼料+燃料+肥料產(chǎn)業(yè)鏈實(shí)施方案》,齊齊哈爾主要用直接還田(64%)、燃料化(23%)、飼料化處理(9%)、有機(jī)肥輔料(4%)等方式處理秸稈。因此,本研究中通過堆腐還田的秸稈以齊齊哈爾市可收集離田利用秸稈總量68%計(jì)算(即直接還田和有機(jī)肥輔料化利用的總量),并假設(shè)有機(jī)物料全部以堆肥的方式還田向土壤輸入碳,核算齊齊哈爾市各縣域土壤碳收支情況(式(4))。參考東北黑土區(qū)相關(guān)研究,玉米、水稻和大豆種植生育期的土壤呼吸速率分別為3.74、5.45、2.96[19-21]。

ΔC=S·1j+S·1j+12×10-13S·2j-R·A·T(4)

式中ΔC為縣域的土壤碳盈虧,萬t;S為作物的根系生物量,萬t;S為作物還田秸稈量,萬t;S為糞便產(chǎn)生量,萬t;R為土壤呼吸速率,μmol/(m2·s);1j為作物秸稈含碳量,調(diào)研取樣分析測出水稻、玉米和大豆的秸稈含碳量分別為0.42、0.38和0.50;2j為糞便含碳量,調(diào)研取樣分析測出黃牛、奶牛、豬、羊和家禽糞便含碳量分別為0.08、0.06、0.23、0.16、0.30;A為作物種植面積,hm2;T為作物生長周期,水稻、玉米、大豆分別按100、100和180 d計(jì)算;12×10-13為摩爾質(zhì)量及單位轉(zhuǎn)換系數(shù);為作物和畜禽種類。

1.2.4 土壤氮承載力計(jì)算

根據(jù)農(nóng)業(yè)農(nóng)村部2018年發(fā)布的《畜禽糞污土地承載力測算技術(shù)指南》,土壤氮承載力計(jì)算式如下[22]:

=P·1·1·1-1/∑1(1·2)·3(5)

式中N為土壤N承載力,頭/hm2(以當(dāng)季單位面積豬當(dāng)量計(jì),下同);P為區(qū)域植物養(yǎng)分需求量,水稻、玉米、大豆含N量分別為2.2、2.3、7.2 kg/100 kg;1為施肥供給占養(yǎng)分的比例(25%~30%);1為糞肥占施肥比例,50%;1為糞肥當(dāng)季利用率,25%;L為各種畜禽存欄量,頭或只;2為畜禽氮排泄量,黃牛、奶牛、豬、羊和家禽的氮排泄量分別為36.63、73.37、11.00、4.40、0.44 kg[22];3為養(yǎng)分留存率,62%[22]。

1.3 模型構(gòu)建

本研究假設(shè)所有可收集的秸稈和糞便按好氧堆肥產(chǎn)生有機(jī)肥的形式還田,保證在種植業(yè)和養(yǎng)殖業(yè)規(guī)模經(jīng)濟(jì)收益最高的情況下,實(shí)現(xiàn)區(qū)域農(nóng)業(yè)土壤輸入與輸出平衡(圖1)。

基于以上目標(biāo),模型的目標(biāo)函數(shù)要在區(qū)域養(yǎng)殖業(yè)和種植業(yè)的經(jīng)濟(jì)效益最高的情況下保證土壤碳輸入,即

maxf=∑=1(a·x),=1,2…(6)

式中x為不同養(yǎng)殖業(yè)和種植業(yè)的目標(biāo)效益(碳輸入量以及經(jīng)濟(jì)收益),t或元;a為不同種養(yǎng)殖業(yè)和種植業(yè)的現(xiàn)有規(guī)模,頭或hm2;為不同養(yǎng)殖和種植類別,f代表經(jīng)濟(jì)目標(biāo)函數(shù)和碳排放目標(biāo)函數(shù)。

模型目標(biāo)是在土壤氮承載力優(yōu)于農(nóng)業(yè)農(nóng)村部糞便堆肥外供土壤承載力推薦值(水稻、玉米和大豆分別為2.3、2.4、3.7)的前提下,保持土壤碳的收支平衡。有機(jī)物料還田能替代化肥施用,提高土壤氮承載力同時提高土壤碳輸入,因此設(shè)定在有機(jī)物料達(dá)到最優(yōu)碳氮比時土壤碳儲量輸入輸出保持平衡,即

ΔC=0(7)

區(qū)域秸稈和糞便還田時,適宜的碳氮比可以激發(fā)有機(jī)物的分解,還田的有機(jī)物料碳氮比為27時,有機(jī)物降解效率最高[23],根據(jù)秸稈和糞便投入土壤中的總碳氮比,設(shè)置模型約束為

(S·1j+S·2j)/(S·1j+S·2j)=27(8)

式中1為秸稈含氮量,調(diào)研取樣分析測得水稻、玉米和大豆的秸稈含氮量(質(zhì)量分?jǐn)?shù))分別為0.83%、0.87%和1.63%。

圖1 基于土壤碳平衡的農(nóng)牧規(guī)模優(yōu)化示意圖

通常情況下,縣域耕地面積每年不會存在大規(guī)模變化,本研究假設(shè)縣域耕地總面積不變,即:

12(9)

