付雪琴 蘭瑞 鄒旭歡 鮑漢中 王瑋瑋 王漫漫 張勇
【摘要】 腦卒中是具有較高病死率和致殘率的疾病,呈現(xiàn)逐年上升和年輕化趨勢(shì),嚴(yán)重危害健康。缺血性卒中主要是由于缺血和缺氧造成神經(jīng)細(xì)胞的損傷,最終導(dǎo)致大腦功能的喪失,且治療選擇有限。目前認(rèn)為突觸可塑性是局灶性缺血后神經(jīng)恢復(fù)的重要過(guò)程,神經(jīng)膠質(zhì)細(xì)胞與突觸可塑性密切相關(guān),若能深入了解神經(jīng)元突觸可塑性的作用、神經(jīng)膠質(zhì)細(xì)胞與突觸可塑性相互調(diào)控機(jī)制,則可能對(duì)腦缺血后功能恢復(fù)提供一定的幫助。本文就突觸可塑性、神經(jīng)膠質(zhì)細(xì)胞與突觸可塑性相互調(diào)控作用進(jìn)行綜述,以期為治療腦缺血后神經(jīng)功能損傷提供理論支持。
【關(guān)鍵詞】 腦缺血;神經(jīng)元;突觸;突觸可塑性;膠質(zhì)細(xì)胞
【中圖分類號(hào)】 R651 【文獻(xiàn)標(biāo)志碼】 A 【文章編號(hào)】 1672-7770(2023)02-0234-04
Abstract: Stroke is a disease with high mortality and disability rate, showing an increasing and younger trend year by year, which is seriously harmful to health. Ischemic stroke is mainly due to the damage of nerve cells caused by ischemia and hypoxia, which eventually leads to the loss of brain function, and the treatment options are limited. At present, it is believed that synaptic plasticity is an important process of neural recovery after focal ischemia, and glial cells are closely related to synaptic plasticity. If the role of neuronal synaptic plasticity and the mutual regulation mechanism between glial cells and synaptic plasticity can be deeply understood, it may provide some help for the functional recovery after cerebral ischemia. This paper reviews the regulation of synaptic plasticity and the interaction between glial cells and synaptic plasticity, in order to provide theoretical support for the treatment of neurological injury after cerebral ischemia.
Key words: cerebral ischemia; neuron; synapse; synaptic plasticity; glial cel
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(81973618,81503422);河南省自然科學(xué)基金資助項(xiàng)目(202300410399)
作者單位:450000 鄭州,河南中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院(付雪琴,鄒旭歡,鮑漢中,王瑋瑋,王漫漫);河南中醫(yī)藥大學(xué)第一附屬醫(yī)院腦病2病區(qū)(蘭瑞);鄭州大學(xué)第三附屬醫(yī)院中醫(yī)科(張勇)
通信作者:蘭瑞
