馬濤 羅晨夢(mèng) 李思佳 姜淵忠
摘要:為深入了解木本植物響應(yīng)干旱脅迫的分子機(jī)理,本文系統(tǒng)的從木本植物對(duì)干旱信號(hào)的感知、信號(hào)轉(zhuǎn)導(dǎo)到轉(zhuǎn)錄調(diào)控、生理生化反應(yīng)以及表型變化等方面總結(jié)了木本植物對(duì)干旱脅迫可能的響應(yīng)過(guò)程. 認(rèn)為木本植物由于其固著根生的特點(diǎn),不得不進(jìn)化出相應(yīng)的機(jī)制來(lái)應(yīng)對(duì)不斷變化的環(huán)境.當(dāng)遭受干旱脅迫時(shí),木本植物根系細(xì)胞膜上的感受器首先感知到土壤水分狀態(tài)的變化,細(xì)胞內(nèi)的蛋白質(zhì)和激素調(diào)控系統(tǒng)觸發(fā)相應(yīng)的干旱適應(yīng)反應(yīng).干旱信號(hào)通過(guò)細(xì)胞間的信號(hào)傳導(dǎo)路徑傳遞到植物體內(nèi)的各個(gè)部位,主要的信號(hào)傳導(dǎo)途徑包括Ca ?2+ 信號(hào)、激素信號(hào)和轉(zhuǎn)錄因子調(diào)控等.一些關(guān)鍵基因和信號(hào)通路,如脫落酸(ABA)信號(hào)通路、DREB蛋白家族等也參與調(diào)控植物的干旱適應(yīng)性.木本植物也會(huì)發(fā)生形態(tài)和解剖上的變化來(lái)減少水分蒸發(fā)和增強(qiáng)根系的吸水能力.本文可為抗旱型木本植物選育提供見(jiàn)解.
關(guān)鍵詞:干旱脅迫; 木本植物; 信號(hào)傳遞; 干旱響應(yīng)
中圖分類(lèi)號(hào): ?Q945???文獻(xiàn)標(biāo)識(shí)碼:A???DOI:DOI:10.19907/j.0490-6756.2023.050002
收稿日期: ?2023-08-13
基金項(xiàng)目: ?國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFD2201100);國(guó)家自然科學(xué)基金(31922061)
通訊作者: ??馬濤.E-mail: matao.yz@gmail.com
Current research status of woody plants responding to drought stress
MA Tao, LUO Chen-Meng, LI Si-Jia, JIANG Yuan-Zhong
(Laboratory of Molecular Ecology and Evolution, College of Life Sciences, Sichuan University Chengdu 610065, China)
This paper systematically summarizes the possible response processes of woody plants to drought stress from the perception of drought signals, signal transduction to transcriptional regulation, physiological and biochemical responses, and phenotypic changes, with the aim of gaining a deeper understanding of the molecular mechanisms of woody plants in response to drought stress. Woody plants are forced to evolve corresponding mechanisms to cope with the ever-changing environment due to their entrenched rhizosphere. When subjected to drought stress, the receptors on the cell membrane of the root system of woody plants first sense the changes in soil water status, and intracellular proteins and hormone regulatory systems in the cell trigger the corresponding drought adaptation responses. Drought signals are transmitted to various parts of the plant body through intercellular signaling pathways, and the main signaling pathways include Ca ?2+ ?signaling, hormone signaling, and transcription factor regulation. Some key genes and signaling pathways, such as the abscisic acid (ABA) signaling pathway and the DREB protein family, are also involved in the regulation of drought adaptation in plants. ?Woody plants also undergo morphological and anatomical changes to reduce water evaporation and enhance root water absorption capacity. This article can provide insights into the breeding of drought-resistant woody plants.
Drought stress; Woody plants; Signaling; Drought response
1 引 言
干旱脅迫對(duì)森林生態(tài)系統(tǒng)具有毀滅性打擊.水分脅迫會(huì)破壞木質(zhì)部的水分通量,導(dǎo)致空化.由此產(chǎn)生的栓塞限制了植物輸送水分的能力,從而限制了樹(shù)木的生長(zhǎng) ?[1] .干旱脅迫的過(guò)程中伴隨著Ca ?2+ 、Mg ?2+ 、K ?+ 、Na ?+ 等離子在土壤表面富集,致使外界環(huán)境的滲透壓遠(yuǎn)高于細(xì)胞,引發(fā)細(xì)胞失水皺縮,最終導(dǎo)致林木死亡,全球變暖和氣候變化也使干旱發(fā)生的頻率和危害程度不斷增加 ?[2] .
木本植物種類(lèi)繁多,分布廣泛,在經(jīng)濟(jì)、藥用、生態(tài)等多方面都具有重要的應(yīng)用價(jià)值.在對(duì)木本植物的研究中發(fā)現(xiàn),其通過(guò)自身進(jìn)化可以在復(fù)雜多變的環(huán)境中正常生長(zhǎng),因此木本植物中必然存在一個(gè)連接各種器官和組織,復(fù)雜而精密的調(diào)控網(wǎng)絡(luò)響應(yīng)干旱脅迫 ?[3] .
2 干旱信號(hào)的感知
干旱是一種來(lái)自于外界環(huán)境的物理刺激,植物感受干旱的實(shí)質(zhì)就是“信號(hào)轉(zhuǎn)導(dǎo)”,外界的刺激為“輸入信號(hào)”,植物所做出的應(yīng)答為“輸出信號(hào)”,因此植物需要先識(shí)別“輸入信號(hào)”,經(jīng)過(guò)一系列的生理生化過(guò)程的轉(zhuǎn)換和傳導(dǎo)才能變?yōu)椤拜敵鲂盘?hào)” ?[4] .植物能夠通過(guò)水信號(hào)、化學(xué)信號(hào)和電信號(hào)在植物體內(nèi)的細(xì)胞或者組織器官之間進(jìn)行干旱信息的傳遞,當(dāng)接收到干旱信號(hào)時(shí)植物則會(huì)迅速啟動(dòng)自身的保護(hù)機(jī)制以保證植物能夠維持自身的生理平衡,使植物能夠順利的度過(guò)水分缺乏時(shí)期 ?[5] .Blackman所做的玉米分根實(shí)驗(yàn)首次證實(shí)了根部是植物感知干旱并發(fā)出氣孔調(diào)控初級(jí)信號(hào)的部位.“鹽隨水走,水走鹽留”,因此土壤中水分的缺失可能首先被感知為滲透勢(shì)的下降,所以干旱傳感器也被稱為滲透?jìng)鞲衅??[6] .
