苑嚴(yán)偉,白圣賀,牛 康,周利明,趙 博,偉利國,劉立晶
·專論與綜述·
棉花種植機(jī)械化關(guān)鍵技術(shù)與裝備研究進(jìn)展
苑嚴(yán)偉1,2,白圣賀1,2,牛 康2,周利明2,趙 博2,偉利國2,劉立晶1,2※
(1. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 中國農(nóng)業(yè)機(jī)械化科學(xué)研究院集團(tuán)有限公司農(nóng)業(yè)裝備技術(shù)全國重點(diǎn)實(shí)驗(yàn)室,北京 100083)
作為棉花產(chǎn)業(yè)發(fā)展的基礎(chǔ)環(huán)節(jié),棉花種植機(jī)械化是制約棉花產(chǎn)業(yè)發(fā)展的重要瓶頸。實(shí)現(xiàn)棉花種植機(jī)械化是棉花產(chǎn)業(yè)發(fā)展方式轉(zhuǎn)變、提質(zhì)增效、提升國際市場競爭力的重要途徑之一,也是棉花產(chǎn)業(yè)全程機(jī)械化和規(guī)模化的研究重點(diǎn)。該文總結(jié)了中國棉花種植現(xiàn)狀和特點(diǎn),闡述了國內(nèi)外典型棉花種植機(jī)械化關(guān)鍵技術(shù)與裝備的研究現(xiàn)狀,重點(diǎn)剖析了棉花育苗移栽和直播2種主要種植技術(shù)與裝備發(fā)展動(dòng)態(tài)。在此基礎(chǔ)上,結(jié)合精準(zhǔn)農(nóng)業(yè)背景和棉花產(chǎn)業(yè)生產(chǎn)發(fā)展要求,歸納了現(xiàn)有棉花種植機(jī)械化技術(shù)與裝備面臨的機(jī)會(huì)和挑戰(zhàn),提出未來的研究方向和發(fā)展建議,以期為棉花種植機(jī)械化技術(shù)研究與裝備創(chuàng)新設(shè)計(jì)提供參考。
農(nóng)作物;農(nóng)業(yè)機(jī)械;種植;棉花;機(jī)械化;育苗移栽;直播
作為國家重要戰(zhàn)略物資和經(jīng)濟(jì)作物,棉花種植面積和產(chǎn)量均位于全球前列,其產(chǎn)業(yè)是中國鄉(xiāng)村振興的基礎(chǔ)配套產(chǎn)業(yè),占有重要地位[1-2]。隨著棉花產(chǎn)業(yè)發(fā)展方式轉(zhuǎn)變、結(jié)構(gòu)調(diào)整以及比較效益降低,現(xiàn)如今中國棉花生產(chǎn)正面臨著以單純追求高產(chǎn)向高產(chǎn)優(yōu)質(zhì)高效的方向發(fā)展[3-4]。中國作為世界棉花生產(chǎn)和消費(fèi)大國,增強(qiáng)棉花話語權(quán)和國際市場競爭力,確保棉花產(chǎn)業(yè)高質(zhì)量發(fā)展刻不容緩。這已得到政府、生產(chǎn)企業(yè)、科研院所等各方的廣泛關(guān)注和重視[1,5-6]。
棉花種植是棉花全程生產(chǎn)的基礎(chǔ)環(huán)節(jié),更是促進(jìn)棉花生產(chǎn)提質(zhì)增效和提升棉花生產(chǎn)競爭優(yōu)勢的重要途徑。農(nóng)業(yè)生產(chǎn)經(jīng)營朝以機(jī)械化為支撐的適度規(guī)模化方向轉(zhuǎn)變[7],我國棉花種植范圍廣,存在種植模式多、栽培自然條件差異較大、農(nóng)藝工序繁雜、勞動(dòng)強(qiáng)度大和效率低等諸多問題。因此,發(fā)展棉花機(jī)械化種植技術(shù)與裝備是對(duì)我國棉花生產(chǎn)發(fā)展的有力支撐,更是提高棉花綜合機(jī)械化水平、推進(jìn)農(nóng)業(yè)現(xiàn)代化的重要舉措[8]。
目前國內(nèi)棉花機(jī)械化種植分為棉花直播和育苗移栽[9]。育苗移栽是在營養(yǎng)缽上育苗,再將培育合格的棉苗移栽到棉田。育苗移栽屬于勞動(dòng)密集型作業(yè),具有典型的旱田作物移栽的特點(diǎn),但易產(chǎn)生傷苗與漏播現(xiàn)象[10]。棉花直播可將棉種直接播入棉田,工序簡單,勞動(dòng)強(qiáng)度低且作業(yè)效率高,適合于大田種植作業(yè),應(yīng)用廣泛[11-12]?,F(xiàn)有研究主要集中在裝備結(jié)構(gòu)設(shè)計(jì)及優(yōu)化、流場模擬仿真分析、作業(yè)性能試驗(yàn)研究等方面,已初步形成了棉花種植機(jī)械化技術(shù)與裝備體系[13-20]。棉花種植機(jī)械化需符合精準(zhǔn)農(nóng)業(yè)發(fā)展方向,追求高產(chǎn)優(yōu)質(zhì)高效的發(fā)展目標(biāo)。這是棉花產(chǎn)業(yè)發(fā)展的重大現(xiàn)實(shí)需求,更是棉花全程機(jī)械化和規(guī)模化的研究重點(diǎn)[21]。
本文闡述中國棉花種植概括,歸納分析國內(nèi)外典型棉花種植機(jī)械化關(guān)鍵技術(shù)與裝備的研究現(xiàn)狀。圍繞棉花育苗移栽與直播技術(shù)及裝備的研究動(dòng)態(tài),基于精準(zhǔn)農(nóng)業(yè)背景,結(jié)合棉花產(chǎn)業(yè)生產(chǎn)發(fā)展要求,以高效率、高精度、高效益為目標(biāo),提出棉花種植機(jī)械化面臨的問題,并展望未來發(fā)展方向。
棉花種植范圍集中在全球北緯40°至南緯30°之間,主要分為亞洲東南部、北美洲、沙丁美洲和非洲產(chǎn)棉區(qū)。其中,亞洲東南屬于最大的棉花生產(chǎn)和消費(fèi)地區(qū),主要是中國、印度、巴基斯坦;北美洲屬于第二產(chǎn)棉區(qū),也是出口第一大區(qū),主要是美國;拉丁美洲屬于第三產(chǎn)棉區(qū),以巴西、墨西哥、阿根廷為主;非洲屬于第四產(chǎn)棉區(qū),也是世界高品級(jí)長絨棉的主要產(chǎn)地[22]。
國內(nèi)棉花產(chǎn)區(qū)主要分為黃河流域棉區(qū)(以冀豫魯陜?yōu)橹鳎㈤L江流域棉區(qū)(以皖鄂湘蘇贛川浙為主)、西北內(nèi)陸棉區(qū)(以甘肅、新疆為主)三大區(qū)域[23-24],1991、2000、2010、2020年各省棉花生產(chǎn)情況[24-25]如表1所示。由表1可知,國內(nèi)棉花種植呈現(xiàn)西移態(tài)勢,長江流域、黃河流域棉區(qū)面積大幅減少,逐漸由西北內(nèi)陸棉區(qū)變?yōu)橹黧w,尤其是新疆棉花播種面積增幅最快,比重逐步增大。棉花種植主體正向新疆集中,已成為中國棉花生產(chǎn)的中堅(jiān)力量和新主產(chǎn)區(qū)。
表1 不同省區(qū)棉花播種面積和總產(chǎn)量的比較
注:“*”表示無數(shù)據(jù)或該數(shù)值<0.01。
Note: “*” indicates that there is no data or that the value is less than 0.01.
