侯素素,董心怡,戴志剛,鞏細(xì)民,徐志宇,薛穎昊,張洋洋,李小坤,叢日環(huán),魯劍巍
基于田間試驗(yàn)的秸稈還田化肥替減潛力綜合分析
侯素素1,董心怡1,戴志剛2,鞏細(xì)民2,徐志宇3,薛穎昊3,張洋洋1,李小坤1,叢日環(huán)1※,魯劍巍1
(1. 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢 430070;2. 湖北省耕地質(zhì)量與肥料工作總站,武漢 430070; 3. 農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)生態(tài)與資源保護(hù)總站,北京 100125)
秸稈含有豐富的營(yíng)養(yǎng)元素,秸稈還田是實(shí)現(xiàn)化肥減量的重要途徑。中國(guó)不同農(nóng)區(qū)種植制度及土壤養(yǎng)分供應(yīng)條件相差較大,秸稈還田化肥替減率存在差異,為明確不同種植制度及土壤養(yǎng)分條件下秸稈還田化肥替代率,該研究以水稻、小麥、玉米、油菜4種主要大田作物為研究對(duì)象,基于2000-2021年“中國(guó)知網(wǎng)(CNKI)”公開發(fā)表的文獻(xiàn)數(shù)據(jù)和2013-2021年湖北省32個(gè)秸稈還田田間試驗(yàn)數(shù)據(jù),對(duì)田間生產(chǎn)條件下主要農(nóng)作物秸稈還田化肥替減氮、磷、鉀肥比例進(jìn)行計(jì)算,評(píng)估區(qū)域尺度的秸稈還田化肥節(jié)本潛力。結(jié)果表明,4種作物秸稈還田平均可替減氮肥12.2%、磷肥23.9%、鉀肥43.5%。不同作物秸稈還田氮、磷、鉀肥替減率差異均不顯著(>0.05)。不同輪作制度下,水旱輪作體系(水稻單作和稻油輪作)氮、磷肥替減率較旱地輪作體系(麥玉輪作和玉米單作)分別高出5.0~12.9、18.0~24.8個(gè)百分點(diǎn)。此外,土壤養(yǎng)分供應(yīng)能力是影響秸稈還田化肥替減潛力的重要因素。養(yǎng)分供應(yīng)能力較低的土壤秸稈還田磷、鉀肥可替減率較養(yǎng)分供應(yīng)能力高的土壤則分別高出9.1~11.5、6.2~14.2個(gè)百分點(diǎn)。基于2020年各農(nóng)作物種植面積和化肥消費(fèi)量,中國(guó)水稻、小麥、玉米、油菜季秸稈還田可減施氮(N)、磷(P2O5)、鉀(K2O)肥分別為239.48×104、227.73×104、451.98×104t,占當(dāng)前氮、磷、鉀肥消費(fèi)量的12.6%、25.0%、48.5%,化肥節(jié)本可達(dá)到478.98億元/a。研究結(jié)果為中國(guó)主要農(nóng)作物化肥減施增效提供理論依據(jù)和數(shù)據(jù)支撐。
土壤;養(yǎng)分;秸稈還田;化肥替減率;土壤養(yǎng)分供應(yīng);輪作制度;田間試驗(yàn)
近年來(lái),中國(guó)農(nóng)作物秸稈可收集量穩(wěn)定在8億t左右[1-3],秸稈資源豐富。農(nóng)作物秸稈含有大量的氮、磷、鉀及中微量元素,宋大利等[4]評(píng)估了全國(guó)主要農(nóng)作物秸稈氮(N)、磷(P2O5)、鉀(K2O)養(yǎng)分資源量分別達(dá)到625.6×104、197.9×104、1 159.5×104t。隨著國(guó)家對(duì)秸稈資源化利用的推動(dòng)力度不斷加大,秸稈還田尤其是直接還田比例明顯提高。不同省份政府網(wǎng)站公布的數(shù)字顯示,主要糧食作物秸稈還田比例已達(dá)到50%~70%[5]。
秸稈還田有利于保障糧食增產(chǎn)穩(wěn)產(chǎn)[6-7]、提高土壤養(yǎng)分含量[8]、改善土壤物理性狀[9]、優(yōu)化農(nóng)田生態(tài)環(huán)境[10],更重要的是在穩(wěn)產(chǎn)或增產(chǎn)的前提下,連續(xù)秸稈還田可以減少化肥投入,實(shí)現(xiàn)化肥減施增效[11],推動(dòng)農(nóng)業(yè)綠色可持續(xù)發(fā)展。秸稈還田替代化肥的潛力主要取決于秸稈養(yǎng)分投入量和秸稈養(yǎng)分釋放的速率。由此衍生出兩種秸稈替代化肥的估算方法,一種是基于養(yǎng)分投入量的估算,即由秸稈養(yǎng)分資源量與秸稈還田比例估算可替減化肥量[12-13]。例如,宋大利等[4]提出不同作物秸稈還田可替減氮肥27.7%~71.1%、磷肥10.2%~27.7%、鉀肥42.4%~135.4%。這種方法計(jì)算參數(shù)容易獲取,因此使用較為普遍。然而此方法未考慮當(dāng)季秸稈養(yǎng)分釋放特征及其利用率等問題。另一種則是考慮秸稈還田養(yǎng)分當(dāng)季釋放率來(lái)計(jì)算[14-16]。例如,劉淑軍等[17]估算全國(guó)不同區(qū)域水稻秸稈還田可分別替減10.9%~12.5%的氮肥、11.8%~17.1%的磷肥、116.2%~122.6%的鉀肥,這種方法未考慮秸稈養(yǎng)分礦化后的損失。研究表明,盡管秸稈養(yǎng)分當(dāng)季可礦化20%~30%,但僅有6.2%~14.3%[18-20]可被當(dāng)季作物再吸收利用,85.7%~93.8%的養(yǎng)分則不能被當(dāng)季作物吸收(主要儲(chǔ)存于土壤庫(kù)中或通過氣體、淋溶、徑流及侵蝕等途徑損失)。因此這兩種方法均在一定程度上高估了秸稈還田化肥替減率,田間實(shí)際生產(chǎn)應(yīng)用上往往難以參考。近年來(lái),隨著秸稈還田化肥替減研究不斷深入,不同區(qū)域的科研工作者廣泛開展了秸稈還田化肥替減效果的田間試驗(yàn)[21-23]。但多數(shù)田間試驗(yàn)研究集中在單一田塊、單一作物,缺乏針對(duì)不同種植制度或區(qū)域及不同養(yǎng)分供應(yīng)能力土壤的相關(guān)整理與分析,因此不同田間試驗(yàn)得出的秸稈還田化肥替減率差異較大。