在中國(guó),腦卒中是成年人群病死、致殘的重要病因。國(guó)家卒中數(shù)據(jù)篩查顯示,2018年腦血管病死亡率149.49/10萬(wàn)人,造成157萬(wàn)人死亡。數(shù)據(jù)顯示,2018年中國(guó)收治的腦卒中患者中81.9%患者為缺血性卒中[1],及時(shí)的血運(yùn)重建治療是缺血性卒中的有效治療方法。近年來(lái),研究人員將單一的神經(jīng)元保護(hù)轉(zhuǎn)向了影響神經(jīng)元生存的微環(huán)境保護(hù),其他細(xì)胞類型如膠質(zhì)細(xì)胞、突觸可塑性等逐漸引起大家的廣泛關(guān)注和研究。
1 突觸可塑性
突觸是神經(jīng)元細(xì)胞間接觸位點(diǎn),是神經(jīng)系統(tǒng)中化學(xué)神經(jīng)傳遞的主要結(jié)構(gòu)。突觸可塑性是神經(jīng)元的基本功能,包括結(jié)構(gòu)改變和功能修飾,生理情況下與大腦發(fā)育,學(xué)習(xí)記憶相關(guān),病理情況下參與神經(jīng)環(huán)路重建,促進(jìn)神經(jīng)恢復(fù)與再生[2]。突觸活動(dòng)消失是腦缺血的最早后果[3]。短暫局灶性缺血導(dǎo)致突觸前成分損傷,包括孤立的突觸終扣缺失和突觸前投射密度降低, 參與突觸發(fā)生的蛋白質(zhì)水平升高,突觸后興奮性的降低歸因于突觸后膜的缺氧去極化,膜功能的下降歸因于在大量缺氧去極化之前發(fā)生的輕微局灶性突觸后超極化,鉀離子電位增強(qiáng)所致[3]。腦缺血約15 min,觀察到神經(jīng)元胞體形態(tài)學(xué)改變伴隨著CA1放射層突觸密度的進(jìn)行性降低,7 d后隨著病變的加速,可觀察到CA1層放射狀神經(jīng)層較大比例的退行性突觸,突觸后結(jié)構(gòu)含大量空泡和溶酶體,細(xì)胞骨架成分和突觸后膜有溶解跡象[3-4]。
2 神經(jīng)膠質(zhì)細(xì)胞的功能及與突觸的聯(lián)系
2.1 小膠質(zhì)細(xì)胞對(duì)突觸可塑性的調(diào)控 小膠質(zhì)細(xì)胞(microglia)是中樞神經(jīng)系統(tǒng)( central nervous system,CNS)的免疫細(xì)胞,腦缺血后做出應(yīng)答反應(yīng),通過(guò)清除細(xì)胞碎片維持正常腦內(nèi)穩(wěn)態(tài),在炎癥反應(yīng)和各種腦損傷中也起重要作用[5-6]。小膠質(zhì)細(xì)胞可調(diào)節(jié)突觸可塑性,調(diào)節(jié)神經(jīng)的發(fā)育和穩(wěn)定,促進(jìn)神經(jīng)功能修復(fù),協(xié)調(diào)突觸形成和最終促進(jìn)記憶形成[7-9]。小膠質(zhì)細(xì)胞和突觸上的神經(jīng)元之間存在著密切的關(guān)系,通過(guò)釋放細(xì)胞因子和生長(zhǎng)因子來(lái)調(diào)節(jié)突觸功能和結(jié)構(gòu)可塑性,如突觸的修剪、突觸形成和分泌促大腦成熟的因子,如胰島素樣生長(zhǎng)因子促進(jìn)神經(jīng)發(fā)生參與學(xué)習(xí)和記憶的突觸重塑。小膠質(zhì)細(xì)胞通過(guò)影響長(zhǎng)時(shí)程增強(qiáng)(long-term potentiation,LTP)和長(zhǎng)時(shí)程抑制(long-term depression,LTD)過(guò)程,參與神經(jīng)元活動(dòng)和突觸可塑性的維持[10]。腦缺血過(guò)程中,小膠質(zhì)細(xì)胞的過(guò)度活化和增生,干預(yù)突觸可塑性和神經(jīng)遞質(zhì)的傳達(dá),釋放神經(jīng)毒性物質(zhì)損傷神經(jīng)細(xì)胞[7]。小膠質(zhì)細(xì)胞參與神經(jīng)環(huán)路的重建通過(guò)影響突觸的數(shù)量、活動(dòng)和細(xì)胞的遷移實(shí)現(xiàn),以此影響缺血性卒中的預(yù)后[5,9-10]。