我國棉花育苗移栽方式主要有2種:基質(zhì)裸苗移栽和缽苗移栽[26]。基質(zhì)裸苗移栽育苗費(fèi)用高,容易引起棉苗根系損傷;缽苗移栽省種省時(shí),具有補(bǔ)償氣候、提前作物發(fā)育期的綜合效益,即提高作物復(fù)種指數(shù),該模式逐漸得以推廣。棉花缽苗移栽多通過半自動(dòng)移栽機(jī)進(jìn)行作業(yè),人工輔助喂苗,需在旁照看機(jī)器以防漏投棉苗,作業(yè)效率較低。長期以來,棉花缽苗移栽技術(shù)深受農(nóng)藝專家和農(nóng)戶的青睞,但由于缺少性能可靠的移栽裝備,致使難以大面積推廣應(yīng)用。
國外棉花種植均是直播,對(duì)棉花缽苗移栽研究較少,但旱地自動(dòng)缽苗移栽技術(shù)相對(duì)成熟[27-31]。棉花缽苗移栽裝備技術(shù)研究在國內(nèi)起步較晚,進(jìn)展緩慢,大多是借鑒國外成熟旱田缽苗移栽機(jī)型。山東青州火絨機(jī)械制造的半自動(dòng)棉花缽苗移栽機(jī),每臺(tái)機(jī)器配置2~3人工投苗至鴨嘴式栽植器,利用行星輪式控制鴨嘴栽植器開合并帶動(dòng)附帶的覆土鎮(zhèn)壓裝置。該機(jī)用于棉花缽苗栽植效果較好,裸根苗直立度差[32]。半自動(dòng)吊籃式棉花缽苗移栽機(jī)由山東理工大學(xué)和石河子大學(xué)聯(lián)合設(shè)計(jì),采用偏心圓盤式驅(qū)動(dòng)吊籃實(shí)現(xiàn)開穴栽植,再由覆土鎮(zhèn)壓器覆土壓實(shí)。該類機(jī)型結(jié)構(gòu)簡單,價(jià)格低廉,以小田作物為主,比如2YZ-40型吊籃式缽苗移栽機(jī)[33-34]。
為進(jìn)一步提高棉花缽苗移栽機(jī)工作效率,學(xué)者開展了全自動(dòng)棉花缽苗移栽機(jī)構(gòu)研究。華中農(nóng)業(yè)大學(xué)研制了棉花缽苗移栽系統(tǒng)總成,利用液壓缸和曲柄滑塊機(jī)構(gòu)分別控制分缽裝置和投缽裝置完成對(duì)應(yīng)的分缽和投缽動(dòng)作,但結(jié)構(gòu)復(fù)雜、機(jī)構(gòu)龐大,尚處于研究階段[35]。浙江理工大學(xué)設(shè)計(jì)了旋轉(zhuǎn)式棉花缽苗取苗機(jī)構(gòu),利用雙向螺旋軸驅(qū)動(dòng)秧箱橫向往復(fù)運(yùn)動(dòng),縱向間歇機(jī)構(gòu)控制秧箱縱向間歇送秧動(dòng)作。該機(jī)首次將回轉(zhuǎn)式移栽機(jī)構(gòu)應(yīng)用于棉花缽苗移栽,結(jié)構(gòu)簡單、效率高、成本低,但需與栽植機(jī)構(gòu)緊密配合[36-37]。
由于種植農(nóng)藝區(qū)別,國外幾乎不采用棉花移栽方式,致使學(xué)者研究較少。但國外旱地自動(dòng)移栽機(jī)技術(shù)先進(jìn),性能可靠,已有一定規(guī)模推廣使用,可為國內(nèi)開展棉花移栽研究提供經(jīng)驗(yàn)和思路[38]。國內(nèi)棉花移栽基本采用人工投苗的半自動(dòng)移栽方式(鴨嘴式與吊杯式),均缺乏可靠的自動(dòng)送苗裝置,長期作業(yè)故障率高,致使移栽作業(yè)勞動(dòng)強(qiáng)度增大、作業(yè)速度降低、綜合效益不明顯;針對(duì)全自動(dòng)棉花缽移栽機(jī)研究不夠系統(tǒng),多處于試驗(yàn)階段,無性能穩(wěn)定可靠的產(chǎn)品。后續(xù)圍繞移栽質(zhì)量與效率為目的,加強(qiáng)移栽機(jī)構(gòu)創(chuàng)新。通過現(xiàn)代設(shè)計(jì)軟件仿真、試驗(yàn)等手段對(duì)其進(jìn)行不斷優(yōu)化,為研發(fā)高效、精準(zhǔn)、低損取苗機(jī)構(gòu)提供有力理論支撐。引入信息化、智能化技術(shù),加強(qiáng)機(jī)電一體化融合,助于實(shí)現(xiàn)移栽機(jī)的全自動(dòng)化作業(yè),并促使移栽機(jī)械向智能化方向發(fā)展,提升作業(yè)質(zhì)量。
棉花直播根據(jù)種植模式可分為露地直播和地膜覆蓋直播[39]。露地直播工序簡單,省力省本,但播后受環(huán)境影響程度大,風(fēng)險(xiǎn)高;地膜覆蓋直播具有增溫保墑、改善品質(zhì)效應(yīng)等特點(diǎn),有利于獲得高產(chǎn)、優(yōu)質(zhì)棉,廣泛應(yīng)用于國內(nèi)棉花主產(chǎn)區(qū)[40-42]。其中地膜覆蓋直播又稱地膜覆蓋穴播,根據(jù)鋪膜與播種程序不同分為膜上打孔穴播和膜下開溝穴播。膜上打孔穴播可省放苗、封土工序,播種均勻,但若遇雨水,致使土面易板結(jié),出苗難,且對(duì)土壤質(zhì)地及整地質(zhì)量要求高[43-44];膜下開溝穴播具有適應(yīng)性強(qiáng)(粘土、沙壤土均能作業(yè))、作業(yè)速度快、勞動(dòng)效率高等特點(diǎn),能夠保持土壤結(jié)構(gòu)與墑情,利于實(shí)現(xiàn)一播全苗,但勞動(dòng)力消耗大[45-46]。地膜覆蓋穴播集中于新疆地區(qū),主要有3種:傳統(tǒng)模式、機(jī)采模式與超寬膜模式[47-48],特點(diǎn)如表2所示。
表2 新疆棉花主要種植模式特點(diǎn)
穴播器是地膜覆蓋直播機(jī)的核心部件,是決定播種機(jī)工作性能的關(guān)鍵要素。根據(jù)工作原理不同,棉花穴播器分為氣力式和機(jī)械式[49],其中氣力式基于真空吸力原理,形成氣流作為載體確保完成囊腫和排種工作;機(jī)械式有多種方法實(shí)現(xiàn)排種,比如水平圓盤式、勺式、指夾式等[50]。
3.2.1 氣力式
氣力式穴播器分為2種:負(fù)壓式(氣流清種)和正壓式(氣壓差攜種),通過改變吸孔大小和數(shù)量,以適應(yīng)不同尺寸規(guī)格的種子。1950年,國外開始研究氣力式排種器,因具有適應(yīng)性強(qiáng)、穩(wěn)定性好、高速播種等特點(diǎn)逐漸發(fā)展成為主流[51]。1970年,HUDSPETHA等[52]研制出氣吸式棉花精密播種機(jī)。結(jié)果表明:該機(jī)種子間距合理,與傳統(tǒng)的條播機(jī)相比具有良好的生長環(huán)境。PARISH等[53-54]以玉米和棉花種子為研究對(duì)象,構(gòu)建氣吸式排種器投種過程的數(shù)學(xué)模型。結(jié)果表明:在保證排種性能的條件下,最大排種頻率為16粒/s,排種盤充種極限線速度為0.34 m/s。YAZGI等[55]以棉花和玉米種子為研究對(duì)象,開展垂直圓盤氣吸式排種器不同吸孔數(shù)量及作業(yè)速度對(duì)排種性能的影響。結(jié)果表明排種器在播種作業(yè)速度為1~1.5 m/s時(shí),具有良好的適應(yīng)性,直至作業(yè)速度提高到2 m/s時(shí),排種性能將急劇下降;SINGH[56]為優(yōu)化棉花播種機(jī)的結(jié)構(gòu)與工作參數(shù),探究排種盤轉(zhuǎn)速、真空度和吸種孔形狀對(duì)播種質(zhì)量影響。
國內(nèi)陳學(xué)庚等[57]研制出氣吸式棉花精密穴播器,可實(shí)現(xiàn)精量取種、清種、精準(zhǔn)投種和精確點(diǎn)種,單粒穴播量合格率達(dá)到95%以上。為解決氣吸式精量穴播器易漏氣、能耗大等難題,該團(tuán)隊(duì)盧勇濤又設(shè)計(jì)了一種新型穴播器[58],優(yōu)化其關(guān)鍵部件參數(shù)。試驗(yàn)表明單粒率超過95.5%,重播率低于2.9%,漏播率低于1.6%。徐國杰[59]采用陣列吸孔吸種與側(cè)向氣吹清種相結(jié)合的方式,設(shè)計(jì)出一種氣吸滾筒陣列式棉花精密排種器,對(duì)3種棉花種子進(jìn)行試驗(yàn)。結(jié)果表明:合格指數(shù)均在92%以上,漏播指數(shù)均在3%以下,重播指數(shù)均在5%以下。為解決氣吸滾筒式排種器能耗大、吸孔易堵塞等問題,康施為等[60]采用氣流清種、減小負(fù)壓氣室空間及清理吸孔等方法,以氣流吸種為基礎(chǔ)設(shè)計(jì)了一種滾筒式精密排種器。結(jié)果表明:播種合格率為93.2%,漏播率為2.1%,重播率為4.7%。姜有忠等[61]設(shè)計(jì)了一種基于有序充種的集排滾筒式排種器,解決了結(jié)構(gòu)復(fù)雜、振動(dòng)大、動(dòng)力消耗大等問題。
3.2.2 機(jī)械式
機(jī)械式總體分為兩種:一是通過機(jī)械方式直接從種群中精確攫取種子來確定排種量,如指夾式,嚴(yán)格要求種子形狀與尺寸。因此需精選種子,必要時(shí)需進(jìn)行丸?;幚?,應(yīng)用較少;二是通過控制種子體積以確定排種量,如圓盤式、勺輪式、窩眼式等,利用排種元件上的容腔從種子群精確分離單粒種子,但種子形狀和大小、型孔形式對(duì)排種性能產(chǎn)生直接影響[49,62]。
YAZGI等[55]研究排種盤在不同型孔數(shù)量條件下精密播種裝置的排種均勻性。結(jié)果表明:在種子間距為100 mm的條件下,棉花在排種盤型孔數(shù)為26孔時(shí)具有最好的排種效果。王吉奎等[63-64]設(shè)計(jì)了一種夾持自鎖式棉花精量穴播器,可實(shí)現(xiàn)精量播種。為降低地面振動(dòng)引起的種子脫落問題,王吉奎等[65]優(yōu)化了取種器結(jié)構(gòu),增設(shè)護(hù)種裝置,改善整機(jī)播種穩(wěn)定性。陳學(xué)庚等[66]以新疆地區(qū)土壤與氣候狀況為依據(jù),研制出棉花雙膜覆蓋精量播種機(jī)。結(jié)果表明:該機(jī)空穴率低于3%,穴粒數(shù)合格率高于85%。張學(xué)軍等[16]設(shè)計(jì)了雙倉轉(zhuǎn)盤式棉花豎直圓盤穴播排種器,結(jié)果表明單粒率為94.3%,破損率0.09%。肖旭等[67]以南方棉種“一穴兩?!钡霓r(nóng)藝要求為基礎(chǔ),設(shè)計(jì)了一種機(jī)械式精量穴播棉花排種器。結(jié)果表明穴粒數(shù)合格指數(shù)為93.62%,重播指數(shù)3.87%,漏播指數(shù)2.51%。王龍等[68]模擬分析窩眼式穴播器轉(zhuǎn)速對(duì)排種性能的作用關(guān)系。為解決排種器在充種過程中由于型孔未囊取種子而造成漏播問題,李娟娟等[69]建立棉種充填過程的運(yùn)動(dòng)學(xué)模型對(duì)相互搶位棉種進(jìn)行力學(xué)分析,研究取種輪運(yùn)動(dòng)參數(shù)與排種器轉(zhuǎn)速對(duì)充種性能的影響。應(yīng)用離散元仿真軟件分析落入型孔的棉種速度的變化趨勢,并分析取種輪振動(dòng)頻率對(duì)種群擾動(dòng)的影響。表3為典型棉花播種裝置[70-75]。表4為典型棉花機(jī)械化穴播技術(shù)特點(diǎn)。