式中1和2為現(xiàn)在和優(yōu)化后耕地面積,hm2。

本研究的優(yōu)化結(jié)果為一個解集,因此不對種植業(yè)和養(yǎng)殖業(yè)規(guī)模設(shè)置變化范圍,利用Matlab軟件對模型進(jìn)行求解,最終得到各個縣域的最優(yōu)解集。

2 結(jié)果與分析

2.1 齊齊哈爾各縣域農(nóng)牧廢棄物資源潛力分析

齊齊哈爾市各縣域的種植業(yè)和養(yǎng)殖業(yè)規(guī)模的不同因縣而異,根據(jù)各縣域的農(nóng)業(yè)廢棄物資源量排序,將各縣域分為低、中、高資源潛力地區(qū)3類(表2):龍江縣、訥河縣的秸稈和糞便資源都較為豐富,克山縣和克東縣的秸稈資源最少,而市五區(qū)和克山縣的糞便資源最少。根據(jù)秸稈和畜禽糞便資源匹配程度結(jié)果,訥河縣和依安縣的資源匹配度最差為0.50,而富??h和拜泉縣的資源匹配程度最高為0.10,克東縣為-0.40,代表其秸稈資源嚴(yán)重不足,采用好氧堆肥形式還田,需要從其它縣域輸入秸稈資源。各縣域農(nóng)業(yè)廢棄物資源總量和匹配度的差異,決定每個縣種植業(yè)和養(yǎng)殖業(yè)規(guī)模優(yōu)化方案的特異性。

根據(jù)齊齊哈爾市種植和養(yǎng)殖規(guī)模數(shù)據(jù),采用式(4)計(jì)算得到表3中土壤碳盈虧,顯示齊齊哈爾市各縣域的土壤碳存在不同程度的虧損。其中,訥河縣所有耕地總計(jì)虧損最大達(dá)70萬t,龍江市和市五區(qū)虧損較小,分別為1萬和6萬t。其余各縣的土壤碳虧損,集中在20~40萬t,從作物來看,大豆種植的土壤碳虧損較為嚴(yán)重。

針對黑土區(qū)土壤有機(jī)質(zhì)銳減的問題,本研究搜集了本課題組2017—2019年在齊齊哈爾市各區(qū)域的秸稈和糞便腐熟肥料化還田試驗(yàn)數(shù)據(jù)(該試驗(yàn)選取牛糞為原料的有機(jī)肥進(jìn)行玉米種植,施用22.5 t/hm2有機(jī)肥,玉米秸稈全量還田),為通過有機(jī)物料還田提高土壤碳儲量從而提升土壤有機(jī)質(zhì)含量提供數(shù)據(jù)支撐。試驗(yàn)結(jié)果顯示,黑土區(qū)2017—2019年大部分地區(qū)土壤有機(jī)質(zhì)含量增加顯著(表3)。其中訥河縣、甘南縣、拜泉縣、市五區(qū)、龍江縣和富??h的試驗(yàn)點(diǎn),通過秸稈和糞便肥料化還田后土壤有機(jī)質(zhì)含量顯著增加。其余4縣土壤有機(jī)質(zhì)含量無顯著變化。

2.2 齊齊哈爾各縣域碳平衡農(nóng)牧優(yōu)化結(jié)果

根據(jù)不同縣域的碳虧損程度以及秸稈和養(yǎng)殖情況,在保證碳平衡的前提下,以碳輸入量最小和經(jīng)濟(jì)效益最高為目標(biāo)對齊齊哈爾市各縣域種植業(yè)和養(yǎng)殖業(yè)的規(guī)模進(jìn)行優(yōu)化,各縣域獲得60余種優(yōu)化結(jié)果,結(jié)果表明(表4和圖2),若想保持黑土區(qū)土壤碳平衡,各縣域的調(diào)整以種植業(yè)需要減少水稻種植面積、增加玉米的種植面積,養(yǎng)殖業(yè)需要增加奶牛養(yǎng)殖規(guī)模,其余類型的養(yǎng)殖規(guī)模因地制宜調(diào)整為主。以齊齊哈爾市為例,在保證碳輸入量最小和經(jīng)濟(jì)效益最高的雙目標(biāo)下,水稻的變化范圍在248%~897%,玉米的變化范圍在19%~42%,大豆的變化范圍在-80%~26%,黃牛的變化范圍在-58%~-55%,奶牛的變化范圍在-61%~152%,生豬的變化范圍在-5%~119%,羊的變化范圍在60%~259%,家禽的變化范圍在-81%~-11%。經(jīng)濟(jì)效益與原生產(chǎn)水平持平時,水稻的種植面積調(diào)整為6 267 hm2,玉米的種植面積為103 297 hm2,大豆的種植面積為5 779 hm2,黃牛養(yǎng)殖規(guī)模為43 247 頭,奶牛為33288頭,生豬為153 931頭,羊?yàn)?7 472頭,家禽為2 286 888只。不同縣域間的優(yōu)化結(jié)果,依據(jù)養(yǎng)殖種類和增長規(guī)模存在較大差異(表4)。以土壤碳虧損較大的訥河縣為例,在當(dāng)年保證經(jīng)濟(jì)效益持平的情況下,需要增加玉米的種植面積的46%,減少63%的黃牛養(yǎng)殖規(guī)模,增加85%的奶牛、54%的生豬、76%的羊、71%的家禽養(yǎng)殖規(guī)模;而以土壤碳虧損較小的龍江縣為例,需減少水稻的種植面積至10 000 hm2,增加玉米和大豆的種植面積至251 510和25 783 hm2,黃牛規(guī)模減少至89 623頭,減少37%的羊養(yǎng)殖,增加40%的奶牛、25%的生豬和41%的家禽養(yǎng)殖。

注:不同小寫字母表示年份間差異顯著(<0.05)。

Note: Different small letters Indicate significant difference among years (<0.05).