小膠質(zhì)細(xì)胞靜息狀態(tài)下,分泌GDNF、BDNF、PDNF等營(yíng)養(yǎng)因子支持和營(yíng)養(yǎng)神經(jīng)元[11]。大腦發(fā)育和成熟階段,小膠質(zhì)細(xì)胞通過(guò)突觸修剪、釋放特定細(xì)胞因子影響突觸結(jié)構(gòu)和功能可塑性,維持機(jī)體的認(rèn)知和學(xué)習(xí)記憶功能[12-13]。腦缺血后,小膠質(zhì)細(xì)胞分化為促免疫反應(yīng)M1型和抗免疫反應(yīng)的M2型,腦缺血急性期M1型小膠質(zhì)細(xì)胞主要標(biāo)志為CD11b、MCHⅡ、iNOS、IL-1β、TNF-α,激活NF-B,產(chǎn)生大量的炎癥因子,加速細(xì)胞凋亡,加重組織損傷[14]。M2型小膠質(zhì)細(xì)胞在病理?xiàng)l件下通過(guò)分泌IL-10、IL-13、IL-14抑制內(nèi)環(huán)境免疫炎癥,分泌促進(jìn)神經(jīng)細(xì)胞修復(fù)和再生的營(yíng)養(yǎng)因子BDNF、TGF-β、IGF-1發(fā)揮神經(jīng)保護(hù)作用[15]。病理狀態(tài)下,小膠質(zhì)細(xì)胞活化后包繞在受損神經(jīng)元四周,清除抑制性突觸,進(jìn)行突觸剝離促進(jìn)突觸重塑。通過(guò)小鼠腹腔注射脂多糖后1 d、1周、2周后發(fā)現(xiàn),活化的小膠質(zhì)細(xì)胞取代神經(jīng)元胞體上的抑制性突觸,注射生理鹽水的小鼠無(wú)此表現(xiàn)[16]。小膠質(zhì)細(xì)胞活化后,通過(guò)突觸剝離保護(hù)中樞神經(jīng)系統(tǒng),通過(guò)分泌胰島素樣生長(zhǎng)因子1促進(jìn)受損后的神經(jīng)發(fā)生[17]。
研究發(fā)現(xiàn)[18],抑制小膠質(zhì)細(xì)胞的過(guò)度活化和抑制細(xì)胞因子等的釋放可減輕中樞系統(tǒng)的損傷,體外實(shí)驗(yàn)發(fā)現(xiàn)丙泊酚抑制多種細(xì)胞毒性因子的表達(dá),防止細(xì)胞骨架蛋白的結(jié)構(gòu)變化,并通過(guò)腺苷A2b受體抑制小膠質(zhì)細(xì)胞遷移。體內(nèi)實(shí)驗(yàn)結(jié)果表明,丙泊酚通過(guò)A2b受體抑制小膠質(zhì)細(xì)胞的異常增殖,并降低白細(xì)胞介素IL-6、IL-1β、TNF-a和細(xì)胞毒性因子一氧化氮的表達(dá)水平。
2.2 星形膠質(zhì)細(xì)胞對(duì)突觸可塑性的調(diào)控 星形膠質(zhì)細(xì)胞(astrocyte)是神經(jīng)元的支持細(xì)胞,它的突起與緊密相連的突觸前膜、突觸后膜構(gòu)成三聯(lián)體突觸[19]。星型膠質(zhì)細(xì)胞通過(guò)調(diào)節(jié)pH值、離子和水平衡、神經(jīng)遞質(zhì)和突觸可塑性、腦血流來(lái)維持中樞神經(jīng)系統(tǒng)的穩(wěn)態(tài),是重要的免疫細(xì)胞[20]。機(jī)體損傷后,星形膠質(zhì)細(xì)胞的基因表達(dá)、形態(tài)會(huì)發(fā)生劇烈變化,兩周內(nèi),星形膠質(zhì)細(xì)胞變得肥大,形成致密的疤痕保護(hù)完整的神經(jīng)網(wǎng)絡(luò)免受炎癥和損傷,通過(guò)物理接觸突觸結(jié)構(gòu),分泌大量的基于黏附的分子信號(hào)指導(dǎo)突觸發(fā)育和功能形成、促進(jìn)神經(jīng)元的突觸連接,參與缺血后的神經(jīng)康復(fù)影響突觸連接與重建[21-22]。缺血性損傷激活星形膠質(zhì)細(xì)胞半通道,導(dǎo)致Ca2+超載、組織興奮毒性、炎癥和不可逆的腦損傷。Cx43(connexin 43)是星形膠質(zhì)細(xì)胞的一個(gè)主要成分,Cx43缺乏損害長(zhǎng)時(shí)程突觸可塑性,表明Cx43在突觸可塑性中起重要作用[23-25]。
星形膠質(zhì)細(xì)胞分泌細(xì)胞因子調(diào)節(jié)突觸,IL-33是丘腦和脊髓突觸發(fā)育所必需的。IL-33作為負(fù)反饋控制信號(hào)調(diào)節(jié)海馬內(nèi)穩(wěn)態(tài)突觸可塑性,調(diào)節(jié)脊髓和丘腦的突觸發(fā)育,介導(dǎo)成年海馬CA1區(qū)突觸可塑性的動(dòng)態(tài)平衡[19,26]。IL-33通過(guò)激活神經(jīng)元IL-33受體復(fù)合物和支架蛋白PSD-95的突觸募集,刺激興奮性突觸和神經(jīng)傳遞的增加。在成年的C57小鼠中,給予IL-33 200 ng體內(nèi)注射連續(xù)4 h,發(fā)現(xiàn)突觸中的PSD-95水平提高;而敲除CA1區(qū)星形膠質(zhì)細(xì)胞中的IL33可減少興奮性突觸的數(shù)量,阻斷體內(nèi)IL-33及其受體信號(hào),則會(huì)抑制CA1區(qū)錐體神經(jīng)元的穩(wěn)態(tài)突觸可塑性,從而損害小鼠空間記憶的形成[23]。