氣力式播種具有不傷種子、通用性好、作業(yè)速度快等特點(diǎn),可更換排種盤適用于不同尺寸種子。這既提高作業(yè)效率,又確保排種作業(yè)質(zhì)量。但由于種子群在高速旋轉(zhuǎn)作用下易造成運(yùn)動(dòng)規(guī)律不合理,影響排種性能,需嚴(yán)格要求氣密性,并存在結(jié)構(gòu)復(fù)雜、動(dòng)力消耗大、價(jià)格高昂、不耐用易磨損等問題。今后在研究氣力式播種技術(shù)時(shí),在排種過程中應(yīng)構(gòu)建棉種的運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)模型,對(duì)排種器氣流場動(dòng)力學(xué)特性進(jìn)行仿真分析,明確棉種運(yùn)動(dòng)規(guī)律和工作機(jī)理,優(yōu)化穴播器空間結(jié)構(gòu),開發(fā)低能耗、低成本、高耐用的產(chǎn)品。機(jī)械式排種器因其結(jié)構(gòu)簡單、成本低得到廣泛使用,按照作業(yè)形式主要分為指夾式、圓盤式、勺輪式、窩眼式等。其中指夾式利用機(jī)械力夾持種子進(jìn)行排種;圓盤式通過更換排種盤來保證運(yùn)轉(zhuǎn),單粒點(diǎn)播或穴播種子;勺輪式采用型孔大小取種,實(shí)現(xiàn)單粒穴播和點(diǎn)播;窩眼式利用取種輪實(shí)現(xiàn)取種,但存在易傷種、對(duì)種子外形尺寸要求較高及播種作業(yè)速度不高等問題。后續(xù)應(yīng)針對(duì)國內(nèi)不同區(qū)域種植模式與技術(shù)需求的差異,完善棉花播種相關(guān)基礎(chǔ)理論,優(yōu)化改進(jìn)關(guān)鍵部件與結(jié)構(gòu),集成先進(jìn)技術(shù),提高機(jī)械式排種器的適應(yīng)性和高效性。
表3 典型棉花播種裝置
表4 典型棉花機(jī)械化穴播技術(shù)特點(diǎn)
采用精量播種技術(shù)省種省工,作業(yè)效率高、播種均勻性好、出苗整齊,利于后續(xù)田間管理和機(jī)械化收獲,成為棉花機(jī)械化播種的技術(shù)重點(diǎn)和研究熱點(diǎn)[66,76]。國外精量播種技術(shù)成熟,智能化水平較高,其中氣力式應(yīng)用較多[56]。國內(nèi)棉花種植普遍采用地膜覆蓋穴播,與國外農(nóng)藝相差較大,難以直接應(yīng)用。目前棉花機(jī)械化播種智能化技術(shù)發(fā)展緩慢,研究集中在自動(dòng)導(dǎo)航和播種作業(yè)參數(shù)實(shí)時(shí)監(jiān)控等[3,77-79]。
北斗衛(wèi)星導(dǎo)航自動(dòng)駕駛有效保障作業(yè)后的條田接行準(zhǔn)確、播行端直,為后續(xù)棉花打藥、施肥、收獲等提供了標(biāo)準(zhǔn)化作業(yè)環(huán)境[80-82]。KAIVOSOJA等[83]開發(fā)了GNSS錯(cuò)誤模擬器提高拖拉機(jī)導(dǎo)航和定位精度。ERKAN等[84]使用分布式非線性預(yù)測控制方法解決拖拉機(jī)軌跡追蹤問題,可提高控制精度和對(duì)環(huán)境干擾的魯棒性。2013年,羅錫文院士團(tuán)隊(duì)研發(fā)國內(nèi)首套“基于GPS的輪式農(nóng)業(yè)機(jī)械導(dǎo)航及自動(dòng)作業(yè)系統(tǒng)”棉花鋪膜播種機(jī)在新疆兵團(tuán)第八師121團(tuán)33連棉田進(jìn)行現(xiàn)場播種演示[85]。張超[86]利用衛(wèi)星導(dǎo)航自動(dòng)技術(shù)搭載田間性能檢測設(shè)備,與傳統(tǒng)機(jī)械播種的誤差比對(duì)。結(jié)果表明,衛(wèi)星自動(dòng)駕駛技術(shù)播種精度更高,棉花更易采凈,且降低了勞動(dòng)強(qiáng)度。王晨[87]研究了視覺導(dǎo)航試驗(yàn)控制平臺(tái),通過LabVIEW建立了視覺導(dǎo)航控制測控系統(tǒng)。
播種作業(yè)參數(shù)實(shí)時(shí)監(jiān)測是目前研究最多和最為成熟的領(lǐng)域。穴播器自身轉(zhuǎn)動(dòng)及前進(jìn)時(shí)易振動(dòng),工作環(huán)境惡劣,易出現(xiàn)取種、排種不暢造成空穴;再者穴播器內(nèi)部完全封閉,不易及時(shí)發(fā)現(xiàn)空穴問題。張學(xué)軍等[88]以齒盤式穴播器為對(duì)象,基于激光對(duì)射型和霍爾傳感器開發(fā)了一種棉花精量穴播器取種狀態(tài)監(jiān)測系統(tǒng)。結(jié)果表明:光照對(duì)監(jiān)測系統(tǒng)無影響,合格穴數(shù)監(jiān)測精度最低為96.17%,空穴數(shù)監(jiān)測精度最低為93.11%。曹葉等[89-90]利用CCD高速攝像頭,開發(fā)了棉花穴播器排種性能自動(dòng)監(jiān)測系統(tǒng)。周利明等[91-92]研制了螺旋型電容籽粒傳感器,實(shí)現(xiàn)了棉花精密播種機(jī)播種量的檢測。結(jié)果表明,播種量監(jiān)測精度為94.6%,漏播量監(jiān)測精度為93.5%,重播量監(jiān)測精度為88.1%。
播種作業(yè)中應(yīng)用北斗衛(wèi)星導(dǎo)航自動(dòng)駕駛技術(shù),有效解決了“播不直、接不上茬”難題。自動(dòng)導(dǎo)航技術(shù)已逐步應(yīng)用于棉花規(guī)?;霓r(nóng)業(yè)生產(chǎn),但針對(duì)棉花播種過程智能化作業(yè)的實(shí)用性、適應(yīng)性、可靠性仍需進(jìn)一步研究。目前棉花精密播種機(jī)普遍采用穴播的方式,與常見排種器結(jié)構(gòu)和排種方式不同,屬于“點(diǎn)播式投種”,現(xiàn)有監(jiān)測技術(shù)難以運(yùn)用。播種作業(yè)參數(shù)實(shí)時(shí)監(jiān)控雖取得一定成果,但無推廣應(yīng)用,后續(xù)需提高測控設(shè)備精度,降低設(shè)備成本。另外,變量播種核心是變量播種處方圖和變量播種機(jī),其中變量播種處方圖獲取是難點(diǎn),需要依賴于各方面技術(shù)發(fā)展與進(jìn)步。
棉花地膜覆蓋直播則以點(diǎn)播式導(dǎo)種為主,利用與地面垂直的往復(fù)式投種機(jī)構(gòu)將種子直接送進(jìn)種溝,屬于全約束的種子運(yùn)移[93]。楊徐飛等[19]設(shè)計(jì)一種氣吸式棉花精量穴播器,慣性和刮種器的共同推動(dòng)使種子順利滾落到穴播器滾筒內(nèi)圈,優(yōu)化鴨嘴結(jié)構(gòu)尺寸,減少種子碰撞嘴壁情況,確保種子準(zhǔn)確落入穴中,不會(huì)造成太大位置偏移。盧勇濤等[58]優(yōu)化設(shè)計(jì)鴨嘴結(jié)構(gòu),確保滾筒工作平穩(wěn),作業(yè)過程中不易掛膜,滑移率低??到鞯萚94]利用負(fù)壓氣吸取種與強(qiáng)制斷氣投種組合的排種原理,實(shí)現(xiàn)精量取種和精確投種。王順利[95]設(shè)計(jì)一種機(jī)械鉗夾式棉花精量排種器,利用凸輪導(dǎo)軌和彈簧強(qiáng)制控制動(dòng)鉗和定鉗間的張開角度,提高取種可靠度,并依靠彈簧彈力強(qiáng)制取種,確保了取種穩(wěn)定性和可靠性。
點(diǎn)播式投種實(shí)質(zhì)是用點(diǎn)播方式讓土壤包圍種子,在土壤摩擦力和回流作用下消除種子落入種床土壤的彈跳滑移現(xiàn)象,能夠保證種距一致性,適用于穴播、鋪膜播種等低速作業(yè),但無法實(shí)現(xiàn)高速作業(yè)[76]。零速投種[96]一直都是機(jī)械化播種中的技術(shù)難點(diǎn)和研究重點(diǎn),現(xiàn)有技術(shù)仍做不到絕對(duì)的零速投種。后續(xù)應(yīng)繼續(xù)深入研究和應(yīng)用“零速投種”理論,如通過虛擬仿真技術(shù)和高速攝影等技術(shù)研究種子與土壤的碰撞過程,以播種機(jī)“零速投種”為目標(biāo)創(chuàng)新設(shè)計(jì)穴播器與配套導(dǎo)種裝置,合理優(yōu)化導(dǎo)種裝置結(jié)構(gòu)曲線[97-98]。
棉花種植技術(shù)經(jīng)歷了快速的發(fā)展,在精準(zhǔn)農(nóng)業(yè)發(fā)展的大背景下,追求高產(chǎn)優(yōu)質(zhì)高效的發(fā)展目標(biāo)。結(jié)合棉花產(chǎn)業(yè)生產(chǎn)發(fā)展要求與現(xiàn)有棉花種植機(jī)械化技術(shù)與裝備現(xiàn)狀,在以后研究中需重點(diǎn)關(guān)注和解決[1,66,99-100]:
1)地區(qū)發(fā)展不均衡,忽略農(nóng)機(jī)作業(yè)適應(yīng)性。我國棉花生產(chǎn)布局隨國家農(nóng)業(yè)布局和結(jié)構(gòu)調(diào)整而發(fā)生重大變化,承擔(dān)國家棉花產(chǎn)業(yè)發(fā)展的重任。新疆棉區(qū)作為全國最主要的棉花產(chǎn)區(qū),但由于長期的產(chǎn)量優(yōu)勢和扎實(shí)的農(nóng)業(yè)生產(chǎn)基礎(chǔ),忽視了區(qū)域布局和長遠(yuǎn)發(fā)展規(guī)劃。其中,南疆傳統(tǒng)棉區(qū)發(fā)展緩慢,缺乏適宜小規(guī)模機(jī)采的種植模式,限制機(jī)器使用,且技術(shù)應(yīng)用到位率不足,難以發(fā)揮區(qū)域特色;北疆棉區(qū)土地流轉(zhuǎn)快,新技術(shù)應(yīng)用快,機(jī)械化程度高,生產(chǎn)效益提升。