表4 齊齊哈爾市各縣域規(guī)模優(yōu)化結(jié)果

Table.4 Optimization results of breeding and planting scale in Qiqihar city

注:BE,原規(guī)模。AF1,土壤碳平衡前提下,經(jīng)濟(jì)收益與原規(guī)模持平優(yōu)化規(guī)模。AF2,土壤碳平衡前提下,碳輸入量最小和經(jīng)濟(jì)收益最高雙目標(biāo)優(yōu)化規(guī)模。

Note: BE, original scale. AF1, optimal scale with economic benefits are equal to the original scale based on the soil carbon balance, AF2, optimal scale with the two-objective of minimum carbon input and maximum economic benefit based on the soil carbon balance.

圖2 齊齊哈爾市各縣域規(guī)模優(yōu)化結(jié)果

3 討 論

3.1 數(shù)學(xué)模型在農(nóng)業(yè)領(lǐng)域的不同應(yīng)用

農(nóng)牧規(guī)模優(yōu)化都是以約束最大程度地服務(wù)于農(nóng)業(yè)可持續(xù)發(fā)展目標(biāo)而進(jìn)行的。有研究則針對東北農(nóng)業(yè)現(xiàn)代化發(fā)展滯后、基礎(chǔ)要素分配不均等問題,通過數(shù)學(xué)模型分析優(yōu)化了耕地的發(fā)展布局[24]。而針對農(nóng)業(yè)高效生產(chǎn)的問題,有學(xué)者從總收益、糧食產(chǎn)量、總化肥施用量、總作物需水量及相對生態(tài)價值運(yùn)用多目標(biāo)規(guī)劃模型對農(nóng)牧結(jié)構(gòu)與規(guī)模進(jìn)行了調(diào)整[25]。LIANG等[26]從經(jīng)濟(jì)效益、水資源消耗和土壤碳氮循環(huán)的目標(biāo)出發(fā),構(gòu)建MINLFP模型優(yōu)化了100 hm2的農(nóng)場結(jié)構(gòu),發(fā)現(xiàn)種植生物量更高的作物可以產(chǎn)生更多的土壤有機(jī)質(zhì)積累[27],這與本研究增加生物量較高的玉米種植面積可以提高土壤碳輸入水平促進(jìn)固碳強(qiáng)度的結(jié)果相一致;Mousavi-avval等[28]使用多目標(biāo)遺傳算法探究了油籽農(nóng)場在能源、經(jīng)濟(jì)和環(huán)境方面的最優(yōu)設(shè)計(jì),發(fā)現(xiàn)輪作和農(nóng)家肥混施可以提高油籽的生產(chǎn)效率;但農(nóng)牧規(guī)模的調(diào)整受自然因素、經(jīng)濟(jì)發(fā)展水平及國家政策的影響,其差異也從根本上影響著耕地利用過程中的節(jié)能減排程度[29],也有研究從協(xié)調(diào)發(fā)展的視角探究了碳排放績效與土地利用強(qiáng)度的內(nèi)在關(guān)系,并基于分析結(jié)果針對不同類型城市提出相應(yīng)政策建議[30]。本研究對農(nóng)牧規(guī)模的優(yōu)化是以土壤碳平衡為目標(biāo),結(jié)合區(qū)域的土地利用實(shí)際情況和農(nóng)業(yè)廢棄物資源匹配程度,彈性調(diào)整養(yǎng)殖業(yè)的結(jié)構(gòu):以富??h為例,優(yōu)化前肉羊養(yǎng)殖規(guī)模為0,在優(yōu)化時可以優(yōu)先考慮增加肉羊的養(yǎng)殖規(guī)模,以縣域原有規(guī)模等因素服務(wù)于農(nóng)業(yè)發(fā)展策略而進(jìn)行地因地制宜的優(yōu)化。

3.2 土壤有機(jī)碳儲量對農(nóng)牧規(guī)模優(yōu)化的響應(yīng)