缺血性腦卒中誘導(dǎo)反應(yīng)性星形膠質(zhì)細(xì)胞的兩種不同極化狀態(tài),神經(jīng)毒性A1型和神經(jīng)保護(hù)性A2型[27]。激活的小膠質(zhì)細(xì)胞分泌的IL-1a,TNF-a和C1q誘導(dǎo)的A1型星型膠質(zhì)細(xì)胞直接釋放神經(jīng)毒性補(bǔ)體C3d,導(dǎo)致神經(jīng)元死亡,而抑制A1型星形膠質(zhì)細(xì)胞活化具有顯著的神經(jīng)保護(hù)作用[28],研究表明調(diào)節(jié)星形膠質(zhì)細(xì)胞活化對(duì)于缺血性卒中治療具有重要意義。缺血性卒中發(fā)生后,星形膠質(zhì)細(xì)胞被過(guò)度激活,釋放出高水平的炎癥因子,例如IL-1、IL-6和TNF-a,從而導(dǎo)致嚴(yán)重的炎癥反應(yīng)并加重腦損傷[29-30]。在缺血性卒中期間抑制星形膠質(zhì)細(xì)胞活化可以顯著緩解腦損傷[31]。星形膠質(zhì)細(xì)胞在缺血性卒中后的存活潛力可能影響缺血半暗帶神經(jīng)元存活率,對(duì)于卒中的預(yù)后至關(guān)重要。研究通過(guò)表達(dá)HSP72和歧化酶2可以增加缺血應(yīng)激下的星形膠質(zhì)細(xì)胞的抵抗力,抗生素頭孢曲松可以上調(diào)星形膠質(zhì)細(xì)胞中γ-氨基丁酸轉(zhuǎn)運(yùn)蛋白-1(gamma-aminobutyric acid transporter-1,GLT-1)的表達(dá),保護(hù)神經(jīng)元[32]。骨髓間充質(zhì)干細(xì)胞具有分化成神經(jīng)元細(xì)胞的能力,間充質(zhì)干細(xì)胞可以通過(guò)分泌抗炎因子或通過(guò)降低IL-1β,IL-6和TNF-a水平來(lái)影響損傷部位的環(huán)境,通過(guò)誘導(dǎo)分泌抗凋亡分子和營(yíng)養(yǎng)因子,促進(jìn)血管生成、調(diào)節(jié)免疫、促進(jìn)調(diào)節(jié)性T細(xì)胞功能、減少I(mǎi)L-23/IL-17表達(dá)及增加軸突生長(zhǎng)[33]。研究表明,骨髓來(lái)源的間充質(zhì)干細(xì)胞衍生的miR-138-5p通過(guò)外泌體傳遞到星形膠質(zhì)細(xì)胞,減輕MCAO小鼠神經(jīng)元損傷[34]。
2.3 少突膠質(zhì)前體細(xì)胞對(duì)突觸可塑性的調(diào)控 少突膠質(zhì)前體細(xì)胞(oligodendrocyte progenitor cells,OPCs)源自大腦和脊髓的腦室?guī)В╲entricle zone,VZ)。OPCs表達(dá)硫酸軟骨素蛋白多糖NG2被稱“NG2細(xì)胞”,OPCs有雙極突起也被稱為“多樹(shù)突狀細(xì)胞”[35]。主要是用髓鞘包裹神經(jīng),確保適當(dāng)?shù)臎_動(dòng)傳導(dǎo)。中樞神經(jīng)系統(tǒng)中表達(dá)NG2的膠質(zhì)細(xì)胞是高度反應(yīng)的細(xì)胞,對(duì)任何中樞神經(jīng)系統(tǒng)的損傷都能迅速做出反應(yīng),并能再生少突膠質(zhì)細(xì)胞和神經(jīng)元,與神經(jīng)元接觸形成突觸[36]。OPCs分布在大腦的灰質(zhì)和白質(zhì)區(qū)域,從無(wú)髓軸突接收谷氨酸能突觸輸入,少突膠質(zhì)細(xì)胞譜系細(xì)胞表達(dá)谷氨酸受體,使其能監(jiān)測(cè)和響應(yīng)神經(jīng)元活性的變化[37]。OPCs表達(dá)的受體和離子通道在生理和病理?xiàng)l件下都對(duì)神經(jīng)元突觸的快速信號(hào)傳遞、神經(jīng)元活動(dòng)的調(diào)節(jié)具有重要意義[38]。大鼠局灶性腦缺血后,OPCs在腦梗死區(qū)核心區(qū)明顯減少,而在缺血半暗帶區(qū)則顯著增加[39]。