2)基礎(chǔ)性研究薄弱,科技創(chuàng)新不足。棉花種植機(jī)械的綜合基礎(chǔ)系統(tǒng)理論和共性技術(shù)綜合分析比較欠缺,企業(yè)技術(shù)創(chuàng)新機(jī)制有待完善。另外缺乏多層次、多途徑的創(chuàng)新探索,生產(chǎn)實(shí)踐中存在問題研究不夠深入,尤其棉花移栽機(jī)構(gòu)創(chuàng)新過程中依然難以擺脫對(duì)經(jīng)驗(yàn)和靈感的依賴,其創(chuàng)新設(shè)計(jì)的系統(tǒng)理論和方法仍未完成形成。由此造成棉花種植機(jī)械產(chǎn)品技術(shù)水平不高,影響機(jī)具作業(yè)的適應(yīng)性和可靠性
3)智能化作業(yè)裝備缺乏,農(nóng)業(yè)環(huán)境日益惡化。重要農(nóng)藝活動(dòng)更多依賴于傳統(tǒng)作業(yè)設(shè)備或人工操作,缺乏智能化精準(zhǔn)作業(yè)裝備,且絕大多數(shù)設(shè)備在作業(yè)過程中存在作業(yè)質(zhì)量差、精準(zhǔn)度低、操作不方便等多種問題。另外我國大部分棉花種植以直播為主,采用覆膜種植方式,產(chǎn)量明顯高于傳統(tǒng)直播方式,但造成了農(nóng)田白色污染,連續(xù)多年種植導(dǎo)致土壤質(zhì)量下降,加劇了農(nóng)業(yè)生態(tài)環(huán)境惡化,給農(nóng)業(yè)生產(chǎn)增加了不確定性。
現(xiàn)代化農(nóng)業(yè)背景下,高效率、高精度、高效益成為棉花種植機(jī)械化發(fā)展方向。結(jié)合國內(nèi)實(shí)際情況,因地制宜地開展棉花種植機(jī)械化技術(shù)研究,主要朝以下方向發(fā)展:
1)優(yōu)化棉花產(chǎn)區(qū)布局,增強(qiáng)農(nóng)機(jī)與農(nóng)藝配合。堅(jiān)持棉區(qū)合理布局“三足鼎立”,兼顧三大棉區(qū)均衡發(fā)展。根據(jù)棉區(qū)比較優(yōu)勢,重點(diǎn)布局新疆棉區(qū),確定扶持重點(diǎn),實(shí)行規(guī)?;蛯I(yè)化生產(chǎn),彌補(bǔ)效率(單產(chǎn))和效益(收益)優(yōu)勢不足,持續(xù)提高新疆棉花生產(chǎn)效率競爭力。適當(dāng)發(fā)展長江和黃河流域棉區(qū),穩(wěn)定和鞏固棉花生產(chǎn)。出臺(tái)政策文件,整合相關(guān)資源,充分調(diào)動(dòng)各相關(guān)涉棉部門的積極性,加強(qiáng)棉花種植扶持力度,確保種植結(jié)構(gòu)保持合理水平。
研究農(nóng)藝技術(shù)與農(nóng)機(jī)技術(shù)融合發(fā)展模式,采用先進(jìn)農(nóng)藝技術(shù),發(fā)展節(jié)本、高產(chǎn)的種植技術(shù)體系。構(gòu)建規(guī)模化、輕簡化種植體系改善棉田種植條件,投入智能化機(jī)械生產(chǎn),實(shí)現(xiàn)棉花高效播種作業(yè)。針對(duì)不同地區(qū)棉花種植實(shí)際要求,研究不同作業(yè)要求機(jī)械裝備,配套相應(yīng)的農(nóng)藝要求。明確標(biāo)準(zhǔn),靈活形式,以規(guī)模化、標(biāo)準(zhǔn)化棉田為基礎(chǔ),配套建設(shè)高效節(jié)水、精準(zhǔn)施肥設(shè)施,提高棉花生產(chǎn)管理水平、棉田產(chǎn)出水平和水肥資源利用效率,促進(jìn)棉花產(chǎn)業(yè)模式規(guī)范化。
2)加強(qiáng)基礎(chǔ)理論研究,提升自主創(chuàng)新能力。探究土壤和作物與作業(yè)機(jī)具及關(guān)鍵部件的相互作用關(guān)系理論技術(shù)研究,集成作物物理特性、機(jī)構(gòu)創(chuàng)新設(shè)計(jì)以及互作機(jī)理的一體化研究體系。加強(qiáng)生產(chǎn)工藝與生產(chǎn)機(jī)械的聯(lián)動(dòng)性,形成土壤-作物-機(jī)具有效的三元一體發(fā)展模式。優(yōu)化改進(jìn)機(jī)具關(guān)鍵部件與結(jié)構(gòu),集成先進(jìn)技術(shù),確保機(jī)具及關(guān)鍵部件的適用性和可靠性。
應(yīng)加大研發(fā)和引進(jìn)核心技術(shù),進(jìn)行二次創(chuàng)新,研制適用性強(qiáng)的農(nóng)機(jī)裝備并不斷加以改進(jìn)。不斷突破新技術(shù)、新方法、新材料、新裝備,加速學(xué)科間融合與滲透,提高播種質(zhì)量。重點(diǎn)加大對(duì)穴播機(jī)的研究力度,提高其作業(yè)效率和耐久性,延長穴播機(jī)使用壽命。在滿足農(nóng)藝要求、提高自動(dòng)化程度的前提下,兼顧裝備的經(jīng)濟(jì)型和適應(yīng)性,加快開發(fā)多功能、多元化自動(dòng)種植裝備,提高棉花種植業(yè)生產(chǎn)發(fā)展水平。
3)加快智能化技術(shù)應(yīng)用,綠色優(yōu)質(zhì)發(fā)展。加大信息化和智能化利用力度,突破關(guān)鍵工況參數(shù)及作業(yè)質(zhì)量參數(shù)采集傳感器的研究與開發(fā),精準(zhǔn)采集機(jī)具作業(yè)信息與播種質(zhì)量指標(biāo)。研發(fā)智能精準(zhǔn)化裝備,將使棉花種植機(jī)械向智能化、無人化方向發(fā)展,降低作業(yè)成本和勞動(dòng)強(qiáng)度,提高生產(chǎn)效率和作業(yè)質(zhì)量,提升資源利用率,從而推進(jìn)傳統(tǒng)棉區(qū)升級(jí)改造,加快產(chǎn)業(yè)模式與生產(chǎn)方式創(chuàng)新。
加大研發(fā)棉花種植生物降解地膜力度,逐步替代聚乙烯地膜,依靠科技創(chuàng)新來突破資源環(huán)境瓶頸制約,推動(dòng)形成產(chǎn)業(yè)布局合理、資源高效利用、生態(tài)系統(tǒng)穩(wěn)定、產(chǎn)地環(huán)境良好的農(nóng)業(yè)發(fā)展格局。突破生物降解地膜、農(nóng)業(yè)污染控制與修復(fù)等關(guān)鍵技術(shù),依靠科技支撐棉花生產(chǎn)走向優(yōu)質(zhì)高效、綠色安全、資源節(jié)約、環(huán)境友好的現(xiàn)代化道路。
棉花種植機(jī)械化是棉花產(chǎn)業(yè)轉(zhuǎn)變發(fā)展方式、提質(zhì)增效、增強(qiáng)國際市場競爭力的重要途徑之一。目前棉花種植機(jī)械化已形成了比較完備機(jī)械化播種技術(shù)與裝備體系,但自動(dòng)化、智能化程度仍需提高。智能化精量播種裝備成為發(fā)展趨勢,必將向信息智能化、高效大型化的方向發(fā)展。精準(zhǔn)農(nóng)業(yè)是我國傳統(tǒng)農(nóng)業(yè)粗放化生產(chǎn)經(jīng)營向現(xiàn)代化、精量化生產(chǎn)經(jīng)營轉(zhuǎn)型的必然要求。棉花精量播種技術(shù)的推廣應(yīng)用則是棉花全程機(jī)械化技術(shù)推廣應(yīng)用技術(shù)重點(diǎn)和基礎(chǔ),最終目標(biāo)是實(shí)現(xiàn)棉花精準(zhǔn)化、智能化、無人化播種。優(yōu)化棉花產(chǎn)區(qū)布局,確保種植結(jié)構(gòu)保持合理水平,提高新疆棉花生產(chǎn)效率與競爭力。加強(qiáng)加大自主研發(fā)力度,提高自主創(chuàng)新能力和技術(shù)儲(chǔ)備是確保棉花產(chǎn)業(yè)發(fā)展的保障。推進(jìn)棉花機(jī)械化種植模式下農(nóng)機(jī)農(nóng)藝農(nóng)信深度融合,形成科學(xué)合理的棉花機(jī)械化播種體系。突破資源環(huán)境瓶頸制約,優(yōu)化資源配置,全面推動(dòng)中國棉花生產(chǎn)的綠色優(yōu)質(zhì)可持續(xù)發(fā)展。
[1] 劉文靜,范永勝,董彥琪,等. 我國棉花生產(chǎn)現(xiàn)狀分析及建議[J]. 中國種業(yè),2022(1):21-25.
[2] 全國優(yōu)勢農(nóng)產(chǎn)品區(qū)域布局規(guī)劃(2008-2015年)[Z]. 農(nóng)業(yè)部,2008-08-22
[3] 趙巖,陳學(xué)庚,溫浩軍. 新疆兵團(tuán)精準(zhǔn)農(nóng)業(yè)發(fā)展與北斗衛(wèi)星導(dǎo)航技術(shù)的應(yīng)用[J]. 石河子大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,36(4):397-404.
ZHAO Yan, CHEN Xuegeng, WEN Haojun. Application of the development of precision agriculture and the China's Beidou satellite navigation system in agricultural production in the xinjiang production and construction corps[J]. Journal of Shihezi University (Natural Science), 2018, 36(4): 397-404. (in Chinese with English abstract)
[4] 楊麗,顏丙新,張東興,等. 玉米精密播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):38-48.
