閆少輝 顧斌賢 宋震龍 施萬林
摘要: 鑒于低維混沌的圖像加密算法存在密鑰空間小、安全性不高等問題,通過引入光滑三次型憶阻器,構(gòu)建一個改進的四維憶阻超混沌系統(tǒng)。對改進系統(tǒng)的相圖、耗散性、平衡點穩(wěn)定性、Lyapunov指數(shù)譜和分岔等進行數(shù)值仿真與分析,表明該系統(tǒng)具有豐富的動力學行為與混沌特性。并提出一種通過哈希算法進行混沌序列選擇的加密算法。經(jīng)過直方圖、密鑰空間分析、魯棒性分析等實驗仿真,表明該圖像加密算法密鑰空間較大,可以有效抵御暴力窮舉等惡意攻擊,具有較高的安全性。
關(guān)鍵詞: 憶阻器;超混沌系統(tǒng);動力學特性;圖像加密;哈希算法
中圖分類號: TP309.7;O415.5文獻標識碼: A
收稿日期: 2021-09-15;修回日期:2021-12-24
基金項目: 甘肅省自然科學基金(20JR5RA531)
第一作者: 閆少輝(1980-),女,甘肅鎮(zhèn)原人,博士,副教授,主要研究方向為非線性電路及應(yīng)用。
Image Encryption Algorithm Based on a Four-dimensional Memristor Hyperchaotic System
YAN Shaohui, GU Binxiana, SONG Zhenlonga, SHI Wanlina
(a. College of Physics and Electronic Engineering;
b. Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, Northwest Normal University, Lanzhou 730070, China)
Abstract:The image encryption algorithm based on low dimensional chaotic system has the problems of the key space small and the security not high. In this paper, an improved four-dimensional Lorenz dissipative hyperchaotic system is constructed by introducing a cubic smooth memristor model. The dynamic characteristics of the improved system such as phase portraits, dissipation, equilibrium stability, Lyapunov exponent, and bifurcation are investigated, it is proved that the system has good dynamic characteristics and chaotic attractor. Therefore, a chaotic sequence encryption algorithm based on Hash algorithm is proposed. By histogram, key space analysis,robust analysis and other verifications show that the image encryption algorithm has higher key space and can resist brute-force attack.
Key words: memristor; hyperchaotic system; dynamic characteristic; image encryption; hash algorithm
0 引言
1971年,蔡少棠教授基于電路對稱性理論推導出了憶阻器的存在[12]。憶阻器作為第四種基本電路元件,因具有無源以及電荷記憶特性,成為實現(xiàn)存儲計算、仿生智能的關(guān)鍵器件,從而引起許多研究團隊的興趣[36]。同時它還具有非線性輸入輸出特性,在混沌電路中能夠產(chǎn)生復(fù)雜的動力學行為。
1989年,Matthews R首次通過Logistic映射產(chǎn)生大量的偽隨機數(shù)據(jù)[7]。從此,混沌系統(tǒng)開始與加密系統(tǒng)結(jié)合起來,開創(chuàng)了混沌系統(tǒng)產(chǎn)生偽隨機數(shù)的新方法,Logistic混沌系統(tǒng)、Lorenz混沌系統(tǒng)逐漸在圖像加密中得到應(yīng)用[8]。
研究者們基于典型的Lorenz混沌系統(tǒng),提出多種新型混沌系統(tǒng),如經(jīng)典的Chen系統(tǒng)、Lü系統(tǒng)等[911]都被應(yīng)用到圖像加密中。文獻[12]、[13]利用混沌的偽隨機特性,提出的圖像加密算法結(jié)構(gòu)復(fù)雜,但是密鑰空間太小,并且已經(jīng)有很多對低維混沌加密方案的破解方法[14]。相較于低維混沌系統(tǒng),高維混沌系統(tǒng)具有更復(fù)雜的動力學行為以及更好的隨機性。具有2個或2個以上大于零的Lyapunov指數(shù)的超混沌系統(tǒng)越來越受到人們的關(guān)注[1516]。本文通過替換文獻[17]中系統(tǒng)的憶阻器模型,構(gòu)建了一個憶阻超混沌系統(tǒng)。通過哈希算法生成系統(tǒng)初始值、迭代倍數(shù)和混沌序列的隨機選擇,使得密碼系統(tǒng)可有效抵抗選擇明文攻擊和已知明文攻擊。
5 結(jié)論
本文通過引用光滑三次型憶阻器構(gòu)建了一個改進的四維超混沌系統(tǒng),并對系統(tǒng)的相圖、Lyapunov指數(shù)和分岔等動力學進行分析,結(jié)果表明該系統(tǒng)具有超混沌特性。然后將此超混沌系統(tǒng)應(yīng)用在新型圖像加密系統(tǒng)上,加密前通過哈希算法產(chǎn)生混沌系統(tǒng)的初始值、迭代次數(shù)和置亂倍數(shù),在混沌發(fā)生器產(chǎn)生偽隨機序列后進行序列的選擇。最后采用選取的混沌序列進行置亂-對角翻轉(zhuǎn)-擴散-循環(huán)移位-上下翻轉(zhuǎn)操作得到加密圖像。最后,通過直方圖分析、信息熵分析、魯棒性分析等驗證,表明該圖像加密算法具有密鑰空間較大,加密后相關(guān)性較小、抗干擾能力強、信息熵接近理論值,加密性能好等特點,可廣泛應(yīng)用于圖像加密領(lǐng)域。
參考文獻:
[1]CHUA L O. Memristor the missing circuit element [J]. IEEE Trans Circuit Theory,1971,18(5):507-519.
[2]CHUA L O, KANG S M. Memristive devices and systems[J]. Proc IEEE, 1976, 64(2):209-223.