本研究通過收集2000-2021年已發(fā)表的秸稈還田化肥替減試驗(yàn)數(shù)據(jù)487組,結(jié)合本團(tuán)隊(duì)2013-2021年在湖北省32個(gè)縣市開展的多年多點(diǎn)秸稈還田化肥替減試驗(yàn)數(shù)據(jù)641組,綜合分析不同種植制度、不同土壤養(yǎng)分供應(yīng)條件的水稻、小麥、玉米、油菜秸稈還田化肥替減率,在此基礎(chǔ)上估算秸稈還田化肥減量節(jié)本潛力,以期在區(qū)域尺度上為秸稈還田化肥替減工作提供理論依據(jù),在田間尺度上為秸稈還田化肥減量提供數(shù)據(jù)參考。
1.1.1 文獻(xiàn)數(shù)據(jù)
首先,在中國(guó)知網(wǎng)(http://www.cnki.net/)搜索并篩選2000-2021年發(fā)表的秸稈還田替減化肥相關(guān)文獻(xiàn),搜索關(guān)鍵詞為“秸稈還田”“氮肥”“磷肥”“鉀肥” “化肥替減”,共檢索到183篇相關(guān)文獻(xiàn)。其次,對(duì)所檢索到的文獻(xiàn)數(shù)據(jù)進(jìn)行遴選。遴選具體標(biāo)準(zhǔn)如下:1)選擇推薦施肥處理與秸稈還田替減氮肥、磷肥或鉀肥處理;2)為避免部分文獻(xiàn)設(shè)置的施肥量過高而導(dǎo)致的秸稈還田化肥替減率偏高,本研究選擇推薦施肥量范圍分別為氮肥(N)150~250 kg/hm2、磷肥(P2O5)40~120 kg/hm2、鉀肥(K2O)50~150 kg/hm2;3)研究地點(diǎn)位于中國(guó)大陸地區(qū);4)供試作物為水稻、小麥、玉米或油菜;5)大田試驗(yàn),試驗(yàn)時(shí)段的起止年份清晰;6)試驗(yàn)數(shù)據(jù)應(yīng)包含氮肥、磷肥或鉀肥施用量、作物產(chǎn)量、土壤基礎(chǔ)理化性質(zhì)等。通過文獻(xiàn)篩選,獲得有效文獻(xiàn)59篇,相關(guān)數(shù)據(jù)487組,其中氮肥替減相關(guān)文獻(xiàn)32篇(224組數(shù)據(jù)),磷肥替減相關(guān)文獻(xiàn)7篇(81組數(shù)據(jù)),鉀肥替減20篇(182組數(shù)據(jù))。試驗(yàn)點(diǎn)覆蓋黑龍江、吉林、遼寧、內(nèi)蒙古、甘肅、陜西、河北、河南、山東、四川、湖北、安徽、江蘇、貴州、湖南、江西、浙江17個(gè)省份。
1.1.2 試驗(yàn)數(shù)據(jù)
選擇本團(tuán)隊(duì)在2013-2021年湖北省32個(gè)縣、市布置的秸稈還田化肥替減試驗(yàn)數(shù)據(jù)[21,24](含部分未發(fā)表數(shù)據(jù)),試驗(yàn)點(diǎn)包含武漢、武穴、漢川、鐘祥、天門、潛江、應(yīng)城、京山、大冶、老河口、荊州、棗陽(yáng)、仙桃、掇刀、監(jiān)利、孝昌、赤壁、沙洋、鄂州、安陸、松滋、谷城、麻城、崇陽(yáng)、洪湖、南漳、隨縣、紅安、孝南。選擇推薦施肥處理與秸稈還田替減氮肥、磷肥或鉀肥處理。經(jīng)過處理篩選,獲得相關(guān)數(shù)據(jù)641組,其中氮肥替減相關(guān)數(shù)據(jù)91組,磷肥替減相關(guān)數(shù)據(jù)16組,鉀肥替減相關(guān)數(shù)據(jù)534組。
1.1.3 統(tǒng)計(jì)數(shù)據(jù)
4種主要農(nóng)作物種植面積數(shù)據(jù)引自2021年《中國(guó)農(nóng)村統(tǒng)計(jì)年鑒》。氮、磷、鉀肥施用量和價(jià)格引自2019-2021年《全國(guó)農(nóng)產(chǎn)品成本收益匯編》三年化肥(折純)均價(jià),即氮肥(N)4.58元/kg、磷肥(P2O5)5.34元/kg、鉀肥(K2O)5.48元/kg。
1.2.1 秸稈還田化肥替減潛力與節(jié)肥成本
本研究以推薦施肥處理作為對(duì)照組,秸稈還田化肥減量處理為處理組。以統(tǒng)計(jì)數(shù)據(jù)為依據(jù),分析秸稈還田化肥替減比例。將處理組和對(duì)照組產(chǎn)量進(jìn)行比較,以處理組與對(duì)照組相比產(chǎn)量相差≥?5%視為沒有減產(chǎn),即平產(chǎn)和增產(chǎn),兩組的氮肥、磷肥或鉀肥施用量之差除以對(duì)照組施用量視為氮肥、磷肥或鉀肥替減率;相反,若處理組和對(duì)照組相比產(chǎn)量相差<?5%則將其視作秸稈還田化肥替減率為零。如果文獻(xiàn)中數(shù)據(jù)以圖的形式表示,則采用軟件GetData Graph Digitizer 2.24軟件進(jìn)行數(shù)字化后提取[25]。