YANG Li, YAN Bingxin, ZHANG Dongxing, et al. Research progress on precision planting technology of maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 38-48. (in Chinese with English abstract)
[5] 崔濤,樊晨龍,張東興,等. 玉米機(jī)械化收獲技術(shù)研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(12):1-13.
CUI Tao, FAN Chenlong, ZHANG Dongxing, et al. Research progress of maize mechanized harvesting technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 1-13. (in Chinese with English abstract)
[6] 張淑榮,劉朝敏. 我國棉花主產(chǎn)區(qū)區(qū)域競爭力及生產(chǎn)趨勢分析[J]. 中國棉花,2011,38(11):2-6.
ZHANG Shurong, LIU Zhaomin. Regional competitiveness and tendency of production in main producing areas of cotton in China[J]. China Cotton, 2011, 38(11): 2-6. (in Chinese with English abstract)
[7] 信桂新,楊朝現(xiàn),邵景安,等. 基于農(nóng)地流轉(zhuǎn)的山地丘陵區(qū)土地整治技術(shù)體系優(yōu)化及實(shí)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):246-256.
XIN Guixin, YANG Chaoxian, SHAO Jing’an, et al. Optimization and demonstration of land consolidation technical system in mountainous and hilly region based on farmland transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 246-256. (in Chinese with English abstract)
[8] 楊欣,王建合,楊淑華,等. 京津冀棉花種植機(jī)械化發(fā)展建議與配套機(jī)具研發(fā)[J]. 農(nóng)業(yè)工程,2015,5(6):1-5,9.
YANG Xin, WANG Jianhe, YANG Shuhua, et al. Development proposals and supporting equipment development of cotton planting mechanization in Beijing-Tianjin-Hebei Region[J]. Agricultural Engineering, 2015, 5(6): 1-5, 9. (in Chinese with English abstract)
[9] 伍彩虹. 棉花壓縮營養(yǎng)缽播種機(jī)的研制[D]. 武漢:湖北工業(yè)大學(xué),2016.
WU Caihong. Development of Seeding-Machine for Cotton Compression Nutrition Bowl[D]. Wuhan: Hubei University of Technology, 2016. (in Chinese with English abstract)
[10] 于曉旭,趙勻,陳寶成,等. 移栽機(jī)械發(fā)展現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):44-53.
YU Xiaoxu, ZHAO Yun, CHEN Baocheng, et al. Current situation and prospect of transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 44-53. (in Chinese with English abstract)
[11] 裴新民,張友騰,劉晨,等. 我國棉花生產(chǎn)機(jī)械化發(fā)展?fàn)顩r研究[J]. 農(nóng)機(jī)科技推廣,2011(1):19-22.
[12] 張國強(qiáng),周勇. 棉麥套作棉花種植機(jī)械化現(xiàn)狀與思考[J]. 安徽農(nóng)業(yè)科學(xué),2014,42(32):11597-11598.
ZHANG Guoqiang, ZHOU Yong. The development status and thinking for wheat-cotton interplanting mechanization[J]. Journal of Anhui Agricultural Sciences, 2014, 42(32): 11597-11598. (in Chinese with English abstract)
[13] 倪向東,徐國杰,王琦,等. 氣吸滾筒陣列式棉花精密排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(12):58-67.
NI Xiangdong, XU Guojie, WANG Qi, et al. Design and experiment of pneumatic cylinder array precision seed-metering device for cotton[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 58-67. (in Chinese with English abstract)
[14] 李海潮,王爽,陳永,等. 基于EDEM的雙腔式棉花精量排種器排種性能仿真研究[J]. 新疆農(nóng)機(jī)化,2022(1):10-14.
LI Haichao, WANG Shuang, CHEN Yong, et al. Simulation study on performance of double-chamber cotton precision seed metering device based on EDEM[J]. Xinjiang Agricultural Mechanization, 2022(1): 10-14. (in Chinese with English abstract)
[15] 王龍,賀小偉,胡燦,等. 基于離散元法的棉花窩眼式穴播器排種性能模擬與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2021,43(1):151-156.
WANG Long, HE Xiaowei, HU Can, et al. Simulation and experiment for seeding performance of socket cotton dibbler based on discrete element method[J]. Journal of Agricultural Mechanization Research, 2021, 43(1): 151-156. (in Chinese with English abstract)
[16] 張學(xué)軍,陳勇,史增錄,等. 雙倉轉(zhuǎn)盤式棉花豎直圓盤穴播排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(19):27-36.
ZHANG Xuejun, CHEN Yong, SHI Zenglu, et al. Design and experiment of double-storage turntable cotton vertical disc hole seeding and metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 27-36. (in Chinese with English abstract)
[17] 王方艷. 棉花覆膜播種機(jī)主要部件的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2010,32(7):142-145.
WANG Fangyan. Design of cotton mem brane seeder’s major part[J]. Journal of Agricultural Mechanization Research, 2010, 32(7): 142-145. (in Chinese with English abstract)
[18] 馮洋洋,紀(jì)超,陳金成,等. 棉花氣吸式排種機(jī)構(gòu)的優(yōu)化[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,26(8):140-149.
FENG Yangyang, JI Chao, CHEN Jincheng, et al. Optimization of cotton air suction seed metering device[J]. Journal of China Agricultural University, 2021, 26(8): 140-149. (in Chinese with English abstract)
[19] 楊徐飛,楊繼芳. 氣吸式棉花精量穴播器的設(shè)計(jì)與試驗(yàn)[J]. 湖北農(nóng)機(jī)化,2020(18):16-17.
[20] 安軍鵬,王永振,張曉輝,等. 多功能棉花覆膜播種機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2017,38(11):1-4.