優(yōu)化區(qū)域農(nóng)牧規(guī)模達(dá)到土壤碳收支平衡,本質(zhì)上是在調(diào)整農(nóng)業(yè)廢棄物的種類、規(guī)模和利用方式。研究顯示土壤碳庫的變化受氣候、農(nóng)業(yè)管理、動物種類和作物種類等因素的影響,這些因素的變化導(dǎo)致土壤碳氮比的下降而影響土壤碳儲量的增加[31-32]。與秸稈還田相比,資源化利用的秸稈和豬糞還田有利于土壤有機(jī)碳的累積促進(jìn)土壤有機(jī)碳的周轉(zhuǎn)和固定。因此,土壤碳儲量的增加,一是通過改變農(nóng)業(yè)固廢利用方式提高碳的還田效率[33]。有機(jī)肥替代化肥或者減少耕作等農(nóng)業(yè)管理措施能提高土壤碳儲量增加的效率,合適碳氮比固廢生產(chǎn)有機(jī)肥,能提高有機(jī)肥的降解效率而快速提高土壤有機(jī)碳儲量[34]。二是通過增加碳氮比高的農(nóng)業(yè)廢棄物還田比例。不同種類的種植業(yè)秸稈和養(yǎng)殖業(yè)糞便的碳氮含量的差異導(dǎo)致農(nóng)業(yè)廢棄物的種類對土壤碳庫的貢獻(xiàn)不同。研究顯示[35],無論從時間還是空間層面看,畜牧業(yè)生產(chǎn)都是影響中國畜牧業(yè)碳排放的最重要因素。根據(jù)土壤碳輸入與種植業(yè)和養(yǎng)殖業(yè)規(guī)模變化的相關(guān)性分析(表5),育肥豬(=0.85,<0.05)、羊(=0.84,<0.05)、玉米(=0.83,<0.05)與土壤碳輸入量呈顯著正相關(guān)。MAILLARD等[36]統(tǒng)計(jì)了全球49個站點(diǎn)中130組數(shù)據(jù)發(fā)現(xiàn)糞便還田后土壤有機(jī)碳儲量的增加顯著,多增加4~8 Mg/ hm2(碳),同時糞便還田后土壤中有機(jī)碳的穩(wěn)定程度也顯著增加。本研究以碳收支平衡為目標(biāo)優(yōu)化縣域種植業(yè)和養(yǎng)殖業(yè)規(guī)模時,結(jié)果表明,黃牛(=0.47,<0.05)和奶牛(=0.34,<0.05)的規(guī)模與土壤碳輸入也呈顯著正相關(guān),水稻規(guī)模的變動,限制了黃牛和奶牛規(guī)模的增加。而土壤碳儲量的增加與玉米規(guī)模呈顯著正相關(guān)(=0.83,<0.05),原因在于玉米生物量大,秸稈資源豐富,生物量的秸稈與土壤碳儲量的增加呈顯著正相關(guān)[37]。黃牛及奶牛規(guī)模與水稻及大豆規(guī)模呈顯著負(fù)相關(guān),表明養(yǎng)殖業(yè)規(guī)模的增加需要伴隨水稻或大豆種植規(guī)模的減少,才能保證不同種類的秸稈和糞便之間的碳平衡。

表5 種植業(yè)和養(yǎng)殖業(yè)規(guī)模對碳盈虧的響應(yīng)

Table 4 Response of planting and breeding scale to carbon profit and loss

注(Note):*<0.05, **<0.01.

3.3 土壤碳平衡優(yōu)化對土壤氮承載力的響應(yīng)

在碳平衡的同時,有機(jī)肥的還田會影響土壤氮的輸入量,改變現(xiàn)有的土壤氮平衡。研究表明[38-39],利用有機(jī)肥替代部分化肥的施用,可起到減少土壤化學(xué)氮的輸入,提高土壤保留養(yǎng)分能力,降低面源污染風(fēng)險(xiǎn)的作用。長期施用有機(jī)肥條件下,有機(jī)肥替代化肥的比例越高,對土壤酸化的改善和土壤養(yǎng)分的增加效果更好,當(dāng)有機(jī)肥施氮量是化肥氮的2倍時,可使土壤碳和土壤氮分別能提高30%以上[40-41]。綜合施用推薦比例有機(jī)肥和無機(jī)肥料也是提高水稻、小麥和玉米等農(nóng)作物生產(chǎn)率和氮肥利用率的最有效方法[42]。以水稻為例,有機(jī)肥和無機(jī)肥配施可以提高13%的水稻產(chǎn)量[43],相比于秸稈還田,長期施用有機(jī)肥使大豆產(chǎn)量提高31%,小麥產(chǎn)量提高3.5%[44],產(chǎn)量的提高意味著農(nóng)業(yè)廢棄物資源潛力的增加,形成良性循環(huán)[45]。利用有機(jī)肥替代化肥,也能改變土壤理化性質(zhì)和土壤酶活性,不僅對微生物的正常活動和有機(jī)肥品質(zhì)有重要影響[46],也能減少或消除長期使用化肥對生態(tài)系統(tǒng)富營養(yǎng)化,水質(zhì)退化,生物多樣性和土壤質(zhì)量的負(fù)面影響[47-48],進(jìn)而影響農(nóng)作物的產(chǎn)量與品質(zhì)。根據(jù)農(nóng)業(yè)農(nóng)村部2018年發(fā)布的《畜禽糞污土壤氮承載力測算指南》對土壤氮承載力進(jìn)行計(jì)算,結(jié)果顯示規(guī)模優(yōu)化會改變現(xiàn)有的土壤氮承載力。規(guī)模優(yōu)化后有機(jī)物料還田的氮素可替代33%~59%的化肥氮(表6),除克山縣和克東縣的玉米種植土壤氮承載力降低外,其余縣的水稻、玉米和大豆土壤的畜禽糞污土壤氮承載力明顯上升??藮|縣和克山縣玉米的土壤氮承載力均呈現(xiàn)下降趨勢,原因可能在于:1)2縣的土壤碳虧損較為嚴(yán)重,有機(jī)物料還田增加的碳和氮輸入量較大;2)相較于碳虧損同樣大的訥河縣,經(jīng)過優(yōu)化后克山縣和克東縣的玉米種植規(guī)模變化較小,大豆規(guī)模變化較大,其增加的玉米種植面積的規(guī)模無法匹配減少的大豆種植面積對土壤氮承載力的影響。吉艷芝等[49]的研究顯示大豆由于其本身具有固氮能力,相比于玉米種植對施入外源肥料中的氮吸收極少,僅為玉米的1/8,大豆的氮吸收基本來自于土壤,是肥料氮的7.66倍,這說明大豆種植可以消納更多的氮,其畜禽糞污氮承載力遠(yuǎn)遠(yuǎn)高于玉米種植。