神經(jīng)元在LTP中調(diào)節(jié)突觸信號(hào)轉(zhuǎn)導(dǎo)強(qiáng)度的能力是突觸可塑性的標(biāo)志之一,研究發(fā)現(xiàn)NG2細(xì)胞可以表現(xiàn)出LTP影響突觸可塑性[40]。LTP在神經(jīng)元NG2突觸的誘導(dǎo)和表達(dá)與NG2細(xì)胞上的鈣離子通透性和AMPA受體有關(guān)。海馬CA1區(qū)的NG2細(xì)胞接受來(lái)自神經(jīng)元的直接谷氨酸能和γ-氨基丁酸能突觸輸入,細(xì)胞內(nèi)鈣升高對(duì)突觸的LTP誘導(dǎo)至關(guān)重要,含GluR1的AMPAR在NMDAR依賴的LTP表達(dá)中起重要作用[41]。
2.4 少突膠質(zhì)細(xì)胞對(duì)突觸可塑性的調(diào)控 少突膠質(zhì)細(xì)胞(oligodendrocyte,OLs)是中樞神經(jīng)系統(tǒng)的髓鞘細(xì)胞[20],為軸突提供營(yíng)養(yǎng)支持。少突膠質(zhì)細(xì)胞的主要作用是形成髓鞘,隔絕軸,并通過(guò)跳躍傳導(dǎo)促進(jìn)動(dòng)作電位的傳播,促進(jìn)神經(jīng)元間信息交流。OLs與無(wú)髓鞘軸突形成突觸,并在局部產(chǎn)生更多的OLs和髓鞘響應(yīng)軸突的電活動(dòng)[35]。
少突膠質(zhì)細(xì)胞內(nèi)的軸突生長(zhǎng)抑制因子A(Neurite outgrowth inhibitor -A,Nogo-A)、髓磷脂相關(guān)糖蛋白(myelin-associated glycoprotein,MAG)、少突膠質(zhì)細(xì)胞髓磷脂糖蛋白(oligodendrocyte-myelin glycoprotein,OMGP),廣泛表達(dá)于少突膠質(zhì)細(xì)胞,除了在限制神經(jīng)元生長(zhǎng)和發(fā)育方面發(fā)揮作用外,還具有抑制LTP類型的活動(dòng)驅(qū)動(dòng)的突觸可塑性的能力。腦缺血損傷會(huì)引起一系列功能性突觸改變,研究表明髓鞘抑制劑的拮抗作用不僅可以降低成年中樞神經(jīng)系統(tǒng)組織的生長(zhǎng)抑制環(huán)境,同時(shí)還可以降低神經(jīng)元網(wǎng)絡(luò)的抑制張力,神經(jīng)元活動(dòng)和突觸傳遞的增加可能使受損神經(jīng)網(wǎng)絡(luò)的活動(dòng)驅(qū)動(dòng)的重組和細(xì)化成為可能,從而改善腦缺血損傷后的結(jié)果[42]。
3 結(jié) 論
突觸功能在神經(jīng)疾病中受到損害,突觸可塑性的作用機(jī)制在腦缺血發(fā)生后生理病理狀態(tài)下存在許多相似之處,表現(xiàn)形式主要集中在LTP和LTD。iLTP是腦缺血后LTP的主要表現(xiàn)形式,興奮性谷氨酸受體對(duì)LTP的影響主要表現(xiàn)在與iLTP的作用機(jī)制間的復(fù)雜關(guān)系。更多證據(jù)表明,神經(jīng)膠質(zhì)細(xì)胞不僅給神經(jīng)元提供必要的營(yíng)養(yǎng)和支持,而且對(duì)突觸的產(chǎn)生,神經(jīng)元的增殖、分化、遷移以及神經(jīng)環(huán)路重建都有重要作用。神經(jīng)膠質(zhì)細(xì)胞參與了多種中樞神經(jīng)系統(tǒng)疾病的發(fā)病過(guò)程,神經(jīng)膠質(zhì)細(xì)胞營(yíng)養(yǎng)功能喪失會(huì)導(dǎo)致神經(jīng)元和神經(jīng)細(xì)胞的損傷,從而加重病理。神經(jīng)膠質(zhì)細(xì)胞對(duì)大腦的再生能力非常重要,有助于損傷后神經(jīng)元的恢復(fù)與再生。因此進(jìn)一步研究腦缺血后突觸對(duì)神經(jīng)元的影響方式,膠質(zhì)細(xì)胞與突觸可塑性的作用,可能對(duì)受突觸可塑性影響的相關(guān)疾病有重要的科學(xué)意義,為疾病的發(fā)生發(fā)展以及診療進(jìn)展提供理論支持。
[參 考 文 獻(xiàn)]