AN Junpeng, WANG Yongzhen, ZHANG Xiaohui, et al. Design and experiment of multifunetional cotton film mulching planter[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(11): 1-4. (in Chinese with English abstract)
[21] 朱德文,陳永生,徐立華. 我國棉花生產(chǎn)機(jī)械化技術(shù)現(xiàn)狀與發(fā)展趨勢[J]. 農(nóng)機(jī)化研究,2008(4):224-227.
ZHU Dewen, CHEN Yongsheng, XU Lihua. Cotton production mechanization technology present situation and development discussion in China[J]. Journal of Agricultural Mechanization Research, 2008(4): 224-227. (in Chinese with English abstract)
[22] 仇半農(nóng). 中國棉花種植及聯(lián)合收獲機(jī)需求預(yù)測[J]. 農(nóng)機(jī)科技推廣,2019(4):23-25.
[23] 黃滋康,崔讀昌. 中國棉花生態(tài)區(qū)劃[J]. 棉花學(xué)報(bào),2002(3):185-190.
HUANG Zikang, CUI Duchang. Ecological regionalization of cotton production in China[J]. Cotton Science, 2002(3): 185-190. (in Chinese with English abstract)
[24] 張泓,郭剛. 中國棉花生產(chǎn)區(qū)域格局變動(dòng)及影響分析[J]. 安徽農(nóng)業(yè)科學(xué),2022,50(7):214-218.
ZHANG Hong, GUO Gang. Analysis on the change and impact of china’s cotton production regional pattern[J]. Journal of Anhui Agricultural Sciences, 2022, 50(7): 214-218. (in Chinese with English abstract)
[25] 中華人民共和國國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒[J]. 北京:中國統(tǒng)計(jì)出版社,2021.
[26] 孔卓. 棉花移栽機(jī)的虛擬樣機(jī)設(shè)計(jì)[D]. 淄博:山東理工大學(xué),2006.
KONG Zhuo. Design of Cotton Transplanter Based on Virtual Prototype[D]. Zibo: Shandong University of Technology, 2006. (in Chinese with English abstract)
[27] 趙春龍. 全自動(dòng)蔬菜移栽機(jī)設(shè)計(jì)[D]. 佳木斯:佳木斯大學(xué),2017.
ZHAO Chunlong. Automatic Vegetable Transplanting Machine Design[D]. Jiamusi: Jiamusi University, 2017. (in Chinese with English abstract)
[28] TSUGA K. Development of fully automatic vegetable transplanter[J]. Jarq-japan Agricultural Research Quarterly, 2000, 34(1): 21-28.
[29] 張智超. 非圓齒輪行星輪系全自動(dòng)玉米缽苗移栽機(jī)構(gòu)優(yōu)化設(shè)計(jì)[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2014.
ZHANG Zhichao. The Optimization Design of Non-Circular Gear Planetary Gear Train Corn Automatic Transplanting Machine[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract)
[30] 尹大慶. 玉米缽苗移栽有序頂出式分秧機(jī)構(gòu)的機(jī)理與試驗(yàn)研究[D]. 大慶:黑龍江八一農(nóng)墾大學(xué),2014.
YIN Daqing. Experiment and Theory Studies on the Mechanism of Orderly Push-Out Separating Seedling for Corn Transplanter[D]. Daqing: Heilongjiang Bayi Agricultural University, 2014. (in Chinese with English abstract)
[31] 李明勇. 全自動(dòng)移栽機(jī)關(guān)鍵作業(yè)質(zhì)量監(jiān)測系統(tǒng)的研究[D]. 洛陽:河南科技大學(xué),2019.
LI Mingyong. Research on Key Operation Quality Monitoring System of Automatic Transplanter[D]. Luoyang: Henan University of Science and Technology, 2019. (in Chinese with English abstract)
[32] 薛向磊. 取栽一體式棉花缽苗移栽機(jī)關(guān)鍵部件優(yōu)化設(shè)計(jì)與試驗(yàn)研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2020.
XUE Xianglei. Optimized Design and Experimental Research on Critical Components of Integrated Transplanter with Picking and Planting for Cotton Bowl Seedling[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract)
[33] 李其昀,魯善文,楊憲武. 吊籃式棉花移栽機(jī)的研究[J]. 農(nóng)機(jī)化研究,2006(4):164-166.
LI Qiyun, LU Shanwen, YANG Xianwu. Research of the cotton transplanting machine with the nacelle[J]. Journal of Agricultural Mechanization Research, 2006(4): 164-166. (in Chinese with English abstract)
[34] 武科. 吊籃式棉花移栽機(jī)栽植器的研究與分析[D]. 石河子:石河子大學(xué),2010.
WU Ke. The Study and Analysis of Nacelle of Dibble-Type Transplanter[D]. Shihezi: Shihezi University, 2010. (in Chinese with English abstract)
[35] 王會(huì)麗. 棉花移栽機(jī)關(guān)鍵部件的研究與試驗(yàn)[D]. 武漢:華中農(nóng)業(yè)大學(xué),2017.
WANG Huili. Design and Experiment Study on Key Component of Cotton Transplanter[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract)
[36] 陳建能,黃前澤,王英,等. 缽苗移栽機(jī)橢圓齒輪行星系植苗機(jī)構(gòu)運(yùn)動(dòng)學(xué)建模與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):6-12.
CHEN Jianneng, HUANG Qianze, WANG Ying, et al. Kinematics modeling and analysis of transplanting mechanism with planetary elliptic gears for pot seedling transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 6-12. (in Chinese with English abstract with English abstract)
[37] 趙雄,沈明,陳建能,等. 棉花移栽機(jī)旋轉(zhuǎn)式取苗機(jī)構(gòu)的運(yùn)動(dòng)學(xué)分析及虛擬試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):13-20.
ZHAO Xiong, SHEN Ming, CHEN Jianneng, et al. Kinematic analysis and virtual experiment of rotary pick-up mechanism on cotton transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 13-20. (in Chinese with English abstract)
[38] 俞高紅,王磊,孫良,等. 大田機(jī)械化移栽技術(shù)與裝備研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(9):1-20.
YU Gaohong, WANG Lei, SUN Liang, et al. Advancement of mechanized transplanting technology and equipments for field crops[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 1-20. (in Chinese with English abstract)
[39] 徐照耀. 棉麥套作棉花鋪膜直播機(jī)的設(shè)計(jì)與試驗(yàn)[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.
XU Zhaoyao. Design and Experiment of Cotton Film Mulching Direct Seeder in Cotton and Wheat Intercropping[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract)
[40] 戴新俊. 棉花雙膜覆蓋播種技術(shù)的應(yīng)用[J]. 農(nóng)村科技,2007(6):12.
[41] 田立文,崔建平,徐海江,等. 新疆棉花生產(chǎn)技術(shù)現(xiàn)狀與存在的問題[J]. 安徽農(nóng)業(yè)科學(xué),2013,41(34):13164-13167,13193.
TIAN Liwen, CUI Jianping, XU Haijiang, et al. Status of cotton production technologies in Xinjiang and its existing problems[J]. Journal of Anhui Agricultural Sciences, 2013, 41(34): 13164-13167, 13193. (in Chinese with English abstract)
[42] BARBARA I, GABRIELLA S, GIULIANO V. Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch[J]. Biosystems Engineering, 2009, 102: 461-472.
[43] 趙鑫,何同慶. 我國棉花種植發(fā)展初探[J]. 北京農(nóng)業(yè),2015(30):128-129.
[44] 劉飛. 膜下播種機(jī)參數(shù)化造型及排種裝置性能試驗(yàn)研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2009.
LIU Fei. The Parametric Modeling of Planting under Plastic Film and Capability Test of Discharging Seed Equipment[D]. Huhehaote: Inner MongoliaAgricultural University, 2009. (in Chinese with English abstract)
[45] 溫浩軍,顏利民,王士國. 棉花雙膜覆蓋精量播種技術(shù)研究應(yīng)用[J]. 農(nóng)業(yè)機(jī)械,2010(7):131-133.
[46] 溫浩軍. 新疆兵團(tuán)棉花精量鋪膜播種技術(shù)的研究與推廣[D]. 楊凌:西北農(nóng)林科技大學(xué),2008.
WEN Haojun. Xinjiang Cotton Planting Filming Precision Technology Research and Promotion[D]. Yangling: Northwest A&F University, 2008. (in Chinese with English abstract with English abstract)
[47] 董萬城,張立新,李文春,等. 新疆棉花播種機(jī)械應(yīng)用現(xiàn)狀及發(fā)展趨勢[J]. 新疆農(nóng)機(jī)化,2021(2):11-15.
DONG Wancheng, ZHANG Lixin, LI Wenchun, et al. Application status and developing trend of cotton planting machinery in Xinjiang[J]. Xinjiang Agricultural Mechanization, 2021(2): 11-15. (in Chinese with English abstract with English abstract)
[48] 孫冬霞,李明軍,石磊,等. 機(jī)采棉精播機(jī)關(guān)鍵部件運(yùn)動(dòng)仿真及有限元分析[J]. 農(nóng)機(jī)化研究,2018,40(2):46-55.
SUN Dongxia, LI Mingjun, SHI Lei, et al. Motion simulation and mechanical analysis of key components of machine-picking cotton[J]. Journal of Agricultural Mechanization Research, 2018, 40(2): 46-55. (in Chinese with English abstract with English abstract)
[49] 黃鴻浩. 精量排種器現(xiàn)狀及發(fā)展分析[J]. 時(shí)代農(nóng)機(jī),2019,46(5):34-35.