不同作物秸稈還田化肥替減率,以氮肥(N)為例,計(jì)算方法見式(1)。
R=(N?N)/N×100%(1)
U=Q/(2)
P=Q·R(3)
P=P+P+P(4)
式中R為氮肥替減率,%;N和N分別為對(duì)照組和處理組施氮量,kg/hm2;U為單位面積氮肥用量,kg/hm2;Q為氮肥施用總量,104t;為種植面積,104hm2;P、P、P分別為氮肥(N)、磷肥(P2O5)、鉀肥(K2O)替減潛力,104t;為3種化肥總替減潛力,104t。
不同作物秸稈還田化肥替減節(jié)本潛力,以氮肥(N)為例,計(jì)算方法見式(5)。
C=10P·V(5)
=C+C+C(6)
式中C、C、C分別為氮肥、磷肥、鉀肥節(jié)本潛力,108元;為3種化肥總節(jié)本潛力,108元;V為氮肥(N)價(jià)格,元/kg。
1.2.2 不同作物、種植制度和土壤養(yǎng)分供應(yīng)條件的秸稈還田化肥替減率差異
本文根據(jù)不同土壤養(yǎng)分供應(yīng)條件和種植制度將秸稈還田化肥替減試驗(yàn)效果進(jìn)行分組。土壤養(yǎng)分分級(jí)參考全國(guó)第二次土壤普查養(yǎng)分分級(jí)標(biāo)準(zhǔn)[26]結(jié)合當(dāng)前土壤狀況,按照土壤有機(jī)質(zhì)(soil organic matter, SOM)含量將土壤分為低有機(jī)質(zhì)土壤(SOM<10 g/kg)、中有機(jī)質(zhì)土壤(10 g/kg≤SOM<30 g/kg)和高有機(jī)質(zhì)土壤(SOM≥30 g/kg);按照土壤有效磷含量(available phosphorus, AP)分為低磷土壤(AP<10 mg/kg)、中磷土壤(10 mg/kg≤AP<20 mg/kg)和高磷土壤(AP≥20 mg/kg);按照土壤速效鉀(available potassium, AK)含量分為低鉀土壤(AK<100 mg/kg)、中鉀土壤(100 mg/kg≤AK<150 mg/kg)和高鉀土壤(AK≥150 mg/kg)。
本研究收集文獻(xiàn)涉及的種植制度主要包括玉米單作、水稻單作、麥玉輪作、稻油輪作、稻麥輪作。其中玉米單作試驗(yàn)點(diǎn)主要分布在遼寧、內(nèi)蒙古、甘肅等省份;水稻單作試驗(yàn)點(diǎn)主要分布在吉林、浙江等省份;麥玉輪作試驗(yàn)點(diǎn)主要分布在陜西、山東、河北等省份;稻油、稻麥輪作試驗(yàn)點(diǎn)主要分布在長(zhǎng)江中下游地區(qū)。
采用Microsoft Excel 2016軟件收集數(shù)據(jù),SPSS Statistics 24軟件分析數(shù)據(jù),單因素方差分析方法(One-way ANOVA)進(jìn)行樣本間差異顯著性分析、Origin 2018軟件作圖。
如圖1所示,4種主要農(nóng)作物秸稈還田的氮肥替減率范圍為10.6%~13.7%,平均為12.2%。其中在旱地(小麥、玉米、油菜季)秸稈還田的氮肥替減率(平均值13.2%)較水田(水稻季,平均值為10.6%)高出0.8~3.1個(gè)百分點(diǎn)。不同種植制度下,水旱輪作體系(水稻單作和稻油輪作)的氮肥替減潛力較旱地輪作(玉米單作和麥玉輪作)高出5.0~12.9個(gè)百分點(diǎn)。不同有機(jī)質(zhì)含量的秸稈還田氮肥替減率(圖2)表現(xiàn)為:中、低水平有機(jī)質(zhì)含量田塊的氮肥替減率平均值分別為12.1%、11.4%,比土壤有機(jī)質(zhì)水平高的田塊氮肥替減率平均高出4.3~5.0個(gè)百分點(diǎn)。在有機(jī)質(zhì)含量相似的田塊中,不同作物的氮肥替減率差異不顯著(>0.05)。
注:SM為玉米單作;SR為水稻單作;W-M為麥玉輪作;R-O為稻油輪作。玉米單作、麥玉輪作為旱地輪作制度;水稻單作、稻麥輪作、稻油輪作為水旱輪作制度。方框和誤差線分別表示平均值和標(biāo)準(zhǔn)差,括號(hào)內(nèi)的數(shù)值代表樣本數(shù);同組中不同的小寫字母表示不同作物或輪作間差異顯著(<0.05)。下同。
Note: SM is single-season maize; SR is single-season rice; W-M is wheat-maize rotation; R-O is rice-oilseed rape rotation. Maize single-crop, wheat-maize rotation as a upland rotation system; rice single-crop, rice-wheat rotation, rice-oilseed rape rotation as a paddy-upland rotation system. Boxes and error bars indicate the mean value and standard deviation, respectively. Different lowercase letters of the same group represented significantly differences (<0.05) among different crops or rotations. Same as below.