[3]ZHANG Y, WANG X, FRIEDMAN E G. Memristor-based circuit design for multilayer neural networks[J]. IEEE Transactions on Circuits and Systems Part 1 Regular Papers, 2018, 65(2):677-686.
[4]GAO C, LI T, CAO X, et al. Identification circuit based on memristor[J]. Journal of Physics Conference Series, 2021, 1827(1):012007.
[5]SHCHANIKOV S, ZUEV A, BORDANOV I, et al. Design and simulation of memristor-based artificial neural network for bidirectional adaptive neural interface[DB/OL].[2021-06-01].? https://arxiv.org/abs/2004.00154.
[6]LUO L, HU X, DUAN S, et al. Multiple memristor series-parallel connections with use in synaptic circuit design[J]. Iet Circuits Devices & Systems, 2017, 11(2):123-134.
[7]MATTHEWS R. On the derivation of a "Chaotic" encrypt- ion algorithm[J]. Cryptologia, 1989, 13(1):29-41.
[8]YANG S. Dynamical analysis and image encryption application of a novel memristive hyperchaotic system[J]. Optics & Laser Technology, 2021, 133(1):106553.
[9]汪彥, 涂立. 基于改進Lorenz混沌系統(tǒng)的圖像加密新算法[J]. 中南大學學報(自然科學版),2017,48(10): 2678-2685.
WANG Y, TU L. A new image encryption algorithm based on improved Lorenz chaotic system[J]. Journal of Central South University (Science and Technology), 2017, 48(10): 2678- 2685.
[10] 謝國波, 姜先值. 二維離散分數(shù)階Fourier變換的雙混沌圖像加密算法[J]. 計算機工程與應(yīng)用,2018, 54(3):40-45.
XIE G B, JIANG X Z. Double chaotic image encryption algorithm based on two dimensional discrete fractional fourier transform[J]. Computer Engineering and Applications, 2018, 54(3):40-45.
[11] 朱淑芹, 李俊青. 一種混沌圖像加密算法的選擇明文攻擊和改進[J]. 計算機工程與應(yīng)用,2017,53(24):113-121.
ZHU S Q, LI G Q. Chosen plain text attack and improvements of chaos image encryption algorithm[J]. Computer Engineering and Applications, 2017, 53(24): 113-121.
[12] 付正, 李嶸. 基于新型切換Lorenz混沌系統(tǒng)的圖像加密算法研究[J]. 計算機與數(shù)字工程,2020, 48(1):170-173.
FU Z, LI R. Application of a switched lorenz chaotic system in image encryption[J]. Computer & Digital Engineering, 2020, 48 (1):170-173.
[13] 張永紅, 張博. 基于Logistic混沌系統(tǒng)的圖像加密算法研究[J]. 計算機應(yīng)用研究,2015, 32(6):1770-1773.
ZHANG Y H, ZHANG B. Algorithm of image encrypting based on Logistic chaotic system[J]. Application Research of Computers, 2015, 32 (6): 1770 -1773.
[14] 王靜, 蔣國平. 一種超混沌圖像加密算法的安全性分析及其改進[J]. 物理學報,2011,66(6):89-99.
WANG J, JIANG G P. Cryptanalysis of a hyper-chaotic image encryption algorithm and its improved version[J]. Acta Phys Sin,2011,66(6):89-99.
[15] 李偉岸, 熊祥光, 夏道勛. 基于超混沌和Slant變換的魯棒水印算法[J]. 計算機工程與科學,2020, 42(5):55-61.
LI W A, XIONG X G, XIA D X. A robust watermarking algorithm based on hyper-chaotic and Slant transform[J]. Computer Engineering & Science,2020,42(5):55-61.
[16] 程東升, 譚旭, 許志良,等. 結(jié)合四維超混沌系統(tǒng)和位分解的圖像加密算法研究[J]. 電子科技大學學報, 2018, 47(6):108-114.
CHENG D S, TAN X, XU Z L, et al. Image encryption algorithm research by combining four dimensional hyper-chaotic system and bit decomposition [J]. Journal of University of Electionic Science and Technology of China, 2018, 47(6):108-114.
[17] 阮靜雅, 孫克輝, 牟俊. 基于憶阻器反饋的Lorenz超混沌系統(tǒng)及其電路實現(xiàn)[J]. 物理學報, 2016, 65(19): 190502.
RUAN J Y, SUN K H, MOU J. Memeristor-based Lorenz hyper-chaotic system and its circuit implementation [J]. Acta Phys Sin, 2016,65(19): 190502.
[18] 蔡國梁, 黃娟娟. 超混沌Chen系統(tǒng)和超混沌Rossler系統(tǒng)的異結(jié)構(gòu)同步[J].物理學報,2006, 55(8):3997-4004.
CAI G L, HUANG J J. Synchronization for hyperchaotic Chen system and hyperchaotic Rossler system with different structure [J]. Acta Phys Sin, 2006, 55(8):3997-4004.
[19] YONG Z. The unified image encryption algorithm based on chaos and cubic S-Box[J]. Information Sciences, 2018, 450:361-377.
[20] ALGREDO B I, FEREGRINO U C, CUMPLIDO R, et al. FPGA-based implementation alternatives for the inner loop of the secure hash algorithm SHA-256[J]. Microprocessors & Microsystems, 2013, 37(6/7):750-757.
[21] SHAKIBA A randomized CPA-secure asymmetric color image encryption scheme based on the Chebyshev mappings and one-time pad [J]. Journal of King Saud University-Computer and Information Sciences, 2021, 33(5):562-571.
[22] CHAI X L, FU X L, GAN Z H, et al. A color image cryptosystem based on dynamic DNA encryption and chaos[J]. Signal Processing, 2019, 155:44-62.
(責任編輯 耿金花)