表6 農(nóng)牧規(guī)模優(yōu)化后土壤氮承載力

Table 5 Soil nitrogen carrying capacity after adjustment of farming and breeding scale

4 結(jié) 論

縣域農(nóng)業(yè)結(jié)構(gòu)的優(yōu)化是目前的研究熱點(diǎn),針對不同的農(nóng)業(yè)發(fā)展目標(biāo)和農(nóng)業(yè)發(fā)展策略,對農(nóng)業(yè)的結(jié)構(gòu)和規(guī)模進(jìn)行優(yōu)化,對農(nóng)業(yè)的可持續(xù)發(fā)展具有重要意義。本研究針對黑土土壤質(zhì)量提升的需求,嘗試以土壤碳平衡為抓手,根據(jù)齊齊哈爾各縣域內(nèi)主糧種植和畜禽養(yǎng)殖的規(guī)模以及糞污堆漚有機(jī)肥還田效率等要素,對各縣域的農(nóng)牧業(yè)結(jié)構(gòu)和規(guī)模進(jìn)行模擬調(diào)整,得到以下結(jié)論:

1)各縣域農(nóng)田土壤碳庫可以通過農(nóng)牧規(guī)模優(yōu)化方案調(diào)整不再降低。在每個縣的不同方案下,種植業(yè)和養(yǎng)殖業(yè)的廢棄物得到全量化利用,提升了土壤質(zhì)量。

2)各縣的主要調(diào)整方案中,種植業(yè)需要減少水稻種植面積,增加玉米的種植面積,養(yǎng)殖業(yè)需要增加奶牛養(yǎng)殖規(guī)模,其余類型的養(yǎng)殖規(guī)模視情況而定,同時保證畜禽糞便及秸稈以堆肥的形式還田。

3)種植業(yè)和養(yǎng)殖業(yè)規(guī)模調(diào)整后的有機(jī)物料還田可替代33%~59%的化肥氮投入,除克東縣和克山縣的玉米種植外,3種主栽作物的土壤氮承載力均呈現(xiàn)上升趨勢。

本文考慮了區(qū)域的農(nóng)業(yè)碳排放和農(nóng)場生產(chǎn)經(jīng)濟(jì)效益,以土壤碳平衡為目標(biāo),對各縣域的農(nóng)業(yè)規(guī)模進(jìn)行了調(diào)整。在構(gòu)建模型過程中,難以全部以試驗(yàn)的形式獲取模型參數(shù),因此盡量選取了以東北為研究區(qū)域的相關(guān)文獻(xiàn)研究,例如糞便排泄系數(shù),土壤呼吸速率等。此外,農(nóng)牧業(yè)規(guī)模的調(diào)整還涉及到地方政策及農(nóng)業(yè)資源等,本研究的結(jié)果是為地方政府提供規(guī)模調(diào)整的思路,因此本研究給出調(diào)整的最優(yōu)解集合,具體方案還需集合區(qū)域?qū)嶋H情況具體分析,這也是今后進(jìn)一步研究的方向。

[1] 韓曉增,鄒文秀. 我國東北黑土地保護(hù)與肥力提升的成效與建議[J]. 中國科學(xué)院院刊,2018,33(2):206-212. HAN Xiaozeng, ZOU Wenxiu. Effects and suggestions of black soil protection and soil fertility increase in northeast China[J]. Bulletin of Chinese Academy of Sciences (Chinese Version), 2018, 33(2): 206-212. (in Chinese with English abstract)

[2] ZHAO Y, WANG M, HU S, et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4045-4050.

[3] 石曉曉,鄭國砥,高定,等. 中國畜禽糞便養(yǎng)分資源總量及替代化肥潛力[J]. 資源科學(xué),2021,43(2):403-411. SHI Xiaoxiao, ZHENG Guodi, GAO Ding, et al. Quantity of available nutrient in livestock manure and its potential of replacing chemical fertilizers in China[J]. Resources Science, 2021, 43(2): 403-411. (in Chinese with English abstract)

[4] 張?zhí)?,卜美東,耿維. 中國畜禽糞便污染現(xiàn)狀及產(chǎn)沼氣潛力[J]. 生態(tài)學(xué)雜志,2012,31(5):1241-1249. ZHANG Tian, BU Meidong, GENG Wei. Pollution status and biogas- producing potential of livestock and poultry excrements inChina[J]. Chinese Journal of Ecology 2012, 31(5): 1241-1249. (in Chinese with English abstract)

[5] 李波,張俊飚,李海鵬. 中國農(nóng)業(yè)碳排放時空特征及影響因素分解[J]. 中國人口資源與環(huán)境,2011,21(8):80-86. LI Bo, ZHANG Junbiao, LI Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86. (in Chinese with English abstract)

[6] KUNDU S, BHATTACHARYYA R, PRAKASH V, et al. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean-wheat rotation in a sandy loam soil of the Indian Himalayas[J]. Soil and Tillage Research, 2007, 92(1/2): 87-95.