圖1 不同作物和輪作制度下秸稈還田氮肥替減率
Fig.1 Nitrogen fertilizer replacement ratios by straw returning among different crops and rotation systems
由圖3可知,4種主要農(nóng)作物秸稈還田磷肥替減率范圍為19.0%~31.2%,平均值23.9%。水田秸稈還田磷肥替減率平均值(31.2%)較旱地磷肥替減率平均值(23.0%)高出8.2個(gè)百分點(diǎn)。不同的種植制度下,水旱輪作秸稈還田比旱地輪作高18.0~24.8個(gè)百分點(diǎn),表明旱地輪作秸稈還田磷肥替減潛力低于水旱輪作,水旱輪作體系秸稈還田磷肥替減潛力更高。不同供磷能力的田塊,秸稈還田的磷肥替減率也存在差異(圖4)。中、高磷田塊的秸稈還田磷肥替減率平均值分別為21.8%、24.2%,比低磷田塊秸稈還田磷肥替減率平均值(33.3%)低9.1~11.5個(gè)百分點(diǎn)。相似磷水平田塊,不同作物秸稈還田磷肥替減率無(wú)顯著差異(>0.05)。
注:不同小寫字母表示同一有機(jī)質(zhì)水平下不同作物秸稈還田氮肥替減率差異(P<0.05);不同大寫字母表示不同有機(jī)質(zhì)水平秸稈還田氮肥替減率差異顯著(P<0.05)。
圖3 不同作物和輪作制度下秸稈還田的磷肥替減率
由圖5可知,4種主要農(nóng)作物秸稈還田的鉀肥替減率范圍為40.7%~52.8%,平均值43.5%。旱地輪作秸稈還田鉀肥替減率較水旱輪作高出17.1個(gè)百分點(diǎn)。不同鉀水平土壤的秸稈還田鉀肥替減率(圖6)差異顯著(<0.05)。中、高鉀水平的土壤秸稈還田鉀肥替減率平均為37.8%、45.8%,較低鉀水平土壤秸稈還田鉀肥替減率(平均值52.0%)低6.2~14.2個(gè)百分點(diǎn)。在相似土壤鉀水平下,不同作物秸稈還田鉀肥替減率無(wú)顯著差異(>0.05)。
注:AP為土壤有效磷。不同小寫字母表示同一有效磷水平下不同作物秸稈還田磷肥替減率差異(P<0.05);不同大寫字母表示不同土壤有效磷水平下秸稈還田磷肥替減率差異顯著(P<0.05)。
圖5 不同作物和輪作制度下秸稈還田鉀肥替減率
注:AK為土壤速效鉀。不同小寫字母表示同一速效鉀水平下不同作物秸稈還田鉀肥替減率差異(P<0.05);不同大寫字母表示不同土壤速效鉀水平下秸稈還田鉀肥替減率差異顯著(P<0.05)。
2020年中國(guó)主要大田作物水稻、小麥、玉米、油菜種植面積分別為3 007.60×104、2 338.00×104、4 126.40×104、676.50×104hm2(表1),種植總面積約為1.01億hm2。4種農(nóng)作物肥料施用總量為3 751.01×104t,單位施肥量為246.60~424.80kg/hm2。按照不同農(nóng)作物秸稈還田氮、磷、鉀肥替減率分別為10.6%~13.7%、19.0%~31.2%、40.7%~52.9%計(jì)算,全國(guó)4種主要農(nóng)作物秸稈還田可分別替減氮肥(N)10.12×104~106.17×104t、磷肥(P2O5)10.52×104~96.09×104t、鉀肥(K2O)15.16×104~203.01×104t,合計(jì)可減少中國(guó)2020年氮、磷、鉀肥消費(fèi)量的12.6%、25.0%和48.5%。水稻、小麥、玉米、油菜秸稈還田化肥總養(yǎng)分替減量分別為248.88×104、229.24×104、405.27×104、35.80×104t,合計(jì)可節(jié)約化肥919.19×104t。按照近三年化肥均價(jià)氮肥(N)4.58元/kg、磷肥(P2O5)5.34元/kg、鉀肥(K2O)5.48元/kg計(jì)算,4種主要農(nóng)作物秸稈還田分別可節(jié)約氮、磷、鉀肥成本分別為109.69×108、121.60×108、247.69×108元,合計(jì)節(jié)約化肥成本478.98×108元。
表1 中國(guó)主要農(nóng)作物秸稈還田化肥替減潛力與節(jié)肥成本
本研究表明主要農(nóng)作物秸稈還田氮、磷、鉀肥替減率分別平均為12.2%、23.9%、43.5%(圖1、圖3、圖 5)。秸稈還田鉀肥替減率最高。這是因?yàn)殁浰匾噪x子態(tài)存在于秸稈中,使秸稈鉀易于遷移。戴志剛等[27]研究表明,不同作物秸稈在土壤中培養(yǎng)12 d后鉀素釋放率均達(dá)到了98%。正因其易遷移,相較于旱地,水田中的秸稈鉀素更易淋失,故旱地輪作秸稈還田鉀肥替減率較水旱輪作更高(圖5)。秸稈還田磷肥替減率高于氮肥,主要原因?yàn)榻斩捦度氩粌H提高了土壤磷輸入,而且秸稈中碳輸入促進(jìn)了土壤磷活化[28-29]。GUPTA等[30]研究發(fā)現(xiàn)稻麥輪作下秸稈添加可以促進(jìn)土壤磷的礦化,通過增加土壤磷的釋放,提高土壤活性磷有效性。旱地秸稈還田氮肥可替減率略高于水田(圖1)。代文才等[31]研究表明,秸稈翻埋還田360 d后,秸稈在旱地中腐解率比在水田中高7.9%~22.9%,與本研究結(jié)果較為一致。而在不同輪作制度中,水旱輪作秸稈還田氮、磷肥替減率較旱地輪作分別高5.0~12.9、18.0~24.8個(gè)百分點(diǎn)(圖1、圖3),這可能與水旱輪作增加土壤團(tuán)聚體的數(shù)量和穩(wěn)定性有關(guān)[32-33]。薛斌[34]研究表明,稻油輪作模式下秸稈還田通過增加土壤中膠結(jié)物質(zhì)的數(shù)量,提升土壤膠結(jié)作用,使黏粒在團(tuán)聚體中進(jìn)一步富集,提高土壤中不同粒徑團(tuán)聚體數(shù)量。同時(shí),秸稈還田措施還提高了干濕交替土壤團(tuán)聚體中有機(jī)碳的化學(xué)組成和礦物含量,促進(jìn)有機(jī)-礦物復(fù)合體的形成,增加團(tuán)聚體穩(wěn)定性,改善土壤物理化學(xué)性狀[35],提高作物產(chǎn)量[36]。
本研究表明較高養(yǎng)分供應(yīng)能力的田塊秸稈還田化肥替減率低于較低養(yǎng)分供應(yīng)能力的田塊,氮、磷、鉀肥替減率分別降低了4.3~5.0、9.1~11.5、6.2~14.2個(gè)百分點(diǎn)(圖2、圖4、圖6)。不同養(yǎng)分供應(yīng)能力土壤的秸稈還田化肥替減潛力差異可以歸因于土壤基礎(chǔ)地力差異導(dǎo)致的施肥增產(chǎn)空間不同,即肥料貢獻(xiàn)率的不同。徐霞等[37]通過885個(gè)玉米田間試驗(yàn)研究表明,在平衡施肥的條件下,基礎(chǔ)地力產(chǎn)量<4 t/hm2的地塊其化肥增產(chǎn)率平均達(dá)93.23%,而基礎(chǔ)地力產(chǎn)量>8 t/hm2的地塊,其化肥增產(chǎn)率僅為14.44%;李繼福等[38]研究表明不同供鉀能力的稻田中,秸稈還田中鉀、低鉀土壤的產(chǎn)量增幅為12.6%、12.5%,而在高鉀田塊的產(chǎn)量增幅僅為7.7%。河南小麥基礎(chǔ)地力從產(chǎn)量水平<3.0 t/hm2到產(chǎn)量水平>6.0 t/hm2,地力貢獻(xiàn)率從43.6%提高到80.3%,而肥料貢獻(xiàn)率隨地力水平提高從>50%下降至不足15%[39];在肥力較高的黑土地帶,肥料施用對(duì)玉米產(chǎn)量的貢獻(xiàn)平均僅為11.9%~23.4%[40]。對(duì)于養(yǎng)分供應(yīng)能力弱的土壤,秸稈還田可以有效補(bǔ)充土壤養(yǎng)分,提高基礎(chǔ)地力,從而減少作物的對(duì)化肥的依賴。NICOLAS等[41]研究表明,添加有機(jī)質(zhì)利于促進(jìn)大團(tuán)聚體形成,進(jìn)而增加土壤碳氮庫(kù),提升地力[42]。長(zhǎng)期秸稈還田能夠增加土壤養(yǎng)分庫(kù)容量,提高土壤礦質(zhì)元素的有效性[43]。