2014年研究人員篩選了到第一個(gè)潛在的滲透?jìng)鞲衅鱋SCA1(Osmotically Sensitive Calcium-permeable Channel 1),OSCA1是植物中一種液泡脫敏Ca ?2+ 通道的亞型,主要存在于質(zhì)膜和內(nèi)質(zhì)網(wǎng)膜等細(xì)胞器膜上(圖1).研究表明,OSCA1通道在滲透逆境下的表達(dá)和活性會(huì)發(fā)生調(diào)節(jié).例如,在水分缺乏或鹽脅迫等逆境條件下,OSCA1通道的表達(dá)水平可能上調(diào),并參與細(xì)胞內(nèi)Ca ?2+ 動(dòng)態(tài)平衡的調(diào)節(jié),從而調(diào)控植物對(duì)逆境的響應(yīng)和適應(yīng).據(jù)目前的研究,擬南芥基因組中包含大約15個(gè)與OSCA1同源的基因.擬南芥中CSC1A(Cellulose Synthase Complex Subunit 1A)家族成員在擬南芥細(xì)胞中與液泡脫敏和滲透調(diào)節(jié)有關(guān).它們?cè)诰S持細(xì)胞內(nèi)Ca ?2+ 濃度、調(diào)控滲透壓平衡以及響應(yīng)逆境適應(yīng)等方面發(fā)揮著重要作用 ?[7] .盡管CSC1A和OSCA1都是離子通道蛋白,但它們的功能和調(diào)節(jié)機(jī)制不完全相同,反映了不同物種在適應(yīng)環(huán)境脅迫的策略(圖1).植物的滲透脅迫感知機(jī)制與其它真核生物相似,并且可能由相似類(lèi)型的蛋白質(zhì)組成.類(lèi)似于酵母中滲透?jìng)鞲泻托盘?hào)傳導(dǎo)的SLN1-YPD1-SSK1 TCS(Two-Component System),ATHK1介導(dǎo)的TCS可能在擬南芥中起作用 ?[8] .然而,只有OSCA1被認(rèn)為是真正的滲透?jìng)鞲衅?,而HKs(Histidine Kinase)在植物滲透?jìng)鞲兄械淖饔萌栽跔?zhēng)論中,CSCs(Cellulose Synthase Complexes)和RLKs(Receptor-Like Kinases)也是潛在的候選者 ?[9] .
3 干旱信號(hào)轉(zhuǎn)導(dǎo)
干旱應(yīng)激特異性信號(hào)轉(zhuǎn)導(dǎo)是指在干旱條件下,植物通過(guò)特定信號(hào)轉(zhuǎn)導(dǎo)通路來(lái)激活和調(diào)控與干旱適應(yīng)相關(guān)的基因表達(dá).這些信號(hào)轉(zhuǎn)導(dǎo)通路在正常的生長(zhǎng)條件下可能處于休眠狀態(tài),但當(dāng)植物遭遇干旱脅迫時(shí),它們會(huì)被激活并觸發(fā)一系列適應(yīng)性響應(yīng).這個(gè)過(guò)程涉及各種第二信使,如Ca ?2+ 、ROS(Reactive Oxygen Species)、NO和磷脂,以及不同類(lèi)型的蛋白激酶.信號(hào)通過(guò)這些第二信使進(jìn)行傳遞和放大 ?[10] .
3.1 Ca ?2+ 信號(hào)
干旱信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中的Ca ?2+ 信號(hào)傳導(dǎo)是植物對(duì)干旱脅迫的主要響應(yīng)之一,干旱脅迫時(shí)它能夠迅速誘導(dǎo)細(xì)胞內(nèi)Ca ?2+ 濃度的短暫增加,因?yàn)樗奶匦允蛊溥m合作為無(wú)處不在的信號(hào)分子,是應(yīng)激信號(hào)中普遍存在的第二信使.由于激活的離子通道或膜鈣通道的存在,Ca ?2+ 濃度在細(xì)胞內(nèi)逐漸上升.這些Ca ?2+ 濃度上升可以形成Ca ?2+ 梯度,從感知區(qū)域開(kāi)始向周?chē)鷶U(kuò)散,形成以Ca ?2+ 濃度遞減的鈣波(Calcium waves)或鈣火花(Calcium sparks).細(xì)胞內(nèi)Ca ?2+ 濃度上升后,結(jié)合到特定的鈣信號(hào)傳感器蛋白上,如鈣調(diào)蛋白(Calmodulin)和鈣依賴性蛋白激酶(Calcium-dependent Protein Kinases,CDPKs) ?[11] .
擬南芥的SOS(Salt Overly Sensitive)通路是一種重要的Ca ?2+ 依賴性信號(hào)轉(zhuǎn)導(dǎo)途徑,它可以感知和響應(yīng)特定的胞質(zhì)Ca ?2+ 信號(hào) ?[12] .該通路通過(guò)調(diào)節(jié)離子通道和離子轉(zhuǎn)運(yùn)蛋白的活性,實(shí)現(xiàn)對(duì)環(huán)境脅迫的適應(yīng).其中,SOS3是一個(gè)Ca ?2+ 感知蛋白,它能夠與胞質(zhì)中的Ca ?2+ 結(jié)合并發(fā)生構(gòu)象變化(圖1).當(dāng)Ca ?2+ 濃度升高時(shí),Ca ?2+ -SOS3復(fù)合物會(huì)形成,并激活SOS2蛋白激酶.SOS2是一個(gè)鈣依賴性蛋白激酶,當(dāng)與Ca ?2+ -SOS3復(fù)合物結(jié)合時(shí),SOS2被激活 ?[13] .這些蛋白的激活狀態(tài)會(huì)通過(guò)磷酸化反應(yīng)、蛋白相互作用和亞細(xì)胞位置變化來(lái)調(diào)節(jié)植物的干旱適應(yīng)響應(yīng).例如,激活的鈣調(diào)蛋白可以與蛋白激酶、磷酸酯酶和轉(zhuǎn)錄因子等下游組分相互作用,并參與調(diào)節(jié)基因表達(dá)、離子通道活性和滲透調(diào)節(jié)等關(guān)鍵過(guò)程 ?[14] .