[1]Powers WJ,Rabinstein AA,Ackerson T,等.2019年急性缺血性卒中患者早期管理指南:針對(duì)2018年急性缺血性卒中早期管理指南的更新[J].國(guó)際腦血管病雜志,2020,28(1):1-43.
[2]Nie JJ,Yang XS.Modulation of synaptic plasticity by exercise training as a basis for ischemic stroke rehabilitation[J].Cell Mol Neurobiol,2017,37(1):5-16.
[3]Hofmeijer J,Van Putten MJAM.Ischemic cerebral damage:an appraisal of synaptic failure[J].Stroke,2012,43(2):607-615.
[4]Kovalenko T,Osadchenko I,Nikonenko A,et al.Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses[J].Hippocampus,2006,16(10):814-825.
[5]曾秋婷,張慧,李仁奇,等.遠(yuǎn)隔缺血預(yù)處理對(duì)老年小鼠神經(jīng)認(rèn)知功能及小膠質(zhì)細(xì)胞和突觸后致密蛋白95的影響[J].臨床麻醉學(xué)雜志,2020,36(8):799-803.
[6]Zhu Y,Yu JB,Gong JB,et al.PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia[J].Aging (Albany NY),2021,13(3):3405-3427.
[7]鄧杜萍,謝曉龍,李凌鑫.小膠質(zhì)細(xì)胞對(duì)腦缺血的影響[J].重慶醫(yī)科大學(xué)學(xué)報(bào),2020,45(1):17-20.
[8]米茹麟,薛國(guó)芳.小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥在缺血性腦卒中的雙相作用[J].腦與神經(jīng)疾病雜志,2020,28(9):591-594.
[9]Graykowski D,Cudaback E.Don't know what you got till it's gone:microglial depletion and neurodegeneration[J].Neural Regen Res,2021,16(10):1921-1927.
[10]Piccioni G,Mango D,Saidi A,et al.Targeting microglia-synapse interactions in Alzheimers disease[J].Int J Mol Sci,2021,22(5):2342.
[11]唐強(qiáng),黃慧琳,朱路文,等.缺血性腦卒中與免疫炎性因子關(guān)系的研究進(jìn)展[J].康復(fù)學(xué)報(bào),2020,30(1):79-84.
[12]Schafer DP,Stevens B.Phagocytic glial cells:sculpting synaptic circuits in the developing nervous system[J].Curr Opin Neurobiol,2013,23(6):1034-1040.
[13]孫浩,陳明明,廖紅.小膠質(zhì)細(xì)胞在突觸可塑性中的研究進(jìn)展[J].臨床合理用藥雜志,2017,10(25):176-178.
[14]Stirling DP,Cummins K,Mishra M,et al.Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury[J].Brain,2014,137(Pt 3):707-723.
[15]Chu HX,Broughton BRS,Kim HA,et al.Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization[J].Stroke,2015,46(7):1929-1937.
[16]Chen ZH,Jalabi W,Hu WW,et al.Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain[J].Nat Commun,2014,5(7):4486.
