国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類二階非齊次邊值問(wèn)題正解的存在性與多解性

2023-01-17 02:41:24石軒榮
關(guān)鍵詞:解性邊值問(wèn)題邊界條件

石軒榮

一類二階非齊次邊值問(wèn)題正解的存在性與多解性

石軒榮

(西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅 蘭州 730070)

正解;多解性;上下解方法;拓?fù)涠壤碚?/p>

0 引言

Neumann邊值問(wèn)題在數(shù)學(xué)物理中有重要應(yīng)用,如平衡梁?jiǎn)栴}、流體流向問(wèn)題、熱傳導(dǎo)問(wèn)題等,因此備受關(guān)注,并在特定條件下驗(yàn)證了其解的存在性[1-7]。JIANG等[8]研究了二階Neumann邊值問(wèn)題:

SUN等[9]研究了二階Neumann邊值問(wèn)題

值得注意的是,文獻(xiàn)[8-9]研究了齊次邊界條件下二階Neumann邊值問(wèn)題正解的存在性。涉及非齊次邊界條件下二階微分方程邊值問(wèn)題的研究較少,當(dāng)二階Neumann邊值問(wèn)題的邊界條件為非齊次時(shí)是否存在正解?本文將給出一個(gè)肯定的回答。

1 預(yù)備知識(shí)

有唯一解:

其中,

證明由文獻(xiàn)[8-9],易得

定義

有唯一解:

證明由引理1易證。

2 主要結(jié)果及其證明

假設(shè):

考察問(wèn)題

正解的存在性與多解性,則有以下主要結(jié)果。

證明考察輔助問(wèn)題:

定義

定理2的證明主要分為4步。

的解,易得

的正解。

的唯一解。

可得

定義

所以

此外,由于式(5)的所有解有界,所以

[1] TARIBOON J, SITTHIWIRATTHAM T. Positive solutions of a nonlinear three-point integral boundary value problem[J]. Boundary Value Problems, 2010, 24(5): 1-11. DOI:10.1155/2010/519210

[2] CHU J F, SUN Y G, CHEN H. Positive solutions of Neumann problems with singularities[J]. Journal of Mathematical Analysis and Applications, 2008, 337(2): 1267-1272. DOI:10.1016/j.jmaa.2007.04.070

[3] WANG H Z, LI Y. Neumann boundary value problems for second-order ordinary differential equations across resonance[J]. SIAM Journal on Control and Optimization,1995, 33(5): 1312-1325. DOI:10.1137/S036301299324532X

[4] JIANG D Q, YANG Y, CHU J F, et al. The monotone method for Neumann functional differential equations with upper and lower solutions in the reverse order[J]. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(10): 2815-2828. DOI:10. 1016/j.na.2006.09.042

[5] MA R Y, GAO C H, CHEN R P. Existence of positive solutions of nonlinear second-order periodic boundary value problems[J]. Boundary Value Problems, 2010, 2012: 1-18. DOI:10.1155/2010/626054

[6] WANG F, ZHANG F, WANG F L. The existence and multiplicity of positive solutions for second-order periodic boundary value problem[J]. Journal of Function Spaces and Applications, 2012, 2012: 1-13. DOI:10.1155/2012/725646

[7] ZHANG Z X, WANG J Y. On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations[J]. Journal of Mathematical Analysis and Applications, 2003, 281(1): 99-107. DOI:10.1016/S0022-247X(02)00538-3

[8] JIANG D Q, LIU H Z. Existence of positive solutions to second-order Neumann boundary value problem[J]. Journal of Mathematical Research and Exposition, 2000, 20(3): 360-364.

[9] SUN J P, LI W T. Multiple positive solutions to second-order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2003, 146(1): 187-194. DOI:10.1016/S0096-3003(02)00535-0

[10]MA R Y. Existence of positive radial solutions for elliptic systems[J]. Journal of Mathematical Analysis and Applications, 1996, 201(2): 375-386. DOI:10.1006/jmaa.1996.0261

[11]ERBE L H, WANG H Y. On the existence of positive solutions of ordinary differential equations[J]. Proceedings of the American Mathematical Society,1994, 120(3): 743-748. DOI:10.2307/2160465

[12]JIANG D Q, CHU J F, ZHANG M R. Multiplicity of positive periodic solutions to superlinear repulsive singular equations[J]. Journal of Differential Equations, 2005, 211(2): 282-302. DOI:10.1016/j.jde.2004.10.031

Existence and multiplicity of positive solutions for a class of second-order nonhomogeneous boundary value problems

SHI Xuanrong

(,,730070,)

positive solutions; multiplicity; upper and lower solutions; topological degree theory

O 175.8

A

1008?9497(2023)01?038?05

2022?01?08.

國(guó)家自然科學(xué)基金資助項(xiàng)目(12061064).

石軒榮(1998—),ORCID:https://orcid.org/0000-0002-7496-6348,男,碩士研究生,主要從事常微分方程與動(dòng)力系統(tǒng)研究,E-mail: SXR15209336785@163.com.

猜你喜歡
解性邊值問(wèn)題邊界條件
非線性n 階m 點(diǎn)邊值問(wèn)題正解的存在性
k-Hessian方程徑向解的存在性與多解性
一類帶有Stieltjes積分邊界條件的分?jǐn)?shù)階微分方程邊值問(wèn)題正解
帶有積分邊界條件的奇異攝動(dòng)邊值問(wèn)題的漸近解
R2上對(duì)偶Minkowski問(wèn)題的可解性
方程的可解性
帶Robin邊界條件的2維隨機(jī)Ginzburg-Landau方程的吸引子
非線性m點(diǎn)邊值問(wèn)題的多重正解
∑*-嵌入子群對(duì)有限群的可解性的影響
一類非線性向量微分方程無(wú)窮邊值問(wèn)題的奇攝動(dòng)
图木舒克市| 兴城市| 柞水县| 和平区| 九龙城区| 孝昌县| 敦化市| 康马县| 迁安市| 云和县| 中山市| 镇宁| 杭锦后旗| 寿光市| 随州市| 许昌县| 九龙坡区| 永新县| 江山市| 鹤山市| 吉水县| 中超| 墨竹工卡县| 门头沟区| 潼关县| 上林县| 东海县| 新巴尔虎右旗| 新绛县| 永平县| 泉州市| 科尔| 海南省| 玉门市| 安义县| 德保县| 皋兰县| 边坝县| 灌阳县| 吉林省| 勐海县|