3.2 ROS信號(hào)
在植物的干旱脅迫響應(yīng)中,ROS信號(hào)起著重要的作用(圖1).植物干旱感知機(jī)制被激活后,通常會(huì)引發(fā)一系列反應(yīng),這些反應(yīng)會(huì)導(dǎo)致酶、膜蛋白及電子傳遞鏈的失活和損傷,這些被損傷的系統(tǒng)會(huì)釋放出電子,導(dǎo)致ROS的生成 ?[15] .此外,植物還可以通過(guò)激活特定的酶(如NADPH氧化酶)來(lái)產(chǎn)生ROS.在植物中,ROS可以在多種細(xì)胞器中產(chǎn)生,包括葉綠體、線粒體和過(guò)氧化物酶體,也可以通過(guò)質(zhì)膜定位的Rboh NADPH氧化酶產(chǎn)生 ?[16] .ROS在細(xì)胞內(nèi)擴(kuò)散,并可以通過(guò)跨膜通道進(jìn)入細(xì)胞間隙,在這個(gè)過(guò)程中,ROS的濃度可以迅速增加,從而形成一個(gè)干旱脅迫信號(hào)的放大環(huán)節(jié).ROS作為重要的信號(hào)分子與細(xì)胞內(nèi)的一系列分子相互作用 ?[17] .例如,ROS可以與蛋白質(zhì)、酶、磷酸酯酶等發(fā)生直接的氧化修飾,從而改變它們的活性和功能.ROS抑制和激活的目標(biāo)包括激酶、轉(zhuǎn)錄因子、離子通道和膜轉(zhuǎn)運(yùn)蛋白等(圖1).這些ROS調(diào)控的分子事件可以進(jìn)一步觸發(fā)干旱適應(yīng)相關(guān)基因的表達(dá).ROS信號(hào)調(diào)控的下游響應(yīng)涉及多個(gè)途徑,如抗氧化反應(yīng)、離子通道的活性調(diào)節(jié) ?[18] .
3.3 NO(一氧化氮)
在干旱條件下,植物可能會(huì)產(chǎn)生和釋放NO作為一種響應(yīng)信號(hào),它可以觸發(fā)植物內(nèi)部的適應(yīng)性機(jī)制以應(yīng)對(duì)干旱的影響.NO參與調(diào)節(jié)植物的氣孔運(yùn)動(dòng)、根系生長(zhǎng)、抗氧化防御等過(guò)程,有助于植物應(yīng)對(duì)干旱壓力.在植物中,NO可以通過(guò)激活可溶性鳥(niǎo)苷酸環(huán)化酶(GC)產(chǎn)生環(huán)磷酸鳥(niǎo)苷酸(cGMP) ?[19] .cGMP作為第二信使參與干旱信號(hào)傳導(dǎo),促進(jìn)蛋白激酶G的激活,進(jìn)而調(diào)控干旱相關(guān)基因的表達(dá).NO可以通過(guò)調(diào)節(jié)細(xì)胞內(nèi)Ca ?2+ 干旱信號(hào).它可能促使Ca ?2+ 釋放或增加Ca ?2+ 通道的通透性,激活Ca ?2+ 相關(guān)的信號(hào)通路,如CDPK信號(hào)通路,從而調(diào)節(jié)干旱相關(guān)基因的表達(dá)和植物的適應(yīng)性反應(yīng).NO可以激活線粒體膜蛋白激酶(mitogen-activated protein kinase,MAPK)通路,進(jìn)而調(diào)控干旱響應(yīng) ?[20] .NO激活MAPK酶級(jí)聯(lián)反應(yīng),導(dǎo)致下游響應(yīng)蛋白的磷酸化,從而調(diào)節(jié)基因表達(dá)、激活抗氧化防御系統(tǒng)等 ?[21] .NO還可以通過(guò)與脫亞硝酸還原酶(NIR)相互作用來(lái)調(diào)節(jié)干旱信號(hào).NIR能夠還原NO為亞硝酸,從而改變植物內(nèi)NO的水平.這一過(guò)程可能影響植物的氣孔閉合、抗氧化性能和干旱適應(yīng)等方面 ?[22] .需要注意的是,NO與其他信號(hào)分子如植物激素以及其他逆境響應(yīng)通路(如水通道蛋白等)之間可能存在復(fù)雜的交互作用和調(diào)控網(wǎng)絡(luò).因此,NO調(diào)控干旱信號(hào)傳導(dǎo)的通路圖譜仍然在不斷研究和探索中 ?[6] .
3.4 CLE25介導(dǎo)的ABA信號(hào)轉(zhuǎn)導(dǎo)
植物根部感知到土壤缺水后,地上部分會(huì)通過(guò)關(guān)閉氣孔來(lái)響應(yīng)干旱脅迫,這涉及植物通信系統(tǒng)的運(yùn)轉(zhuǎn)機(jī)制.多肽分子CLE25(CLAVATA3/EMBRYO-SURROUNDING REGION-related25)被干旱誘產(chǎn)生,從根部經(jīng)過(guò)長(zhǎng)距離運(yùn)輸轉(zhuǎn)移到葉片中,與葉片中受體蛋白BAM1(Barely Any Meristem1)和BAM3結(jié)合后,然后誘導(dǎo) NCED3 (Nine-Cis-Epoxycarotenoid Dioxygenase 3)表達(dá),進(jìn)而促進(jìn)ABA(Abscisic acid)的積累 ?[23] .ABA進(jìn)一步調(diào)節(jié)一系列應(yīng)答反應(yīng)來(lái)抵御干旱對(duì)植物造成的影響(圖2).
ABA信號(hào)轉(zhuǎn)導(dǎo)由受體(Regulatory Components of ABA Receptors /Pyrabactin Riesistance1/Pyrabactin Riesistance1-Like,RCAR/PYR/PYL)、蛋白磷酸酶(Protein Phosphatase type 2C,PP2C)和激酶(SNF1-related Protein Kinase 2s,包括SnRK2.2、SnRK2.3和SnRK2.6)完成 ?[24] .之前普遍認(rèn)為植物遭受干旱刺激后,ABA含量升高,ABA和受體結(jié)合后與PP2C形成三聚體復(fù)合物,其抑制PP2C的磷酸酶活性.然后SnRK2s從與PP2C的結(jié)合抑制中釋放.釋放的SnRK2s可以通過(guò)自磷酸化激活,并且進(jìn)一步磷酸化下游轉(zhuǎn)錄因子(Transcription Factors,TFs)和離子通道蛋白 ?[25] .2020年1月,中科院上海植物逆境生物學(xué)研究中心報(bào)道了RAFs(Raf-like Kinases)的B2、B3和B4亞家族在早期滲透脅迫和ABA信號(hào)通路中的重要作用 ?[26] .近日,日本學(xué)者又發(fā)現(xiàn),輕度干旱時(shí),SnRK2s的自磷酸化不足以引起下游的一系列脅迫響應(yīng),需要上游激酶B2-RAFs(包括RAF7、RAF10、RAF11和RAF12)參與才能激活,且B2-RAFs通過(guò)ABA依賴途徑激活SnRK2s來(lái)調(diào)節(jié)干旱脅迫應(yīng)答基因的表達(dá) ?[27] .當(dāng)干旱脅迫變得更嚴(yán)重時(shí),同一激酶家族的B3-RAFs(包括RAF3、RAF4和RAF5)亞家族成員被激活,并以不依賴于ABA的方式直接激活SnRK2s,從而增強(qiáng)脅迫響應(yīng) ?[27] (圖1).近年來(lái),許多ABA信號(hào)轉(zhuǎn)導(dǎo)通路成員被報(bào)道參與木本植物的干旱反應(yīng).ABA受體 PtPYRL1/5 的過(guò)表達(dá)均增加了轉(zhuǎn)基因楊樹(shù)的耐旱性 ?[28] .轉(zhuǎn) PtPYRL1/5 基因楊樹(shù)抗旱性的提高與ABA信號(hào)通路決定的關(guān)鍵反應(yīng),包括增加氣孔關(guān)閉和減少葉片水分損失呈正相關(guān) ?[28] .進(jìn)一步的分析表明,過(guò)表達(dá)株系清除活性氧的能力和抗氧化酶的活性均提高了 ?[28] .過(guò)表達(dá)楊樹(shù) PP2C 基因負(fù)調(diào)節(jié)轉(zhuǎn)基因擬南芥的耐旱性 ?[29] .