[17]Chen ZH,Trapp BD.Microglia and neuroprotection[J].J Neurochem,2016,136(Suppl 1):10-17.
[18]Yu H,Wang XZ,Kang FX,et al.Propofol attenuates inflammatory damage on neurons following cerebral infarction by inhibiting excessive activation of microglia[J].Int J Mol Med,2019,43(1):452-460.
[19]Vainchtein ID,Chin G,Cho FS,et al.Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development[J].Science,2018,359(6381):1269-1273.
[20]Nutma E,Van Gent D,Amor S,et al.Astrocyte and oligodendrocyte cross-talk in the central nervous system[J].Cells,2020,9(3):600.
[21]Yang KL,Zhou Y,Zhou LQ,et al.Synaptic plasticity after focal cerebral ischemia was attenuated by gap26 but enhanced by GAP-134[J].Front Neurol,2020,11(8):888.
[22]Tan CX,Burrus Lane CJ,Eroglu C.Role of astrocytes in synapse formation and maturation[J].Curr Top Dev Biol,2021,142(1):371-407.
[23]Wang Y,F(xiàn)u WY,Cheung K,et al.Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus[J].Proc Natl Acad Sci U S A,2021,118(1):e2020810118.
[24]Gleichman AJ,Carmichael ST.Astrocytic therapies for neuronal repair in stroke[J].Neurosci Lett,2014,565(4):47-52.
[25]Ma D,F(xiàn)eng LS,Cheng YY,et al.Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia[J].J Neuroinflammation,2018,15(1):198.
[26]Blanco-Suarez E,Liu TF,Kopelevich A,et al.Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors[J].Neuron,2018,100(5):1116-1132.e13.
[27]Liddelow SA,Barres BA.Reactive astrocytes:production,function,and therapeutic potential[J].Immunity,2017,46(6):957-967.
[28]Liddelow SA,Guttenplan KA,Clarke LE,et al.Neurotoxic reactive astrocytes are induced by activated microglia[J].Nature,2017,541(7638):481-487.
[29]Chamorro á,Dirnagl U,Urra X,et al.Neuroprotection in acute stroke:targeting excitotoxicity, oxidative and nitrosative stress,and inflammation[J].Lancet Neurol,2016,15(8):869-881.
[30]Shi KB,Tian DC,Li ZG,et al.Global brain inflammation in stroke[J].Lancet Neurol,2019,18(11):1058-1066.
[31]Wang Q,Tang XN,Yenari MA.The inflammatory response in stroke[J].J Neuroimmunol,2007,184(1-2):53-68.
[32]Paternò R,Chillon JM.Potentially common therapeutic targets for multiple sclerosis and ischemic stroke[J].Front Physiol,2018,9(7):855.
[33]Suda S,Nito C,Yokobori S,et al.Recent advances in cell-based therapies for ischemic stroke[J].Int J Mol Sci,2020,21(18):6718.
[34]Deng YM,Chen DD,Gao F,et al.Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2[J].J Biol Eng,2019,13(8):71.
[35]Bergles DE,Richardson WD.Oligodendrocyte development and plasticity[J].Cold Spring Harb Perspect Biol,2015,8(2):a020453.
[36]Butt AM.Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology[J].Glia,2006,54(7):666-675.
[37]Li F,Liu WC,Wang Q,et al.NG2-glia cell proliferation and differentiation by Glial Growth Factor 2 (GGF2),a strategy to promote functional recovery after ischemic stroke[J].Biochem Pharmacol,2020,171(1):113720.
[38]Song FE,Huang JL,Lin SH,et al.Roles of NG2-glia in ischemic stroke[J].CNS Neurosci Ther,2017,23(7):547-553.
[39]Tanaka K,Nogawa S,Ito D,et al.Activation of NG2-positive oligodendrocyte progenitor cells during post-ischemic reperfusion in the rat brain[J].Neuroreport,2001,12(10):2169-2174.
[40]Sakry D,Karram K,Trotter J.Synapses between NG2 glia and neurons[J].J Anat,2011,219(1):2-7.
[41]Ge WP,Yang XJ,Zhang ZJ,et al.Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors[J].Science,2006,312(5779):1533-1537.
[42]Raiker SJ,Lee H,Baldwin KT,et al.Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity[J].J Neurosci,2010,30(37):12432-12445.
(收稿2022-03-02 修回2022-06-01)