秸稈還田化肥替減潛力受到作物種類、輪作制度、土壤養(yǎng)分條件的影響,歸根究底是因?yàn)椴煌姆N植區(qū)域造成其差異,而造成這種差異的是不同地域田塊的水、肥、氣、熱等肥力條件的不同。這些因素通過影響秸稈在土壤中的分解、礦化和損失來(lái)影響化肥替減潛力。本研究表明,玉米單作和麥玉輪作制度下,秸稈還田氮、磷肥替減率均低于稻油輪作和水稻單作種植模式,平均分別低5.0~12.9、18.0~24.8個(gè)百分點(diǎn)(圖1、圖3),這是因?yàn)橛衩讍巫骱望溣褫喿髂J蕉喾N植在年積溫和年降雨量較低的淮河以北,尤其冬季,低溫干燥使微生物活動(dòng)受到抑制,秸稈還田后腐解和礦化速度減慢[44],使秸稈中養(yǎng)分難以釋放再利用。在陜西關(guān)中平原麥玉輪作區(qū),玉米秸稈還田一季后,秸稈腐解率僅為23.1%~25.0%[45],而在湖北,水稻、小麥、油菜秸稈經(jīng)過124 d腐解后,秸稈腐解率分別可達(dá)到49.2%、52.2%、49.8%[27]。
除土壤養(yǎng)分供應(yīng)能力條件之外,秸稈還田化肥替減率還受到秸稈還田年限和農(nóng)田管理方式[46]等的影響。WANG等[47]通過meta分析研究95個(gè)田間試驗(yàn)中的446組數(shù)據(jù)表明,在3~15 a的試驗(yàn)中,隨著秸稈還田時(shí)間的延長(zhǎng),土壤有機(jī)碳含量顯著增加,而在長(zhǎng)期試驗(yàn)(>15 a)中秸稈還田對(duì)土壤有機(jī)碳的響應(yīng)并未隨時(shí)間的延長(zhǎng)發(fā)生明顯變化;對(duì)比秸稈翻耕還田,覆蓋還田對(duì)作物增產(chǎn)、氮吸收、氮利用效率響應(yīng)更加明顯[48]。木質(zhì)素含量是影響秸稈腐解和養(yǎng)分釋放的重要因素[49],化肥的施用尤其是氮肥運(yùn)籌也會(huì)影響秸稈腐解和養(yǎng)分釋放[50]。
本文通過分析已發(fā)表文獻(xiàn)數(shù)據(jù)和田間試驗(yàn)數(shù)據(jù),摸清了當(dāng)前土壤養(yǎng)分供應(yīng)條件和產(chǎn)量水平下,主要大田作物秸稈還田化肥替減率,估算了秸稈還田化肥替減潛力和節(jié)肥成本。與前人研究相比,本研究通過分析不同種植制度和養(yǎng)分供應(yīng)條件下的秸稈還田化肥減施田間試驗(yàn)數(shù)據(jù),一定程度上彌補(bǔ)了采用秸稈養(yǎng)分資源量計(jì)算高估秸稈還田化肥替減潛力的缺陷和單一田塊、單一作物的研究尺度有限的問題。
本研究基于2000-2021年田間試驗(yàn)研究文獻(xiàn)和湖北省32個(gè)試驗(yàn)點(diǎn)秸稈還田化肥替減試驗(yàn)數(shù)據(jù),綜合分析了中國(guó)當(dāng)前農(nóng)業(yè)生產(chǎn)條件下4種主要農(nóng)作物秸稈還田化肥替減潛力。主要結(jié)論如下:
1)秸稈還田可以有效實(shí)現(xiàn)化肥減量,當(dāng)前生產(chǎn)條件下的4種大田作物秸稈還田平均分別可替減氮肥12.2%、磷肥23.9%、鉀肥43.5%。秸稈還田條件下,不同種植制度和土壤養(yǎng)分供應(yīng)能力是影響秸稈還田化肥替減潛力的重要因素。
2)秸稈還田替減化肥可以減少中國(guó)主要農(nóng)作物氮(N)、磷(P2O5)、鉀(K2O)肥用量239.48×104、227.73×104、451.98×104t。氮、磷、鉀肥分別可節(jié)約成本109.69×108、121.60×108、247.69×108元,合計(jì)節(jié)約化肥成本478.98×108元。
[1] 叢宏斌,姚宗路,趙立欣,等. 中國(guó)農(nóng)作物秸稈資源分布及其產(chǎn)業(yè)體系與利用路徑[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):132-140.
CONG Hongbin, YAO Zonglu, ZHAO Lixin, et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 132-140. (in Chinese with English abstract)
[2] 柴如山,安之冬,馬超,等. 我國(guó)主要糧食作物秸稈鉀養(yǎng)分資源量及還田替代鉀肥潛力[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(2):201-211.
CHAI Rushan, AN Zhidong, MA Chao, et al. Potassium resource quantity of main grain crop straw and potential for straw incorporation to substitute potassium fertilizer in China[J]. Journal of Plant Nutrition and Fertilizers, 2020. 26(2): 201-211. (in Chinese with English abstract)
[3] 劉曉永. 中國(guó)農(nóng)業(yè)生產(chǎn)中的養(yǎng)分平衡與需求研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2018.
LIU Xiaoyong. Study on Nutrients Balance and Requirement in Agricultural Production in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract)
[4] 宋大利,侯勝鵬,王秀斌,等. 中國(guó)秸稈養(yǎng)分資源數(shù)量及替代化肥潛力[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(1):1-21.