4 轉(zhuǎn)錄調(diào)控
在植物感應(yīng)到干旱脅迫后,下游轉(zhuǎn)錄調(diào)控反應(yīng)被觸發(fā).TFs是基因表達(dá)的主要調(diào)節(jié)因子,通過(guò)ABA依賴型和ABA非依賴型途徑在干旱響應(yīng)中發(fā)揮關(guān)鍵作用(圖2).
4.1 ABA依賴型干旱脅迫響應(yīng)途徑
ABA依賴型干旱脅迫響應(yīng)途徑下游TFs主要有五類(lèi),包括bZIP(ABA-Responsive Element(ABRE)Binding Factors/ABA-Responsive Element Binding protein,ABF/AREB)、NAC( N AM/ A TAF/ C UC)、WRKY、MYB(v-myb avian myeloblastosis viral oncogene homolog)和NF-Ys(Nuclear Factor Ys) ?[30] .屬于bZIP家族的ABF/AREB通過(guò)識(shí)別下游基因啟動(dòng)子區(qū)域的順式元件(例如,ABRE,ACGTGG/TC)發(fā)揮作用 ?[31] .脫水和ABA處理可以誘導(dǎo)胡楊 PeABF3 基因的表達(dá), PeABF3 通過(guò)直接調(diào)控ADF5(Actin-Depolymerizing Factor-5)促進(jìn)ABA誘導(dǎo)的氣孔關(guān)閉,從而增強(qiáng)轉(zhuǎn)基因楊樹(shù)的抗旱性 ?[32] .過(guò)表達(dá) PtrAREB3 的轉(zhuǎn)基因楊樹(shù)在干旱條件下表現(xiàn)出較強(qiáng)的耐旱性表型 ?[33] .PtabZIP1L(ABF/AREB類(lèi)轉(zhuǎn)錄因子)通過(guò)增加側(cè)根形成和調(diào)節(jié)耐旱性相關(guān)代謝物的生物合成來(lái)增強(qiáng)植物的耐旱性 ?[34] . PtrAREB1 基因沉默可降低轉(zhuǎn)基因毛果楊的耐旱性,它通過(guò)募集HAT(Histone Acetyltransferase)復(fù)合物蛋白ADA2b(Alteration/Deficiency Inactivation2b)和GCN5(General Control Non-derepressible5),以增加組蛋白H3第9位賴氨酸殘基的乙?;⒔Y(jié)合下游 NAC 基因 PtrNAC006/007/120 啟動(dòng)子的ABRE元件激活其表達(dá).過(guò)量表達(dá)這些 PtrNACs 基因會(huì)影響木質(zhì)部發(fā)育進(jìn)而提高轉(zhuǎn)基因植株的耐旱性.NAC轉(zhuǎn)錄因子(例如,Responsive to Desiccation 26,RD26)也可以與ABF/AREB家族TFs相互作用,在植物干旱響應(yīng)途徑中扮演關(guān)鍵角色 ?[35] .玫瑰中的一個(gè) NAC 基因 RcNAC091 的表達(dá)受干旱和ABA誘導(dǎo), RcNAC091 沉默導(dǎo)致干旱脅迫耐受性降低,而 RcNAC091 過(guò)表達(dá)則產(chǎn)生相反的效果 ?[36] .進(jìn)一步研究發(fā)現(xiàn)RcNAC091直接靶向了 RcWRKY71 的啟動(dòng)子. RcWRKY71 基因的沉默降低了植株的耐旱性 ?[36] .此外, RcWRKY71 沉默的玫瑰植株對(duì)ABA不敏感,而過(guò)表達(dá) RcWRKY71 基因的植株對(duì)ABA敏感,從而產(chǎn)生耐旱表型,說(shuō)明 RcWRKY71 通過(guò)對(duì)ABA的影響正向調(diào)節(jié)抗旱性 ?[36] .與此不同的是,毛果楊WRKY家族基因 PtrWRKY18/35 過(guò)表達(dá)的擬南芥植株對(duì)ABA的敏感性降低,一系列ABA相關(guān)基因(例如, ABA-insensitive4/5 )在過(guò)表達(dá)植株中表達(dá)水平顯著下調(diào),導(dǎo)致植物對(duì)滲透脅迫的耐受性降低,死亡率和氣孔開(kāi)度增加,負(fù)調(diào)控植物抗旱性 ?[37] .除了這些轉(zhuǎn)錄因子,木本植物中報(bào)道的參與干旱脅迫響應(yīng)的還有MYB和NF-Y TFs家族的成員.毛果楊R2R3-MYB轉(zhuǎn)錄因子PtrMYB94激活A(yù)BA響應(yīng)基因表達(dá)和增加ABA含量,以ABA依賴的方式提高轉(zhuǎn)基因楊樹(shù)的耐旱性 ?[38] .過(guò)量表達(dá)楊樹(shù) PtNF-YA9 和 PdNF-YB7 的擬南芥分別通過(guò)促進(jìn)ABA依賴的氣孔關(guān)閉和提高水分利用效率提高植株對(duì)干旱脅迫的耐受性 ?[39,40] . PdNF-YB21 則通過(guò)增強(qiáng)楊樹(shù)根系的生長(zhǎng)來(lái)提高耐旱性 ?[41] .