[50] 侯攀登. 棉花排種器的發(fā)展趨勢[J]. 時(shí)代農(nóng)機(jī),2018,45(6):76.
[51] 許劍平,謝宇峰,陳寶昌. 國外氣力式精密播種機(jī)技術(shù)現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)機(jī)化研究,2008(12):203-206.
XU Jianping, XIE Yufeng, CHEN Baochang. The present technic status and developing tendency of abroad pneumatic precision drill[J]. Journal of Agricultural Mechanization Research, 2008(12): 203-206. (in Chinese with English abstract with English abstract)
[52] HUDSPETH E B, WANJURA D F. A planter for precision depth and placement of cottonseed[J].Transaction of the ASAE, 1970, 13(2): 153-155.
[53] PARISH R L. Development of a narrow-row vertical-plate planter[J]. Transactions of the ASAE, 1979, 15(4): 636-637.
[54] ?NAL ?, DEGIRMENCIOGLU A, YAZGI A. An evaluation of seed spacing accuracy of a vacuum type precision metering unit based on theoretical considerations and experiments[J]. Turkish Journal of Agriculture Forestry, 2012, 36(2): 133-144.
[55] YAZGI A, DEGIRMENCIOGLU A. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate[J]. Measurement, 2014, 56(10): 128-135.
[56] SINGH R C, SINGH G, SARASWAT D C. Optimization of design and operational parameters of a pneumatic seed metering device for planting cottonseeds[J]. Biosystems Engineering,2005, 92(4): 429-438.
[57] 陳學(xué)庚,盧勇濤. 氣吸滾筒式棉花精量穴播器排種性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(8):35-38.
CHEN Xuegeng, LU Yongtao. Sowing perfomance of air-suction cylindrical cotton precision dibbler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(8): 35-38. (in Chinese with English abstract with English abstract)
[58] 盧勇濤,李亞雄,陳學(xué)庚. 氣吸式棉花精量穴播器的設(shè)計(jì)與試驗(yàn)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,47(3):129-133.
LU Yongtao, LI Yaxiong, CHEN Xuegeng. Design and experiment on air-suction cotton precision dibbler[J]. Journal of Gansu Agricultural University, 2012, 47(3): 129-133. (in Chinese with English abstract with English abstract)
[59] 徐國杰. 氣吸滾筒陣列式棉花精密排種器的設(shè)計(jì)與試驗(yàn)研究[D]. 石河子:石河子大學(xué),2018.
XU Guojie. Design and Experiment of Pneumatic Cylinder Array Precision Seed-metering Device for Cotton[J]. Shihezi:Shihezi University, 2018. (in Chinese with English abstract with English abstract)
[60] 康施為,倪向東,齊慶征,等. 氣吸滾筒式棉花精密排種器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2020,42(6):136-141.
KANG Shiwei, NI Xiangdong, QI Qingzheng, et al. Design and experiment of pneumatic cylinder precision seed-metering device for cotton[J]. Journal of Agricultural Mechanization Research, 2020, 42(6): 136-141. (in Chinese with English abstract with English abstract)
[61] 姜有忠,李繼霞,陳永,等. 基于有序充種的集排滾筒式排種器性能試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2022,44(5):140-146.
JIANG Youzhong, LI Jixia, CHEN Yong, et al. Experimental research on the performance of collecting and arranging drum seed metering device based on ordered seed filling[J]. Journal of Agricultural Mechanization Research, 2022, 44(5): 140-146. (in Chinese with English abstract)
[62] 李國林,宋煒,毛俐,等. 國內(nèi)外幾種主要排種器的特點(diǎn)[J]. 農(nóng)業(yè)科技與裝備,2011(8):70-73.
LI Guolin, SONG Wei, MAO Li, et al. Characteristics of several major seed dispensers at home and abroad[J]. Agricultural Technology and Equipment, 2011(8): 70-73. (in Chinese with English abstract)
[63] 王吉奎,坎雜,吳杰,等. 夾持自鎖式棉花精量穴播器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006(5):54-56,82.
WANG Jikui, KAN Za, WU Jie, et al. Design and experiment on clamping and self-locking cotton precision dibbler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006(5): 54-56, 82. (in Chinese with English abstract)
[64] 王吉奎. 夾持自鎖式棉花精量點(diǎn)播輪的研究[D]. 石河子:石河子大學(xué),2006.
WANG Jikui. Study on Clamping and Self-Locking Cotton Precision Dibbler[D]. Shihezi: Shihezi University, 2006. (in Chinese with English abstract)
[65] 王吉奎,郭康權(quán),呂新民,等. 夾持式棉花精密穴播輪改進(jìn)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(4):43-47.
WANG Jikui, GUO Kangquan, LYU Xinmin, et al. Experiment and improvement on clamping cotton precision seeding dibbler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 43-47. (in Chinese with English abstract)
[66] 陳學(xué)庚,趙巖. 棉花雙膜覆蓋精量播種機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(4):106-112.
CHEN Xuegeng, ZHAO Yan. Development of double-film mulch precision planter for cotton seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 106-112. (in Chinese with English abstract)
[67] 肖旭,全臘珍,全偉,等. 棉花精量排種器排種性能試驗(yàn)研究[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,23(9):148-155.
XIAO Xu, QUAN Lazhen, QUAN Wei, et al. Design and experiment of a cotton precision bunch sowing device[J]. Journal of China Agricultural University, 2018, 23(9): 148-155. (in Chinese with English abstract)
[68] 王龍,賀小偉,胡燦,等. 基于離散元法的棉花窩眼式穴播器排種性能模擬與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2021,43(1):151-156.
WANG Long, HE Xiaowei, HU Can, et al. Simulation and experiment for seeding performance of socket cotton dibbler based on discrete element method[J]. Journal of Agricultural Mechanization Research, 2021, 43(1): 151-156. (in Chinese with English abstract)
[69] 李娟娟,張和平,畢新勝,等. 轉(zhuǎn)軸型孔式精量排種器充種性能仿真分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):38-49.
LI Juanjuan, ZHANG Heping, BI Xinsheng, et al. Simulation analysis and test on the filling performance of rotary type-hole precision seed-metering device for cotton[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 38-49. (in Chinese with English abstract)
[70] 天誠2MBJ-3/12機(jī)械式鋪膜播種機(jī)[EB/OL]. [2022-06-05]. https://www.nongjitong.com/product/1749.html
[71] 缽施然2MBJF-2/12機(jī)械式鋪膜播種機(jī)[EB/OL]. [2022-06-08]. https://www.nongjitong.com/product/bishiran_2mbj-2-12_ seeder.html
[72] 鑫昌盛2MBJ-2/12機(jī)械式鋪膜播種機(jī)[EB/OL]. [2022-06-07]. https://www.nongjitong.com/product/shzxcs_2mbj-2-12_ seeder.html
[73] 天誠2MBQ4/8氣力式鋪膜播種機(jī)[EB/OL]. [2022-06-06]. https://www.nongjitong.com/product/181_2mnq4-8_planter_with_plastic_sheeting.html
[74] 祥和2MBQ-3/6氣吸式鋪膜播種機(jī)[EB/OL]. [2022-06-07]. https://www.nongjitong.com/product/mnsxhnj_2mbq-3-6_ seeder.html
[75] 祥和2MBJ-1/2機(jī)械式鋪膜播種機(jī)[EB/OL]. [2022-06-07]. https://www.nongjitong.com/product/mnsxhnj_2mbj-1-2_ seeder.html
[76] 苑嚴(yán)偉,白慧娟,方憲法,等. 玉米播種與測控技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(9):1-18.
YUAN Yanwei, BAI Huijuan, FANG Xianfa, et al. Research progress on maize seeding and its measurement and control technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 1-18. (in Chinese with English abstract)
[77] 廖慶喜,雷小龍,廖宜濤,等. 油菜精量播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):1-16.
LIAO Qingxi, LEI Xiaolong, LIAO Yitao, et al. Research progress of precision seeding for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 1-16. (in Chinese with English abstract)
[78] 陳煥軒,韓迎春,馮璐,等. 智慧農(nóng)業(yè)在棉花生產(chǎn)管理中的應(yīng)用[J]. 棉花學(xué)報(bào),2020,32(3):269-278.
CHEN Huanxuan, HAN Yingchun, FENG Lu, et al. Application of smart agriculture in cotton production management[J]. Cotton Science, 2020, 32(3): 269-278. (in Chinese with English abstract)
[79] 張峰. 棉花生產(chǎn)管理中智慧農(nóng)業(yè)的應(yīng)用分析[J]. 農(nóng)業(yè)工程技術(shù),2021,41(24):33,36.
[80] 李笑,李宏鵬,牛東嶺,等. 基于全球?qū)Ш叫l(wèi)星系統(tǒng)的智能化精細(xì)平地系統(tǒng)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):48-55.
LI Xiao, LI Hongpeng, NIU Dongling, et al. Optimization of GNSS-controlled land leveling system and related experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 48-55. (in Chinese with English abstract)
[81] 趙巖,陳學(xué)庚,溫浩軍. 北斗衛(wèi)星導(dǎo)航系統(tǒng)助力新疆兵團(tuán)精準(zhǔn)農(nóng)業(yè)發(fā)展[J]. 農(nóng)業(yè)工程技術(shù),2018(18):28-33.