SONG Dali, HOU Shengpeng, WANG Xiubin, et al. Nutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. (in Chinese with English abstract)
[5] 農(nóng)業(yè)農(nóng)村部辦公廳. 農(nóng)業(yè)農(nóng)村部辦公廳關(guān)于做好2022年農(nóng)作物秸稈綜合利用工作的通知[EB/OL]. [2022-04-13] [2022-07-22] http://www.gov.cn/zhengce/zhengceku/2022-04/26/ content_5687228.htm.
[6] MA L J, KONG F X, WANG Z, et al. Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input[J]. Field Crops Research, 2019, 243: 107616.
[7] 管方圓,劉琛,傅慶林,等. 添加秸稈對(duì)水稻產(chǎn)量和土壤碳氮及微生物群落的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(2):223-230.
GUAN Fangyuan, LIU Chen, FU Qinglin, et al. Effects of straw addition on rice yield, soil carbon, nitrogen, and microbial community[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 223-230. (in Chinese with English abstract)
[8] YAN S S, SONG J M, FAN J S, et al. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China[J]. Global Ecology and Conservation, 2020, 22: e00962.
[9] ZHAO H L, SHAR A G, LI S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil and Tillage Research, 2018, 175: 178-186.
[10] WANG E Z, LIN X L, TIAN L, et al. Effects of short-term rice straw return on the soil microbial community[J]. Agriculture, 2021, 11(6): 561.
[11] YIN H J, ZHAO W Q, LI T, et al. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2695-2702.
[12] 霍麗麗,趙立欣,姚宗路,等. 中國(guó)玉米秸稈草谷比及其資源時(shí)空分布特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):227-234.
HUO Lili, ZHAO Lixin, YAO Zonglu, et al. Difference of the ratio of maize stovers to grain and spatiotemporal variation characteristics of maize stovers in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 227-234. (in Chinese with English abstract)
[13] 孫建飛,鄭聚鋒,程琨,等. 基于可收集的秸稈資源量估算及利用潛力分析[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(2):404-413.
SUN Jianfei, ZHENG Jufeng, CHENG Kun, et al. Estimate of the quantity of collectable straw resources and competitive utilization potential[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 404-413. (in Chinese with English abstract)
[14] 柴如山,徐悅,程啟鵬,等. 安徽省主要作物秸稈養(yǎng)分資源量及還田利用潛力[J]. 中國(guó)農(nóng)業(yè)科學(xué),2021,54(1):95-109.
CHAI Rushan, XU Yue, CHENG Qipeng, et al. Nutrient resource quantity of main crop straw and utilization potential under straw returning in Anhui Province[J]. Scientia Agricultura Sinica, 2021, 54(1): 95-109. (in Chinese with English abstract)
[15] 李廷亮,王宇峰,王嘉豪,等. 我國(guó)主要糧食作物秸稈還田養(yǎng)分資源量及其對(duì)小麥化肥減施的啟示[J]. 中國(guó)農(nóng)業(yè)科學(xué),2020,53(23):4835-4854.
LI Tingliang, WANG Yufeng, WANG Jiahao, et al. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China[J]. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854. (in Chinese with English abstract)
[16] CHENG W L, HAN S, LI M, et al. Current situation of the main crop straw nutrient resources and the substitute potential of crop straw for chemical fertilizer: A case study of Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1789-1798.
[17] 劉淑軍,李冬初,黃晶,等. 1988-2018年中國(guó)水稻秸稈資源時(shí)空分布特征及還田替代化肥潛力[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(11):151-161.
LIU Shujun, LI Dongchu, HUANG Jing, et al. Temporal and spatial distribution characteristics of rice stalk resources and its potential of synthetic fertilizers substitution returning to farmland in China from 1988 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE). 2021, 37(11): 151-161. (in Chinese with English abstract)
[18] 丁文成,李書田,黃紹敏. 氮肥管理和秸稈腐熟劑對(duì)15N標(biāo)記玉米秸稈氮有效性與去向的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(14):2725-2736.
DING Wencheng, LI Shutian, HUANG Shaomin. Bioavailability and fate of nitrogen from15N-labeled corn straw as affected by nitrogen management and straw microbial inoculants[J]. Scientia Agricultura Sinica, 2016, 49(14): 2725-2736. (in Chinese with English abstract)
[19] 焦峰,呂淑敏,李響,等. 氮肥管理對(duì)15N標(biāo)記水稻秸稈氮吸收利用的影響[J]. 中國(guó)土壤與肥料,2020,57(2):154-158
JIAO Feng, LV Shumin, LI Xiang, et al. Effects of nitrogen fertilizer management on nitrogen uptake and utilization of15N labeled rice straw[J]. Soil and Fertilizer Sciences in China, 2020, 57(2): 154-158. (in Chinese with English abstract)
[20] 馬南. 秸稈氮素在土壤中的分布及轉(zhuǎn)化機(jī)制研究[D]. 四平:吉林師范大學(xué),2019.
MA Nan. Distribution and Transformation Mechanisms of Maize Straw Derived Nitrogen in an Arable Soil[D]. Siping: Jilin Normal University, 2019. (in Chinese with English abstract)
[21] 張磊,張維樂,魯劍巍,等. 秸稈還田條件下不同供鉀能力土壤水稻、油菜、小麥鉀肥減量研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2017,50(19):3745-3756.
ZHANG Lei, ZHANG Weile, LU Jianwei, et al. Study of optimum potassium reducing rate of rice, wheat and oilseed rape under different soil K supply levels with straw incorporation[J]. Scientia Agricultura Sinica, 2017, 50(19): 3745-3756. (in Chinese with English abstract)
[22] 王秀娟,解占軍,何志剛,等. 秸稈還田條件下減量施磷對(duì)玉米產(chǎn)量、磷素利用率及土壤磷含量的影響[J]. 河南農(nóng)業(yè)科學(xué),2018,47(8):39-44.
WANG Xiujuan, XIE Zhanjun, HE Zhigang, et al. Effects of reducing phosphorus application on maize yield, phosphorus use efficiency and soil phosphorus content under straw returning condition[J]. Journal of Henan Agricultural Sciences, 2018, 47(8): 39-44. (in Chinese with English abstract)
[23] 吳裕如,王承,艾亥麥提·艾麥爾江,等. 油菜秸稈還田及氮肥減量對(duì)夏玉米生長(zhǎng)發(fā)育及產(chǎn)量的影響[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,46(6):641-648.