4.2 非ABA依賴型干旱脅迫響應(yīng)途徑
由于ABA通過(guò)AREB/ABF調(diào)控其大部分靶基因,ABRE元件被認(rèn)為是ABA依賴途徑調(diào)控干旱響應(yīng)基因的關(guān)鍵標(biāo)志.而ABA非依賴型干旱響應(yīng)基因通常在其啟動(dòng)子區(qū)含有脫水響應(yīng)的順式元件(Dehydration-responsive Element,DRE,TACCGACAT).AP2/ERF(APETALA2/Ethylene Responsive Factor)TF家族(例如,DRE-binding proteins/C-repeat binding factors,DREBs/CBFs)通常通過(guò)結(jié)合DRE序列來(lái)調(diào)控干旱適應(yīng)性基因的表達(dá).歐美楊( Populus ?× ?euramericana )AP2/ERF成員 PeSHN1 通過(guò)靶向 PeLACS2 (Long-chain Acyl-CoA Synthetase)調(diào)節(jié)蠟質(zhì)生物合成提高楊樹(shù)水分利用效率和耐旱性 ?[42] .胡楊 PeDREB2a 和 PeDREB2L 在擬南芥中過(guò)表達(dá)增強(qiáng)了轉(zhuǎn)基因植株的耐旱性 ?[43,44] .蘋(píng)果MdERF38與MdMYB1相互作用促進(jìn)了蘋(píng)果對(duì)干旱的響應(yīng) ?[45] .組成型過(guò)表達(dá)河北楊 PhCBF4a 和 PhCBF4b 的擬南芥植株具有更強(qiáng)的耐旱性 ?[46] .胡楊 PeCBF4a 的表達(dá)受脫水誘導(dǎo),過(guò)表達(dá) PeCBF4a 的轉(zhuǎn)基因毛白楊的光合速率比對(duì)照提高34.7%~165.7%,瞬時(shí)水分利用效率比對(duì)照提高48.9%~103.7% ?[47] .除此之外,轉(zhuǎn)基因毛白楊還表現(xiàn)出較高的超氧化物歧化酶(Superoxide Dismutase,SOD)活性和顯著降低的丙二醛(Malondialdehyde)水平,在轉(zhuǎn)基因植物中積累了更高水平的脯氨酸(Proline)和可溶性糖(Soluble sugars),表現(xiàn)出更強(qiáng)的耐旱性 ?[47] .
5 生理生化反應(yīng)
轉(zhuǎn)錄因子通過(guò)調(diào)節(jié)干旱適應(yīng)相關(guān)基因的表達(dá),進(jìn)而調(diào)控植物的生理生化保護(hù)機(jī)制(圖2),主要包括:
(1)促進(jìn)葉片表面的蠟質(zhì)積累減少水分散失:為了減少水分損失,木本植物會(huì)通過(guò)增厚葉片表面的蠟質(zhì)來(lái)減少蒸騰作用 ?[48] .
(2)激活抗氧化系統(tǒng)減輕氧化損傷:干旱脅迫會(huì)導(dǎo)致植物產(chǎn)生過(guò)量的活性氧自由基,這些自由基可引發(fā)氧化損傷.植物會(huì)通過(guò)激活抗氧化系統(tǒng)來(lái)應(yīng)對(duì)這種氧化應(yīng)激.抗氧化酶如SOD、過(guò)氧化物酶(POD)和抗壞血酸過(guò)氧化物酶(APX)等會(huì)被激活,幫助清除自由基,減輕氧化損傷 ?[49] .
(3)積累滲透調(diào)節(jié)物質(zhì),調(diào)節(jié)離子吸收與運(yùn)輸,維持細(xì)胞膨壓穩(wěn)定:植物在干旱脅迫下會(huì)積累可溶性糖類(lèi)、脯氨酸、脂肪酸和脫水蛋白等.它們可以維持細(xì)胞的脫水狀態(tài)、保護(hù)細(xì)胞膜穩(wěn)定性和蛋白質(zhì)結(jié)構(gòu),并提供額外的能量和碳源.這些滲透性物質(zhì)還有助于維持細(xì)胞膨壓和有效的氣孔導(dǎo)度,從而使植物更好地吸收葉片的二氧化碳和根系的水分 ?[50] .其中,作為滲透調(diào)節(jié)物質(zhì)之一的脯氨酸,其親水基團(tuán)可以與水分子結(jié)合,同時(shí)疏水基團(tuán)可以和蛋白質(zhì)結(jié)合,從而使蛋白得到更多的水分,防止脫水.此外,植物在干旱脅迫下還會(huì)調(diào)節(jié)根系吸收和運(yùn)輸離子,并調(diào)整其在植物體內(nèi)的分配.鉀離子(K ?+ )和鈣離子(Ca ?2+ )的調(diào)節(jié)對(duì)于維持細(xì)胞內(nèi)滲透調(diào)節(jié)和水分運(yùn)輸至關(guān)重要.
(4)調(diào)節(jié)植物激素積累,提高干旱脅迫適應(yīng):干旱脅迫會(huì)引發(fā)植物體內(nèi)激素的調(diào)節(jié)反應(yīng).ABA在干旱脅迫中被活化,激發(fā)一系列干旱響應(yīng).ABA的增加可以促使氣孔關(guān)閉,調(diào)節(jié)水分平衡,并通過(guò)調(diào)節(jié)轉(zhuǎn)錄因子的活性來(lái)誘導(dǎo)脅迫相關(guān)基因的表達(dá).ABA信號(hào)轉(zhuǎn)導(dǎo)通路的重要激酶SnRK2s還會(huì)與油菜素內(nèi)酯(Brassinosteroid,BR)途徑下游組分BIN2(Brassinosteroid-insensitive 2)相互作用影響植物根系生長(zhǎng) ?[51] .維管中的BR受體BRL3(Brassinosteroid-insensitive1-Like3)通過(guò)促進(jìn)滲透調(diào)節(jié)物在根組織中的積累來(lái)協(xié)調(diào)植物在干旱脅迫下的生長(zhǎng)和存活 ?[52] .此外,生長(zhǎng)素響應(yīng)通路的EXO70A3(Exocyst Sub-unit Exo70 Family Protein A3)通過(guò)影響中央根冠細(xì)胞中生長(zhǎng)素外排載體PINFORMED 4的穩(wěn)態(tài)來(lái)進(jìn)行局部生長(zhǎng)素轉(zhuǎn)運(yùn)進(jìn)而調(diào)節(jié)根的結(jié)構(gòu)和深度,以促進(jìn)其從土壤中吸收水分,從而提高耐旱性 ?[53] .
這些生理生化反應(yīng)幫助植物在干旱脅迫下保持水分平衡、維持細(xì)胞結(jié)構(gòu)和功能穩(wěn)定,并提供額外的保護(hù)機(jī)制,以適應(yīng)干旱環(huán)境.