[7] 蔡岸冬,徐明崗,張文菊,等. 土壤有機(jī)碳儲量與外源碳輸入量關(guān)系的建立與驗(yàn)證[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2020,26(5):934-941. CAI Andong, XU Minggang, ZHANG Wenju et al. Establishment and verification of the relationship between soil organic carbonstorage and exogenous carbon input[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 934-941. (in Chinese with English abstract)

[8] HE J, KUHN N J, ZHANG X M, et al. Effects of 10 years of conservation tillage on soil properties and productivity in the farming-pastoral ecotone of Inner Mongolia, China[J]. Soil Use and Management, 2009, 25(2): 201-209.

[9] KAN Z R, HE C, LIU Q Y, et al. Carbon mineralization and its temperature sensitivity under no-till and straw returning in a wheat-maize cropping system[J]. Geoderma, 2020, 377: 114610.

[10] LESSMANN M, ROS G H, YOUNG M D, et al. Global variation in soil carbon sequestration potential through improved cropland management[J]. Global Change Biology, 2022, 28(3): 1162-1177.

[11] STEWART C E, PAUSTIAN K, COMANT R T, et al. Soil carbon saturation: Concept, evidence and evaluation[J]. Biogeochemistry, 2007, 86: 19-31.

[12] 郭薇儀,崔建宇,張望,等. 泛種養(yǎng)結(jié)合視角下北京市養(yǎng)殖業(yè)土地承載力評估[J].農(nóng)業(yè)工程學(xué)報(bào),2021,37(17):242-250. GUO Weiyi, CUI Jianyu, ZHANG Wang, et al. Assessment of land carrying capacity of animal production in Beijing from a wider perspective of combination of planting and animal breeding[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(17): 242-250.

[13] 匡兵,盧新海,韓璟,等. 考慮碳排放的糧食主產(chǎn)區(qū)耕地利用效率區(qū)域差異與變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):1-8. KUANG Bing, LU Xinhai, HAN Jing, et al. Regional differences and dynamic evolution of cultivated land use efficiency in major grain producing areas in low carbon perspective[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 1-8. (in Chinese with English abstract)

[14] Lalehzari R, Boroomand N S, Moazed H, et al. Simulation-optimization modelling for water resources management using nsgaii-oip and modflow[J]. Irrigation and Drainage, 2020, 69(3): 317-332.

[15] 吳雅欣,金濤,史琛,等. 江蘇省稻田種養(yǎng)產(chǎn)業(yè)化開發(fā)空間優(yōu)選與分區(qū)引導(dǎo)策略[J].農(nóng)業(yè)工程學(xué)報(bào),2022, 38(8):255-262.

WU Yaxin, JIN Tao, SHI Chen, et al. Spatial optimization and zoning guidance strategy of rice-aquatic coculture system in Jiangsu Province, China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2022, 38(8):255-262.

[16] SCHOLTZ M M, VAN RYSSEN J B J, MEISSNERR H H, et al. A South African perspective on livestock production in relation to greenhouse gases and water usage[J]. South African Journal of Animal Science, 2013, 43(3): 247-254.

[17] 蔡亞慶,仇煥廣,徐志剛. 中國各區(qū)域秸稈資源可能源化利用的潛力分析[J]. 自然資源學(xué)報(bào),2011,26(10):1637-1646. CAI Yaqing, QIU Huanguang, XU Zhigang. Evaluationon potentials of energy utilization of cropresidual resources in different regions of China[J]. Journal of Natural Resources, 2011, 26(10): 1637-1646. (in Chinese with English abstract)

[18] 林源,馬驥,秦富. 中國畜禽糞便資源結(jié)構(gòu)分布及發(fā)展展望[J]. 中國農(nóng)學(xué)通報(bào),2012,28(32):1-5. LIN Yuan, MA Ji, QIN Fu. The structure distribution and prospect of China manure resource[J]. Chinese Agricultural Science Bulletin, 2012, 28(32): 1-5. (in Chinese with English abstract)

[19] 張忠學(xué),李鐵成,齊智娟,等. 水氮耦合對黑土稻田土壤呼吸與碳平衡的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(6):301-308. ZHANG Zhongxue, LI Tiecheng, QI Zhijuan. Effects of water and nitrogen coupling on soil respiration and carbon balance in black soil paddy field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 301-308. (in Chinese with English abstract)

[20] 賀美,王立剛,王迎春,等. 長期定位施肥下黑土呼吸的變化特征及其影響因素[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):151-161. HE Mei, WANG Ligang, WANG Yingchun et al. Characteristic of black soil respiration and its influencing factors under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 151-161. (in Chinese with English abstract)

[21] 付微,張興義,趙軍,等. 模擬增溫對東北黑土農(nóng)田作物生長季土壤呼吸的影響[J]. 生態(tài)學(xué)雜志,2017,36(3):601-608. FU Wei, ZHANG Xingyi, ZHAO Jun, et al. Effects of experimental warming on soil respiration during growing period in cropland in the black soil region of Northeast China[J]. Chinese Journal of Ecology, 2017, 36(3): 601-608. (in Chinese with English abstract)

[22] 畜禽糞污土地承載力測算技術(shù)指南[R]. 農(nóng)業(yè)農(nóng)村部. 2018.(2018-02-20) http://www.moa.gov.cn/nybgb/2018/201802/201805/t20180515_6142139.htm.

[23] de CORATO U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy[J]. Science of the Total Environment, 2020, 738: 139840.