WU Yuru, WANG Cheng, AIHAIMAIT AIMAIERJIANG, et al. Effects of rape straw returning and reduction of nitrogen fertilizer on the growth and yield of summer maize[J]. Journal of Hunan Agricultural University (Natural Sciences), 2020, 46(6): 641-648. (in Chinese with English abstract)
[24] 張維樂,戴志剛,任濤,等. 不同水旱輪作體系秸稈還田與氮肥運(yùn)籌對(duì)作物產(chǎn)量及養(yǎng)分吸收利用的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(7):1254-1266.
ZHANG Weile, DAI Zhigang, REN Tao, et al. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems[J]. Scientia Agricultura Sinica, 2016, 49(7): 1254-1266. (in Chinese with English abstract)
[25] TAOVA, S. GetData Digitizing Program Code: Description, Testing, Training[R]. Vienna International Nuclear Data Committee, International Atomic Energy Agency, 2013.
[26] 中國(guó)土壤調(diào)查辦公室. 全國(guó)第二次土壤普查養(yǎng)分分級(jí)標(biāo)準(zhǔn)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,1979.
[27] 戴志剛,魯劍巍,李小坤,等. 不同作物還田秸稈的養(yǎng)分釋放特征試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):272-276.
DAI Zhigang, LU Jianwei, LI Xiaokun, et al. Nutrient release characteristics of different crop straws manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 272-276. (in Chinese with English abstract)
[28] SOLTANGHEISI A, RODRIGUES M, COELHO M J A, et al. Changes in soil phosphorus lability promoted by phosphate sources and cover crops[J]. Soil and Tillage Research, 2018, 179: 20-28.
[29] MALTAIS-LANDER G, FROSSARD E. Similar phosphorus transfer from cover crop residues and water-soluble mineral fertilizer to soils and a subsequent crop[J]. Plant and Soil, 2015, 393(1/2): 193-205.
[30] GUPTA R K, YADVINDER S, LADHA J K, et al. Yield and phosphorus transformations in a rice-wheat system with phosphorus management crop residue and phosphorus management[J]. Soil Science Society of America Journal, 2007, 71(5): 1500-1507.
[31] 代文才,高明,蘭木羚,等. 不同作物秸稈在旱地和水田中的腐解特性及養(yǎng)分釋放規(guī)律[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(2):188-199.
DAI Wencai, GAO Ming, LAN Muling, et al. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199. (in Chinese with English abstract)
[32] WANG M C, YANG C H. Type of fertilizer applied to a paddy-upland rotation affects selected soil quality attributes[J]. Geoderma, 2003, 114(1/2): 93-108.
[33] ZHAO Z H, GAO S F, LU C Y, et al. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice-wheat rotation system[J]. Soil and Tillage Research, 2021, 212: 105071.
[34] 薛斌. 秸稈還田下稻-油輪作土壤中團(tuán)聚體的膠結(jié)物特點(diǎn)與穩(wěn)定性[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.
XUE Bin. The Charcteristics of Cementing Material and Stability of Soil Aggergates Under Straw Returning in Rice-Rape Cropping System[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract)
[35] 譚文峰,朱志鋒,劉凡,等. 江漢平原不同土地利用方式下土壤團(tuán)聚體中有機(jī)碳的分布與積累特點(diǎn)[J]. 自然資源學(xué)報(bào),2006,21(6):973-980.
TAN Wenfeng, ZHU Zhifeng, LIU Fan, et al. Organic carbon distribution and storage of soil aggregates under land use change in Jianghan plain, Hubei Province[J]. Journal of Natural Resources, 2006, 21(6): 973-980. (in Chinese with English abstract)
[36] CHEN S, LIU S W, ZHENG X, et al. Effect of various crop rotations on rice yield and nitrogen use efficiency in paddy-upland systems in southeastern China[J]. The Crop Journal, 2018, 6(6): 576-588.
[37] 徐霞,趙亞南,黃玉芳,等. 河南省玉米施肥效應(yīng)對(duì)基礎(chǔ)地力的響應(yīng)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(6):991-1001.
XU Xia, ZHAO Yanan, HUANG Yufang, et al. Response of fertilization effect of maize to inherent soil productivity in Henan Province[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 991-1001. (in Chinese with English abstract)
[38] 李繼福,魯劍巍,任濤,等. 稻田不同供鉀能力條件下秸稈還田替代鉀肥效果[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(2):292-302.
LI Jifu, LU Jianwei, REN Tao, et al. Effect of straw incorporation substitute for K-fertilizer under different paddy soil K supply capacities[J]. Scientia Agricultura Sinica, 2014, 47(2): 292-302. (in Chinese with English abstract)
[39] 徐霞,趙亞南,黃玉芳,等. 不同地力水平下的小麥?zhǔn)┓市?yīng)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(21):4076-4086.
XU Xia, ZHAO Yanan, HUANG Yufang, et al. Fertilization effect of wheat under different soil fertilities[J]. Scientia Agricultura Sinica, 2018, 51(21): 4076-4086. (in Chinese with English abstract)
[40] 王寅,馮國(guó)忠,焉莉,等. 吉林省玉米施肥效果與肥料利用效率現(xiàn)狀研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(6):1441-1448.
WANG Yin, FENG Guozhong, YAN Li, et al. Present fertilization effect and fertilizer use efficiency of maize in Jilin Province[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1441-1448. (in Chinese with English abstract)
[41] NICOLAS C, KENNEDY J N, HERNANDEZ T, et al. Soil aggregation in a semiarid soil amended with composted and non-composted sewage sludge-A field experiment[J]. Geoderma, 2014, 219: 24-31.
[42] 梁堯,蔡紅光,楊麗,等. 玉米秸稈覆蓋與深翻兩種還田方式對(duì)黑土有機(jī)碳固持的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):133-140.
LIANG Yao, CAI Hongguang, YANG Li, et al. Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 133-140. (in Chinese with English abstract)
[43] 黃璐,趙國(guó)慧,李廷亮,等. 秸稈還田對(duì)黃土旱塬麥田土壤團(tuán)聚體有機(jī)碳組分的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(13):123-132.