6 抗旱的相關(guān)表型
6.1 根的調(diào)節(jié)
在面對(duì)干旱脅迫時(shí),木本植物的根會(huì)發(fā)生一系列變化來(lái)應(yīng)對(duì)水分的不足和干旱環(huán)境的壓力(圖2).干旱條件下,木本植物的根系生長(zhǎng)通常會(huì)受到抑制.根的生長(zhǎng)速率減緩或停止,以減少對(duì)水分的需求和減輕水分蒸騰壓力.這有助于保持根系與可用水分的平衡 ?[54] .研究表明干旱脅迫下松樹(shù)的根系生長(zhǎng)明顯減少,根的生長(zhǎng)速率下降.這種抑制有助于松樹(shù)減少水分需求,保持水分平衡并適應(yīng)干旱環(huán)境下的生長(zhǎng) ?[55] .木本植物的側(cè)根和根毛的發(fā)育可能也會(huì)受到影響,根毛的數(shù)量和長(zhǎng)度減少,以降低水分蒸騰速率和提高水分吸收的效率.此外,調(diào)整側(cè)根發(fā)育的模式,增加側(cè)根的分支與根系增加水分吸收的能力.在干旱條件下,根可能傾向于向下生長(zhǎng),以便獲取深層的水分資源.此外,根系可能會(huì)通過(guò)增加分支根和調(diào)整根系的空間布局,以擴(kuò)展根系的吸水面積,提高水分獲取能力 ?[56] .當(dāng)木本植物經(jīng)歷了一段干旱脅迫后,一旦水分得到恢復(fù),根毛通常會(huì)進(jìn)行修復(fù)和再生.新的根毛的發(fā)育和再生有助于提高水分吸收能力,并適應(yīng)水分脅迫的變化 ?[57] .
總之,木本植物的根系在面對(duì)干旱脅迫時(shí)會(huì)通過(guò)調(diào)整根系的生長(zhǎng)模式、根毛的發(fā)育和修復(fù)、根系的分布等方式來(lái)應(yīng)對(duì)干旱環(huán)境的壓力.這些變化有助于減少水分損失、提高水分吸收效率和有效地利用有限的水資源.需要注意的是,不同種類(lèi)的木本植物和環(huán)境條件下,根系的響應(yīng)和適應(yīng)特征可能會(huì)有所差異.
6.2 葉片變化特征
在面對(duì)干旱脅迫時(shí),木本植物的葉片也會(huì)發(fā)生相應(yīng)的變化來(lái)應(yīng)對(duì)水分的不足和干旱環(huán)境的壓力(圖2).受干旱環(huán)境刺激,木本植物的葉片可以通過(guò)關(guān)閉氣孔和卷曲葉片表面來(lái)減少水分喪失.關(guān)閉氣孔可以降低葉片表面的水分蒸騰速率,具有減少水分流失的效果 ?[58] ;而卷曲葉片表面則可以減少葉片表面積,減少受到干旱環(huán)境的暴露面積,進(jìn)一步降低水分蒸騰.有些木本植物在受到干旱脅迫時(shí),葉片可以通過(guò)增厚葉片表皮和表皮角質(zhì)層、積累水分貯存物質(zhì)(如脂肪、蛋白質(zhì)和多糖)等方式進(jìn)行水分儲(chǔ)存和保護(hù).這些適應(yīng)性機(jī)制有助于減少水分喪失和維持細(xì)胞的水分穩(wěn)定性 ?[59] .一些木本植物會(huì)在干旱條件下通過(guò)調(diào)節(jié)葉綠素和其他色素的合成與降解,來(lái)調(diào)整葉片的色素組成.這可能導(dǎo)致葉片顏色的變化,如葉片的變黃、變紅.這種調(diào)節(jié)有助于減輕光合作用的壓力和保護(hù)葉片免受干旱脅迫的損傷 ?[60] .在極端干旱條件下,大部分木本植物為了保護(hù)自身,會(huì)選擇性地凋落葉片,以減少水分的損失.這種凋落與早衰的現(xiàn)象有助于植物將有限的水分資源重定向到更為關(guān)鍵的生長(zhǎng)和生存過(guò)程 ?[61] .木本植物的葉片在應(yīng)對(duì)干旱脅迫時(shí),可能會(huì)同時(shí)采取多種適應(yīng)策略.這些策略有助于降低水分蒸騰速率、改善水分利用效率,從而使植物能夠在干旱環(huán)境下生存和繼續(xù)生長(zhǎng).不同物種和環(huán)境條件下,葉片的響應(yīng)和適應(yīng)特征可能會(huì)有所差異.
7 結(jié)論與展望
木本植物由于其多年生的特性,必須承受更多的非生物脅迫.這篇綜述系統(tǒng)的從信號(hào)感知、信號(hào)轉(zhuǎn)導(dǎo)到轉(zhuǎn)錄調(diào)控、生理生化反應(yīng)和表型變化等方面總結(jié)了木本植物對(duì)干旱脅迫可能的響應(yīng)過(guò)程.但由于木本植物復(fù)雜的遺傳背景和遺傳轉(zhuǎn)化的局限性,目前對(duì)木本植物響應(yīng)干旱脅迫的精細(xì)調(diào)控機(jī)制的認(rèn)識(shí)還很有限.要充分認(rèn)識(shí)木本植物對(duì)干旱脅迫的響應(yīng)途徑和調(diào)控網(wǎng)絡(luò)還有很長(zhǎng)的路要走.
隨著高通量測(cè)序技術(shù)的革新與測(cè)序成本的降低,使得利用正向遺傳學(xué)手段研究木本植物的各種性狀形成機(jī)制越來(lái)越便捷,如全基因組關(guān)聯(lián)分析 ?[62] .實(shí)時(shí)活體顯微鏡技術(shù)對(duì)細(xì)胞過(guò)程進(jìn)行實(shí)時(shí)可視化監(jiān)測(cè),單細(xì)胞組學(xué)和其他細(xì)胞特異性和組織特異性的方法,以及在原位成像的分析方法也有助于進(jìn)一步了解木本植物響應(yīng)干旱脅迫的空間和時(shí)間的復(fù)雜的動(dòng)態(tài)分子變化 ?[63] .機(jī)器學(xué)習(xí)方法與基于圖像的表型分析相結(jié)合的能力不斷增長(zhǎng),這可以為植物脅迫表型在多個(gè)尺度上的高維數(shù)據(jù)分析提供新的見(jiàn)解 ?[64] .此外,CRISPR系統(tǒng)的精確和多重基因組編輯技術(shù)有助于產(chǎn)生可以在各種脅迫下提高植物耐受性的等位基因 ?[65,66] .從長(zhǎng)遠(yuǎn)來(lái)看,這些技術(shù)手段協(xié)同發(fā)展將會(huì)加快確定新 的育種目標(biāo),以提高木本植物對(duì)干旱的耐受性,選育適合惡劣地理環(huán)境種植的新品種.
參考文獻(xiàn):
[1] ??Sitko ?K, Opala-Owczarek M, Jemiola G, ?et al . Effect of drought and heavy metal contamination on growth and photosynthesis of silver birch trees growing on post-industrial heaps [J]. Cells, 2021, 11: 53.
[2] ?Thapa ?G, Sadhukhan A, Panda S K, ?et al . Molecular mechanistic model of plant heavy metal tolerance [J]. Biometals, 2012, 25: 489.