[24] 閆卓冉,李文博,王冬艷. “哈長城市群”農(nóng)業(yè)空間網(wǎng)絡(luò)結(jié)構(gòu)及要素優(yōu)化配置[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(2):194-202. YAN Zhuoran, LI Wenbo, WANG Dongyan. Analysis of agricultural space network and optimized allocation of factors in Harbin-Changchun urban agglomeration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 194-202. (in Chinese with English abstract)

[25] 余婧婧,王瑞波,常海濤,等,基于種養(yǎng)業(yè)融合的大興安嶺農(nóng)墾種養(yǎng)結(jié)構(gòu)優(yōu)化研究[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2017,38(10):228-236. YU Jingjing, WANG Ruibo, CHANG Haitao et al. Optimization of crop and livestock industry in DaxinganLing agricultural reclamation based on planting-breeding balance[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(10): 228-236. (in Chinese with English abstract)

[26] LIANG Y, HUI C W, YOU F. Multi-objective economic-resource-production optimization of sustainable organic mixed farming systems with nutrient recycling[J]. Journal of Cleaner Production, 2018, 196: 304-330.

[27] LEMAIRE G, FRANZLUEBBERS A, CARVALHO P C, et al. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality[J]. Agriculture Ecosystems & Environment, 2014, 190: 4-8.

[28] MOUSAVI-AVVAL S H, RAFIEE S, SHARIFI M, et al. Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production[J]. Journal of Cleaner Production, 2017, 140: 804-815.

[29] 孫英彪,蘇雄志,許皞. 河北省耕地集約利用水平與碳排放效率的相關(guān)性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(19):258-267. SUN Yingbiao, SU Xiongzhi, XU Hao. Correlation between levels of cultivated land intensive use and carbon emission efficiency in Hebei Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(19): 258-267. (in Chinese with English abstract)

[30] 馮新惠,李艷,余邇,等. 長三角城市群碳排放績效與土地利用強(qiáng)度時空格局及協(xié)調(diào)發(fā)展特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(3):208-218. FENG Xinhui, LI Yan, YU Er, et al. Spatiotemporal pattern and coordinating development characteristics of carbon emission performance and land use intensity in the Yangtze River Delta Urban Agglomeration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(3): 208-218. (in Chinese with English abstract)

[31] 代紅翠,陳源泉,趙影星,等. 不同有機(jī)物料還田對華北農(nóng)田土壤固碳的影響及原因分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊2):103-110. DAI Hongcui, CHEN Yuanquan, ZHAO Yingxing, et al. Effects and causes of different organic materials amendment on soil organic carbon in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp. 2): 103-110. (in Chinese with English abstract)

[32] HAN P, ZHANG W, WANG G, et al. Changes in soil organic carbon in croplands subjected to fertilizer management: A global meta-analysis[J]. Scientific Reports, 2016, 6(1): 27199.

[33] SONJA V, DEBORAH B, JOHANNES L, et al. A global agenda for collective action on soil carbon[J]. Nature Sustainability, 2019, 2(1) : 2-4.

[34] DIACONO M, MONTEMURRO F. Long-term effects of organic amendments on soil fertility[J]. Sustainable Agriculture : 2011, 2: 761-786.

[35] 姚成勝,錢雙雙,毛躍華,等. 中國畜牧業(yè)碳排放量變化的影響因素分解及空間分異[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):10-19. YAO Chengsheng, QIAN Shuangshuang, MAO Yuehua, et al. Decomposition of impacting factors of animal husbandry carbon emissions change and its spatial differences in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 10-19. (in Chinese with English abstract)

[36] MAILLARD é, ANGERS D A. Animal manure application and soil organic carbon stocks: A meta-analysis[J]. Global change biology, 2014, 20(2): 666-679.

[37] SIEDT M, SCH?FFER A, SMITH K E C, et al. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides[J]. Science of the Total Environment, 2021, 751: 141607.

[38] LIU J, SHU A, SONG W, et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria[J]. Geoderma, 2021, 404: 115287.

[39] ZHANG Y L, SUN C X, CHEN Z H, et al. Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years[J]. Geoderma, 2019, 353: 382-390.

[40] 王艷群,彭正萍,李迎春,等. 氮肥與氮轉(zhuǎn)化調(diào)控劑配施降低夏玉米-冬小麥農(nóng)田N2O排放[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):184-191. WANG Yanqun, PENG Zhengping, LI Yingchun, et al. Nitrogen fertilizers application combined with N conversion control additives reducing N2O emissions under summer maize-winter wheat cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 184-191. (in Chinese with English abstract)

[41] Ylzad E, Cxs B, Zhc A, et al. Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years[J]. Geoderma, 2019, 353:382-390.

[42] Shahid M , Nayak A K, Puree C , et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil[J]. Soil & Tillage Research, 2017, 170: 136-146.

[43] Oladele S O, Adeyemo A J, Awodun M A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils[J]. Geoderma, 2019, 336: 1-11.

[44] Zhang X, Qian H, Hua K, et al. Organic amendments increase crop yield while mitigating greenhouse gas emissions from the perspective of carbon fees in a soybean-wheat system[J]. Agriculture, Ecosystems & Environment, 2022, 325: 107736.

[45] WANG J, WANG X, XU M, et al. Crop yield and soil organic matter after long-term straw return to soil in China[J]. Nutrient Cycling in Agroecosystems, 2015, 102: 371-381.