HUANG Lu, ZHAO Guohui, LI Tingliang, et al. Effects of straw returning on the organic carbon components of soil aggregates in wheat fields on the loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 123-132. (in Chinese with English abstract)
[44] 李艾蒙,李慧,裴久渤,等. 玉米秸稈施用對(duì)棕壤有機(jī)碳激發(fā)效應(yīng)及溫度敏感性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(12):2788-2796.
LI Aimeng, LI Hui, PEI Jiubo, et al. Effects of maize straw application on organic carbon′s priming effect and temperature sensitivity in brown earth[J]. Journal of Agro?Environment Science, 2019, 38(12): 2788-2796. (in Chinese with English abstract)
[45] 黃婷苗,王朝輝,侯仰毅,等. 施氮對(duì)關(guān)中還田玉米秸稈腐解和養(yǎng)分釋放特征的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2017,28(7): 2261-2268.
HUANG Tingmiao, WANG Zhaohui, HOU Yangyi, et al. Effects of nitrogen application on decomposition and nutrient release of returned maize straw in Guanzhong Plain, Northwest China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2261-2268. (in Chinese with English abstract)
[46] LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta‐analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381.
[47] WANG Y, WU P, MEI F, et al. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis[J]. Journal of Environmental Management, 2021, 288(15): 112391.
[48] XIA L L, LAM S K, Wolf B, et al. Trade‐offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems[J]. Global Change Biology, 2018, 24(12): 5919-5932.
[49] WEI Y Q, WU D, WEI D, et al. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities[J]. Bioresource Technology, 2019, 271: 66-74.
[50] CHEN B Q, LIU E K, TIAN Q Z, et al. Soil nitrogen dynamics and crop residues. A review[J]. Agronomy for Sustainable Development, 2014, 34: 429-442.
Comprehensive analysis of chemical fertilizer replacement potential by straw returning in field experiments
HOU Susu1, DONG Xinyi1, DAI Zhigang2, GONG Ximin2, XU Zhiyu3, XUE Yinghao3,ZHANG Yangyang1, LI Xiaokun1, CONG Rihuan1※, LU Jianwei1
(1.,,430070,; 2.,430070,; 3.,,100125,)
Straw returning to the field can reduce the use of chemical fertilizers and improve the utilization rate of chemical fertilizers on the basis of improving soil fertility. Straw resources can also be effectively utilized during this time. However, there is a different replacement rate of chemical fertilizer with straw return in China, due to the varying crop planting systems with the various soil fertility. In this study, a critical review was proposed to comprehensively analyze the replacement potential of chemical fertilizer by straw returning in field experiments. The data were collected from the published literature data of “CNKI” from 2000 to 2021 and 32 field experiments of straw returning to fields in Hubei Province from 2013 to 2021. The search keywords were set as “straw return”, “nitrogen (N) fertilizer”, “phosphorus (P) fertilizer”, “potassium (K) fertilizer”, and “fertilizer replacement and reduction”. The criteria for selecting data from the literature are as follows: 1) The study was conducted in China; 2) The experimental crop was rice, wheat, maize or oilseed rape; 3) The same experiment needed to include the paired treatment and control group. The treatment group was the chemical fertilization reduction with straw return, whereas, the control group was chemical fertilization without straw return.The rest experimental conditions of the treatment and control group were strictly consistent; 4) The level ranges of chemical fertilizer were 150-250 kg/hm2(N), 40-120 kg/hm2(P2O5), and 50-150 kg/hm2(K2O); 5) There were the clear starting and ending years of the experimental period; 6) The published data included the fertilizer amount, crop yield, basic physical and chemical properties of soil. Eventually, 487 published datasets were collected during the years 2000-2021, while, 641 experimental datasets from 32 field experiments that conducted in Hubei Province from 2013 to 2021. After that, the datasets were utilized to determine the proportion of N, P, and K fertilizer reduction by straw return for the major crops, in order to estimate the chemical fertilizer saving potential of straw return on a national scale. Specifically, the average replacement ratios of N, P, and K fertilizers by straw return were 12.2%, 23.9% and 43.5%, respectively. There was no significant difference in the replacement ratios by straw return among the crops. In rotation systems, the average replacement ratio of N and P fertilizer by straw return in the paddy-upland rotation system (e.g., rice monoculture and rice-oilseed rape rotation) were 5.0-12.9 and 18.0-24.8 percentage points higher than those in the upland rotation system (e.g., wheat-corn rotation and corn monoculture). In addition, the supply capacity of soil nutrients was an important influencing factor on the replacement reduction potential of chemical fertilizer (especially P and K fertilizer) by straw return. The reduction ratios of P and K fertilizer by straw return were 9.1-11.5 and 6.2-14.2 percentage points lower in soil with a high nutrient supply capacity than those with the low one, respectively. According to the planting area and fertilizer consumption of various crops in 2020, the national N, P2O5, and K2O fertilizer for the rice, wheat, maize, and oilseed rape seasons could have reduced by 239.48×104, 227.73×104and 451.98×104t, respectively, accounting for 12.6%, 25.0%, and 48.5% of the current N, P2O5and K2O fertilizer consumptions. The total cost of chemical fertilizer was saved 478.98×108Yuan per year by straw return. A large number of field experiments were implemented for the comprehensive analysis of the reduction potential of chemical fertilizer by straw return. The finding can provide the theoretical basis and data support for the high-use efficiency of chemical fertilizers for the major crops in China.
soil; nutrient; straw returning; fertilizer replacement ratio; soil nutrient supply; rotation system; field experiment
10.11975/j.issn.1002-6819.202212045
S158.3
A
1002-6819(2023)-05-0070-09
侯素素,董心怡,戴志剛,等. 基于田間試驗(yàn)的秸稈還田化肥替減潛力綜合分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(5):70-78.doi:10.11975/j.issn.1002-6819.202212045 http://www.tcsae.org
HOU Susu, DONG Xinyi, DAI Zhigang, et al. Comprehensive analysis of chemical fertilizer replacement potential by straw returning in field experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 70-78. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212045 http://www.tcsae.org
2022-12-06
2023-01-25
國(guó)家自然科學(xué)基金項(xiàng)目(32172678);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1901200);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-12)
侯素素,研究方向?yàn)橛袡C(jī)資源利用。Email:housusu@webmail.hzau.edu.cn
叢日環(huán),博士,副教授,研究方向?yàn)橛袡C(jī)資源高效利用與土壤培肥。Email:congrh@mail.hzau.edu.cn