[3] ?Jia H, Guan C, Zhang J, ?et al . Drought effects on tree growth, water use efficiency, vulnerability and canopy health of ?Quercus variabilis-Robinia pseudoacacia ?mixed plantation[J]. Front Plant Sci, 2022, 13: 1018405.
[4] ?Tariq ?M, Wright D J, Bruce T J, ?et al . Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals [J]. PLoS One, 2013, 8: e69013.
[5] ?Wagner-Cremer ?F, Donders T H, Visscher H. Drought stress signals in modern and subfossil ?Quercus laurifolia ?(Fagaceae) leaves reflect winter precipitation ?in southern Florida tied to El Nino-Southern Oscillation activity [J]. Am J Bot, 2010, 97: 753.
[6] ?Zhu J K. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167: 313.
[7] ?Pei S, Liu Y, Li W, ?et al . OSCA1 is an osmotic specific sensor: a method to distinguish Ca ?2+ ?-mediated osmotic and ionic perception [J]. New Phytol, 2022, 235: 1665.
[8] ?Posas F, Wurgler-Murphy S M, Maeda T, ?et al . Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor[J]. Cell, 1996, 86: 865.
[9] ?Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cell Mol Life Sci, 2014, 72: 673.
[10] Liu ?H, Song S, Zhang H, ?et al . Signaling transduction of ABA, ROS, and Ca ?2+ ?in plant stomatal closure in response to drought [J]. Int J Mol Sci, 2022, 23: 14824.
[11] Wan ?B, Lin Y, Mou T. Expression of rice Ca ?2+ -dependent protein kinases (CDPKs) genes under different environmental stresses[J]. FEBS Lett, 2007, 581: 1179.
[12] Chan A S, Wong Y H. Gβγ signaling and Ca ?2+ ?mobilization co-operate synergistically in a Sos and Rac-dependent manner in the activation of JNK by Gq-coupled receptors[J]. Cell Signal, 2004, 16: 823.
[13] Yang Q, Chen Z Z, Zhou X F, ?et al . Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic ?Arabidopsis [J]. Mol Plant, 2009, 2: 22.
[14] Weng ?H, Yoo C Y, Gosney M J, ?et al . Poplar GTL1 is a Ca ?2+ /calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance[J]. PLoS One, 2012, 7: e32925.
[15] Lv X, Li Y, Chen R, ?et al . Stomatal responses of two drought-tolerant barley varieties with different ROS regulation strategies under drought conditions[J]. Antioxidants (Basel), 2023, 12: 790.
[16] Wang H, Li N, Li H, ?et al . Overexpression of ?NtGCN2 ?improves drought tolerance in tobacco by regulating proline accumulation, ROS scavenging ability, and stomatal closure [J]. Plant Physiol Biochem, 2023, 198: 107665.
[17] Sun G, Dong Z, Li G, ?et al . Mn(3)O(4) Nanoparticles alleviate ROS-inhibited root apex mitosis activities to improve maize drought tolerance [J]. Adv Biol (Weinh), 2023, 7: e2200317.
[18] Zhang J, Cheng K, Ma B, ?et al . CaCl ?2 ?promotes the cross adaptation of ?Reaumuria trigyna ?to salt and drought by regulating Na ?+ , ROS accumulation and programmed cell death [J]. Plant Physiol Biochem, 2023, 195: 214.
[19] Santisree ?P, Bhatnagar-Mathur P, Sharma K K. NO to drought-multifunctional role of nitric oxide in plant drought: Do we have all the answers?[J]. Plant Sci, 2015, 239: 44.
[20] Ma H, Chen J, Zhang Z, ?et al . MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice [J]. Plant J, 2017, 92: 557.
[21] Liu Y P, Zhou G H, Song X, ?et al . Emodin protects against homocysteine-induced cardiac dysfunction by inhibiting oxidative stress via MAPK and Akt/eNOS/NO signaling pathways [J]. Eur J Pharmacol, 2023, 940: 175452.
[22] Yang J, Matsumoto Y, Etoh T, ?et al . Nitric oxide NO ?- dependent and NO ?- independent signaling pathways act in ABA-inhibition of stomatal opening[J]. Plant Signal Behav, 2008, 3: 131.
[23] Takahashi F, Suzuki T, Osakabe Y, ?et al . A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556: 235.
[24] Antoni ?R, Gonzalez-Guzman M, Rodriguez L, ?et al . Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors [J]. Plant Physiol, 2012, 158: 970.
[25] Liu S, Lu C, Jiang G, ?et al . Comprehensive functional analysis of the PYL-PP2C-SnRK2s family in Bletilla striata reveals that ?BsPP2C22 ?and ?BsPP2C38 ?interact with ?BsPYLs ?and ?BsSnRK2s ?in response to multiple abiotic stresses [J]. Front Plant Sci, 2022, 13: 963069.
[26] Lin Z, Li Y, Zhang Z, ?et al . A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants [J]. Nat Commun, 2020, 11: 613.
[27] Soma F, Takahashi F, Kidokoro S, ?et al . Constitutively active B2 Raf-like kinases are required for drought-responsive gene expression upstream of ABA-activated ?SnRK2 ?kinases [J]. Proc Natl Acad Sci USA, 2023, 120: e2221863120.
[28] Yu ?J, Ge H, Wang X, ?et al . Overexpression of pyrabactin resistance-like abscisic acid receptors enhances drought, osmotic, and cold tolerance in transgenic poplars[J]. Front Plant Sci, 2017, 8: 1752.
[29] Arshad ?M, Mattsson J. A putative poplar PP2C-encoding gene negatively regulates drought and abscisic acid responses in transgenic ?Arabidopsis thaliana [J]. Trees, 2013, 28: 531.
[30] Yao ?T, Zhang J, Xie M, ?et al . Transcriptional regulation of drought response in arabidopsis and woody plants [J]. Front Plant Sci, 2020, 11: 572137.
[31] Li ?S, Lin Y J, Wang P, ?et al . The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in ?Populus trichocarpa [J]. Plant Cell, 2019, 31: 663.
[32] Yang ?Y, Li H G, Wang J, ?et al . ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ?ADF5 ?in ?Populus euphratica [J]. J Exp Bot, 2020, 71: 7270.
[33] Yu ?D, Wildhagen H, Tylewicz S, ?et al . Abscisic acid signalling mediates biomass trade-off and allocation in poplar [J]. New Phytol, 2019, 223: 1192.
[34] Dash ?M, Yordanov Y S, Georgieva T, ?et al . Poplar ?PtabZIP1 -like enhances lateral root formation and biomass growth under drought stress [J]. Plant J, 2017, 89: 692.
[35] Fujita ?M, Fujita Y, Maruyama K, ?et al . A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J, 2004, 39: 863.
[36] Geng ?L, Yu S, Zhang Y, ?et al . Transcription factor ?RcNAC091 ?enhances rose drought tolerance through the abscisic acid–dependent pathway [J]. Plant Physiol, 2023, 26: kiad366.