[46] 劉成琛,袁蓉芳,周北海. 碳氮比對豬糞-玉米秸稈混合堆肥的影響[J]. 中國資源綜合利用,2018,36(9):23-26. LIU Chengchen, YUAN Rongfang, ZHOU Beihai. Effects of carbon and nitrogen ratio on mixed composting of pig manure and corn straw[J]. China Resources Comprehensive Utilization, 2018, 36(9): 23-26. (in Chinese with English abstract)

[47] CHEN J, LUO Y, VAN Groenigen K J, et al. A keystone microbial enzyme for nitrogen control of soil carbon storage[J]. Science Advances, 2018, 4(8): 1689.

[48] Chen Y, CAMPS-ARBESTAIN M, Shen Q, et al. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review[J]. Nutrient Cycling in Agroecosystems, 2018, 111: 103-125.

[49] 吉艷芝,徐明杰,巨曉棠,等. 華北平原不同種植制度對糧食作物氮素利用和土壤氮庫的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):86-96. JI Yanzhi, XU Mingjie, JU Xiaotang, et al. Effects of different cropping systems on food crop nitrogen utilization and soil nitrogen pool in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 86-96. (in Chinese with English abstract)

Optimizing the scale of planting and breeding on the county scale based on soil carbon balance in black soil area

HANG Sheng1,4, HOU Ruixing1,2※, LI Zehong1,2, OUYANG Zhu1,3

(1.,,100101,; 2.,100049,; 3.,,,257509,; 4.(),215000,)

Black soil region can serve as the main production area of commodity grain in Northeast China. There is the soil quality decline of cultivated land in recent years, such as the thinner and harder land. Among them, the efficient return of agricultural waste as a carbon source can be an important way to improve soil quality. However, it is still lacking in the regional, agricultural production system model using the regulation of the carbon cycle between plant and animal, in order to promote the return of carbon to the field for the recovery of black land fertility. This study aims to improve the soil organic matter content of black land for recovery. The research object was selected as Qiqihar City located in the hinterland of Songnen Plain in Heilongjiang Province of China. The soil carbon budget of each county was calculated to compare the difference between the soil carbon input and output of different crops. The agricultural carbon balance model was established for plant and animal husbandry using multi-objective linear programming. The least carbon emission and the highest economic benefit were taken as the main targets, while the efficient use of agricultural and waste resources was the secondary target. As such, the balance between soil carbon emission and carbon input was determined, according to the situation of each county. The results showed that the adjustment plan in each county was optimized to reduce the rice planting area, while increasing the cow farming scale and maize planting area with high biomass. There was no decrease in the soil carbon pool of farmland after the full utilization of the waste of cultivation and breeding industry. However, the scale of plant and animal husbandry at the county level should be adjusted, according to the local conditions. Taking Nehe City with a large soil carbon deficit as an example, the maize planting area increased by 46%, while the scale of beef breeding should be reduced by 63%, and the scale of cows, pigs, sheep and poultry breeding increased by 85%, 54%, 76%, and 71%, respectively, in order to balance the carbon input and agricultural economic benefits. Take Longjiang County with a small soil carbon deficit as an example, the rice planting area, and the beef and pigs breeding industry should be reduced, while the corn and soybean planting area increased, and the scale of cows, pigs, and poultry also increased. The organic materials returned to the field were replaced by 33%-49% of the fertilizer nitrogen input after the planting and breeding scale, particularly for the higher soil quality and the soil nitrogen carrying capacity. Moreover, the soil nitrogen-carrying capacity of the three main crops showed an increasing trend, except for the maize planting in Kedong and Keshan County. The agricultural “carbon balance” development model can be expected to serve as the scientific basis for the efficient utilization of agricultural waste resources. The finding can also provide a strong reference to realize the “double carbon” strategy in the black soil area.

soils; straw; nitrogen; the black land; carbon balance; bearing capacity; scale optimization; sustainable development

10.11975/j.issn.1002-6819.202211158

S962.9

A

1002-6819(2023)-06-0204-10

杭勝,侯瑞星,李澤紅,等. 基于土壤碳平衡的黑土區(qū)縣域種養(yǎng)規(guī)模優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(6):204-213.doi:10.11975/j.issn.1002-6819.202211158 http://www.tcsae.org

HANG Sheng, HOU Ruixing, LI Zehong, et al. Optimizing the scale of planting and breeding on the county scale based on soil carbon balance in black soil area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 204-213. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202211158 http://www.tcsae.org

2022-11-08

2023-01-24

國家自然科學(xué)基金面上項(xiàng)目(32071607);中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDA28130302)

杭勝,博士生,研究方向?yàn)檠h(huán)農(nóng)業(yè)結(jié)構(gòu)與規(guī)模優(yōu)化。Email:hangs.17b@igsnrr.ac.cn

侯瑞星,博士,副研究員,研究方向?yàn)檗r(nóng)田生態(tài)學(xué),氣候變化與農(nóng)作物。Email:hourx@igsnrr.ac.cn

猜你喜歡
養(yǎng)殖業(yè)縣域糞便
養(yǎng)殖業(yè)如何應(yīng)對飼料成本高企
新型冠狀病毒感染者咽拭子與糞便排毒規(guī)律及臨床表現(xiàn)
A new pet obsession of Silkie chicken
縣域消防專項(xiàng)規(guī)劃研究
未來三年農(nóng)村養(yǎng)殖業(yè)發(fā)展方向
山東縣域GDP排名出爐
食用菌多糖作為添加劑在養(yǎng)殖業(yè)中的應(yīng)用
養(yǎng)殖業(yè)整治需多措并舉
“糞便移稙”治病真有用
縣域就診率為何差了40%