[82] 任櫻,薛文華. GPS導(dǎo)航無人駕駛技術(shù)在棉花春播生產(chǎn)中的應(yīng)用[J]. 農(nóng)村科技,2018(2):11-12.
[83] KAIVOSOJA J, LINKOLEHTO R. GNSS error simulator for farm machinery navigation development[J]. Computers and Electronics in Agriculture, 2015, 119: 166-177. (in Chinese with English abstract)
[84] ERKAN K, ERDAL K, HERMAN R, et al. Distributed nonlinear model predictive control of an autonomous tractor-trailer system[J]. Mechatronics, 2014, 24: 926-933.
[85] 方震. GPS棉花鋪膜播種機(jī)演示成功棉花鋪膜播種機(jī)演成功[J]. 農(nóng)業(yè)機(jī)械,2013(13):28.
[86] 張超. 基于衛(wèi)星導(dǎo)航自動(dòng)駕駛技術(shù)在播種作業(yè)中的試驗(yàn)研究[D]. 石河子:石河子大學(xué),2015.
ZHANG Chao. Design and Experimental Study of Excitation Device of Self-propelled Dwarf and Close Planting Jujube Harvester[D]. Shihezi: Shihezi University, 2015. (in Chinese with English abstract)
[87] 王晨. 適于棉花鋪膜播種的視覺導(dǎo)航控制系統(tǒng)的設(shè)計(jì)與研究[D]. 石河子:石河子大學(xué),2016.
WANG Chen. The Design and Research of the Visual Navigation Control System for Cotton Spreading and Seeding[D]. Shihezi: Shihezi University, 2016. (in Chinese with English abstract)
[88] 張學(xué)軍,張海濤,史增錄,等. 棉花精量穴播器取種狀態(tài)監(jiān)測系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(5):9-19.
ZHANG Xuejun, ZHANG Haitao, SHI Zenglu, et al. Design and experiments of seed pickup status monitoring system for cotton precision dibblers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 9-19. (in Chinese with English abstract)
[89] 曹葉,郭文松,趙鵬飛,等. 基于LabVIEW的穴播器排種自動(dòng)監(jiān)測系統(tǒng)[J]. 農(nóng)機(jī)化研究,2022,44(11):135-141.
CAO Ye, GUO Wensong, ZHAO Pengfei, et al. Design of automatic detection system for cotton drill seed metering performance based on LabVIEW[J]. Journal of Agricultural Mechanization Research, 2022, 44(11): 135-141. (in Chinese with English abstract)
[90] 曹葉. 基于機(jī)器視覺的穴播器排種性能檢測系統(tǒng)的設(shè)計(jì)[D]. 阿拉爾:塔里木大學(xué),2021.
CAO Ye. Design of Performance Testing System for Seed Metering of Dibbler Based on Machine Vision[D]. Alar: Tarim University, 2021. (in Chinese with English abstract)
[91] 周利明. 基于電容法的棉花產(chǎn)量和播種量檢測技術(shù)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2014.
ZHOU Liming. Research on Detection of Yield and Seeding Rate of Cotton Based on Capacitive Method[J]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[92] 周利明,李樹君,張小超,等. 基于電容法的棉管籽棉質(zhì)量流量檢測[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):47-52.
ZHOU Liming, LI Shujun, ZHANG Xiaochao, et al. Detection of seedcotton mass flow based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 47-52. (in Chinese with English abstract)
[93] 廖宜濤,李成良,廖慶喜,等. 播種機(jī)導(dǎo)種技術(shù)與裝置研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(12):1-14.
LIAO Yitao, LI Chengliang, LIAO Qingxi, et al. Research progress of seed guiding technology and device of planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 1-14. (in Chinese with English abstract)
[94] 康建明,陳學(xué)庚,王士國,等. 超窄行棉花精量排種器設(shè)計(jì)與性能試驗(yàn)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,51(2):134-139.
KANG Jianming, CHEN Xuegeng, WANG Shiguo, et al. Design and experiment of precise metering device for cotton ultra narrow row[J]. Journal of Gansu Agricultural University, 2016, 51(2): 134-139. (in Chinese with English abstract)
[95] 王順利. 機(jī)械鉗夾式棉花精量排種器排種機(jī)理研究及計(jì)算機(jī)仿真分析[D]. 石河子:石河子大學(xué),2009.
WANG Shunli. The Mechanism of Seeding about Mechanical Precision Clamp-Type Cotton Seed Metering Device & Computer Simulation Analysis[D]. Shihezi: Shihezi University, 2009. (in Chinese with English abstract)
[96] 佟超. 零速投種技術(shù)及其理論設(shè)計(jì)[J]. 機(jī)械研究與應(yīng)用,1995(1):16-25.
[97] 陳學(xué)庚,鐘陸明. 氣吸式排種器帶式導(dǎo)種裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):8-15.
CHEN Xuegeng, ZHONG Luming. Design and test on belt-type seed delivery of air-suction metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 8-15. (in Chinese with English abstract)
[98] RAJEEV K, HIFJUR R. Detection of flow of seeds in the seed delivery tube and choking of boot of a seed drill[J]. Computers and Electronics in Agriculture, 2018, 153: 266-277.
[99] 喻樹迅,周亞立,何磊. 新疆兵團(tuán)棉花生產(chǎn)機(jī)械化的發(fā)展現(xiàn)狀及前景[J]. 中國棉花,2015,42(8):1-4,7.
YU Shuxun, ZHOU Yali, HE Lei. Development of mechanization of cotton production in the xinjiang production and construction corps[J]. China Cotton, 2015, 42(8): 1-4, 7. (in Chinese with English abstract)
[100] 趙存鵬,趙貴元,郭寶生,等. 棉花機(jī)械播種方式的現(xiàn)狀及存在問題[J]. 河北農(nóng)機(jī),2017(4):18.
Research progress in the key technologies and equipment for cotton planting mechanization
YUAN Yanwei1,2, BAI Shenghe1,2, NIU Kang2, ZHOU Liming2, ZHAO Bo2, WEI Liguo2, LIU Lijing1,2※
(1.,100083,; 2.,,100083,)
Cotton is one of the most important strategic materials and cash crops. The planting area and output of cotton have been ranked among the top in the world. Among them, cotton planting has been one of the basic links in the whole process during production. The mechanization of cotton planting has been the key bottleneck to restricting the cotton industry at present. The reason can be that the mechanical planting of cotton can be utilized to improve the quality and efficiency of cotton production, and then enhance the competitive advantage of cotton production, which is directly related to the sustainable development of the national cotton industry. The cotton mechanization planting can be divided into the cotton live broadcast and transplanted seedlings. Most previous efforts were focused on the optimization of equipment structure, flow field simulation, and operation performance tests. The cotton planting mechanization technology and equipment system have begun to take shape during this time. Cotton planting mechanization should follow the development direction of precision agriculture for the promising goal of high yield, quality, and efficiency, indicating a major practical demand in the cotton industry. The development mode of the cotton industry can be changed to enhance the quality and efficiency, as well as the competitiveness of the international market. It is also the research focus of the whole process mechanization and scale of the cotton industry. In this review, the current situation and characteristics of cotton planting were summarized on the key technologies and equipment in China. There was a trend of westward expansion of the cotton area in the Yangtze River basin and the Yellow River basin, whereas, the northwest inland cotton area gradually served as the main body of cotton planting in China. Especially, the sowing area of cotton in Xinjiang increased the fastest, while the proportion of cotton gradually increased, and the cotton in Xinjiang was the backbone of national cotton production for the new main producing area. Two technologies of cotton planting mechanization were proposed to emphatically analyze the research status and trends during cotton seedling cultivation, transplanting, and cotton live streaming. Furthermore, the opportunities and challenges were summarized to combine with the background of precision agriculture and the production requirements of the cotton industry. The future research directions and suggestions were addressed to optimize the layout of cotton-producing areas, in order to improve the competitiveness of cotton production efficiency under the planting structure at a reasonable level. Moreover, the independent innovation ability and technology reserve can be expected to strengthen the independent research and development of the cotton industry. A scientific and reasonable system can be formed to promote the deep integration of agricultural machinery, agronomy, and credit under mechanized cotton seeding. Therefore, the allocation of resources can be optimized to comprehensively promote the green, high-quality, and sustainable development of cotton production. The finding can provide a strong reference for cotton planting mechanization and equipment innovation.
crops; agricultural machinery; plant; cotton; mechanization; seedling transplanting; direct seeding
10.11975/j.issn.1002-6819.202212139
S223.2
A
1002-6819(2023)-06-0001-11
苑嚴(yán)偉,白圣賀,牛康,等. 棉花種植機(jī)械化關(guān)鍵技術(shù)與裝備研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(6):1-11.doi:10.11975/j.issn.1002-6819.202212139 http://www.tcsae.org
YUAN Yanwei, BAI Shenghe, NIU Kang, et al. Research progress in the key technologies and equipment for cotton planting mechanization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 1-11. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212139 http://www.tcsae.org
2022-12-19
2023-03-05
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002401);自治區(qū)區(qū)域協(xié)同創(chuàng)新專項(xiàng)(科技援疆計(jì)劃)項(xiàng)目(2021E02055)
苑嚴(yán)偉,研究員,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)機(jī)械自動(dòng)控制與智能化儀器。Email: yyw215@163.com
劉立晶,研究員,博士生導(dǎo)師,研究方向?yàn)榉N植機(jī)械裝備。Email:xyliulj@sina.com
中國農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:苑嚴(yán)偉(E040100027M)