[37] Guo ?L, Li C, Jiang Y, ?et al . Heterologous expression of poplar ?WRKY18/35 ?paralogs in arabidopsis reveals their antagonistic regulation on pathogen resistance and abiotic ?stress tolerance via variable hormonal pathways [J]. Int J Mol Sci, 2020, 21: 5440.
[38] Fang Q, Wang X, Wang H, ?et al . The poplar R2R3 MYB transcription factor ?PtrMYB94 ?coordinates with abscisic acid ?signaling to improve drought tolerance in plants [J]. Tree Physiol, 2020, 40: 46.
[39] Lian C, Li Q, Yao K, ?et al . ?Populus trichocarpa PtNF-YA9 , A multifunctional transcription factor, regulates seed germination, abiotic stress, plant growth and development in ?Arabidopsis ?[J]. Front Plant Sci, 2018, 9: 954.
[40] Han X, Tang S, An Y, ?et al . Overexpression of the poplar ?NF-YB7 ?transcription factor confers drought tolerance and improves water-use efficiency in ?Arabidopsis ?[J]. J Exp Bot, 2013, 64: 4589.
[41] Zhou ?Y, Zhang Y, Wang X, ?et al . Root-specific NF-Y family transcription factor, ?PdNF-YB21 , positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in ?Populus [J]. New Phytol, 2020, 227: 407.
[42] Meng ?S, Cao Y, Li H, ?et al . ?PeSHN1 ?regulates water-use efficiency and drought tolerance by modulating wax biosynthesis in poplar [J]. Tree Physiol, 2019, 39: 1371.
[43] Zhou ?M L, Ma J T, Zhao Y M, ?et al . Improvement of drought and salt tolerance in ?Arabidopsis ?and ?Lotus corniculatus ?by overexpression of a novel DREB transcription factor from ?Populus euphratica ?[J]. Gene, 2012, 506: 10.
[44] Chen ?J, Xia X, Yin W. A poplar DRE-binding protein gene, ?PeDREB2L , is involved in regulation of defense response against abiotic stress[J]. Gene, 2011, 483: 36.
[45] An J P, Zhang X W, Bi S Q, ?et al . The ERF transcription factor ?MdERF38 ?promotes drought stress-induced anthocyanin biosynthesis in apple[J]. Plant J, 2020, 101: 573.
[46] Wang Z, Liu J, Guo H, ?et al . Characterization of two highly similar ?CBF/DREB1 -like genes, ?PhCBF4a ?and ?PhCBF4b , in ?Populus hopeiensis [J]. Plant Physiol Biochem, 2014, 83: 107.
[47] Tian Q, Chen J, Wang D, ?et al . Overexpression of a ?Populus euphratica ?CBF4 gene in poplar confers tolerance to multiple stresses [J]. Plant Cell Tiss Org, 2016, 128: 391.
[48] Lu Y, Cheng X, Jia M, ?et al . Silencing ?GhFAR3.1 ?reduces wax accumulation in cotton leaves and leads to increased susceptibility to drought stress[J]. Plant Direct, 2021, 5: e00313.
[49] Amini A, Majidi M M, Mokhtari N, ?et al . Drought stress memory in a germplasm of synthetic and common wheat: antioxidant system, physiological and morphological consequences[J]. Sci Rep, 2023, 13: 8569.
[50] Poormohammad K S, Grieu P, Maury P, ?et al . Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower ?( Helianthus annuus ?L.) [J]. Theor Appl Genet, 2007, 114: 193.
[51] Cai Z, Liu J, Wang H, ?et al . GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup Ⅲ SnRK2s in ?Arabidopsis [J]. Proc Natl Acad Sci USA, 2014, 111: 9651.
[52] Fabregas N, Lozano-Elena F, Blasco-Escamez D, ?et al . Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth [J]. Nat Commun, 2018, 9: 4680.
[53] Ogura T, Goeschl C, Filiault D, ?et al . Root system depth in arabidopsis is shaped by ?EXOCYST70A3 ?via the dynamic modulation of auxin transport [J]. Cell, 2019, 178: 400.
[54] Bandurska H. Drought stress responses: coping strategy and resistance [J]. Plants (Basel), 2022, 11: 922.
[55] Tyagi V, Singh S P, Singh R D, ?et al . Chir pine and banj oak responses to pre-monsoon drought across slope aspects and positions in Central Himalaya [J]. Environ Monit Assess, 2023, 195: 258.
[56] Duddek P, Carminati A, Koebernick N, ?et al . The impact of drought-induced root and root hair shrinkage on root-soil contact[J]. Plant Physiol, 2022, 189: 1232.
[57] Duan H, Shao C, Luo X, ?et al . Root relative water content is a potential signal for impending mortality of a subtropical conifer during extreme drought stress [J]. Plant Cell Environ, 2023, 46: 2763.
[58] Zhang Q, Tang W, Xiong Z, ?et al . Stomatal conductance in rice leaves and panicles responds differently to abscisic acid and soil drought[J]. J Exp Bot, 2023, 74: 1551.
[59] Mkhabela ?S S, Shimelis H, Gerrano A S, ?et al . Drought tolerance assessment of okra ( Abelmoschus esculentus ?[L.] Moench) accessions based on leaf gas exchange and chlorophyll fluorescence [J]. Life (Basel), 2023, 13: 682.
[60] Harfouche A, Meilan R, Altman A. 2014. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement[J]. Tree Physiol, 2014, 34: 1181.
[61] Silvestre-Carbonell S, Ogaya R, Fernandez-Martinez M, ?et al . Chlorophyll fluorescence variation in two Mediterranean forest species over a 21-year drought treatment period [J]. Tree Physiol, 2023, 43: 1533.
[62] Chen ?Z Q, Zan Y, Milesi P, ?et al . Leveraging breeding programs and genomic data in Norway spruce ( Picea abies ?L. Karst) for GWAS analysis[J]. Genome Biol, 2021, 22: 179.
[63] Nobori T, Oliva M, Lister R, ?et al . Multiplexed single-cell 3D spatial gene expression analysis in plant tissue using PHYTOMap[J]. Nat Plants, 2023, 9: 1026.
[64] Singh ?A, Jones S, Ganapathysubramanian B, ?et al . Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping[J]. Trends Plant Sci, 2021, 26: 53.
[65] Sulis ?D B, Jiang X, Yang C, ?et al . Multiplex CRISPR editing of wood for sustainable fiber production [J]. Science, 2023, 381: 216.
[66] Alba Burbano D, Cardiff R A L, Tickman B I, ?et al . Engineering activatable promoters for scalable and multi-input CRISPRa/i circuits [J]. Proc Natl Acad Sci USA, 2023, 120: e2220358120.
四川大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年5期