国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Ta涂層對(duì)CVD單晶金剛石焊接強(qiáng)度的影響

2022-12-30 02:10:36毛雅梅黑鴻君高潔張孟王垚鄭可于盛旺
表面技術(shù) 2022年11期
關(guān)鍵詞:釬焊單晶金剛石

毛雅梅,黑鴻君,高潔,2,張孟,王垚,鄭可,于盛旺

Ta涂層對(duì)CVD單晶金剛石焊接強(qiáng)度的影響

毛雅梅1,黑鴻君1,高潔1,2,張孟1,王垚1,鄭可1,于盛旺1

(1.太原理工大學(xué) 材料科學(xué)與工程學(xué)院,太原 030024;2.電子科學(xué)技術(shù)大學(xué) 真空電子科學(xué)技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,成都 610054)

提高金剛石的可焊性,促進(jìn)金剛石與異質(zhì)合金的連接。采用雙輝等離子體表面合金化(DGPSA)技術(shù)在CVD單晶金剛石表面沉積Ta涂層,然后利用Ag–Cu–Ti(Ti的質(zhì)量分?jǐn)?shù)為2%)釬料合金將Ta涂層單晶金剛石與硬質(zhì)合金(WC–Co)在真空釬焊爐中進(jìn)行焊接。采用X射線衍射儀、掃描電子顯微鏡和能譜儀分析Ta涂層及焊后截面的物相組成、表面微觀形貌、截面微觀形貌、元素分布。使用萬能試驗(yàn)機(jī)對(duì)有Ta涂層和無Ta涂層的焊后樣品進(jìn)行剪切斷裂試驗(yàn),對(duì)焊接后樣品的界面結(jié)合強(qiáng)度進(jìn)行探究。在合金化溫度為850 ℃下,隨著沉積時(shí)間(5、15、30、60 min)的延長,Ta涂層的厚度從0.35 μm增至7.96 μm,晶粒由納米晶轉(zhuǎn)變?yōu)橹鶢罹В麄€(gè)涂層由沉積層Ⅰ和擴(kuò)散層Ⅱ組成,且在金剛石/Ta涂層界面處生成了2種力學(xué)性能良好的金屬型碳化物,即TaC和Ta2C。焊接接頭的剪切強(qiáng)度隨著Ta涂層沉積時(shí)間的延長,呈先增大后減小的趨勢(shì)。當(dāng)沉積時(shí)間為30 min時(shí),Ta涂層的厚度為3.47 μm,與WC–Co焊接后其剪切強(qiáng)度達(dá)到最大值(115.6 MPa),且大于無Ta涂層焊接樣品的剪切強(qiáng)度(75.6 MPa),證明Ta涂層對(duì)單晶金剛石的可焊性有明顯的促進(jìn)作用。

CVD單晶金剛石;雙輝等離子體表面合金化;Ta涂層;Ag–Cu–Ti釬料合金;真空釬焊;結(jié)合強(qiáng)度

采用化學(xué)氣相沉積(CVD)的單晶金剛石擁有優(yōu)異的物化性能,如高硬度、高導(dǎo)熱系數(shù)、超高彈性模量、低摩擦因數(shù)和熱膨脹系數(shù)等[1-2],它被廣泛應(yīng)用于機(jī)械加工、半導(dǎo)體器件、散熱等領(lǐng)域[3-5]。由于金剛石的表面能極高,不易被低熔點(diǎn)的金屬或合金所浸潤,其可焊性極差,這在一定程度上制約了其在上述領(lǐng)域的應(yīng)用[6],因此對(duì)金剛石進(jìn)行表面改性成為目前拓展金剛石應(yīng)用領(lǐng)域的研究方向,以提高其可焊性。

采用磁控濺射[7]、電鍍[8]、化學(xué)鍍[9]等表面處理方法所形成的改性層與基體間的結(jié)合力較弱。采用雙輝等離子體表面合金化(DGPSA)技術(shù)通過離子轟擊,在基體表面形成包含大量空位的晶體缺陷層,使基體與合金元素之間的溶解度增大,形成了合金擴(kuò)散層,降低了界面應(yīng)力,在基體表面制備出與其呈冶金結(jié)合且結(jié)合力高的表面改性層[10-11]。Gao等[12]利用該技術(shù)在多晶金剛石表面沉積了鎢(W)涂層,獲得了較高的界面結(jié)合強(qiáng)度。曹巖等[13]利用該技術(shù)在316L不銹鋼表面制備了均勻致密的鉭(Ta)合金層,結(jié)果表明,Ta涂層與基體之間形成了高強(qiáng)度結(jié)合界面,涂層剝落的臨界載荷為111 N。采用該技術(shù)制備涂層對(duì)金剛石進(jìn)行表面改性的重點(diǎn)是合金化元素的選取,既要考慮元素與金剛石之間的熱膨脹系數(shù)差異,又不能忽視其親碳能力。前者直接影響界面應(yīng)力的產(chǎn)生,后者決定金剛石與涂層的界面反應(yīng)程度,即形成碳化物的數(shù)量。綜合以上2種因素,選擇Ta作為合金化元素。

文中采用DGPSA技術(shù)首次在大尺寸CVD單晶金剛石表面制備Ta涂層,研究Ta涂層的相組成及微觀組織隨沉積時(shí)間的變化情況,利用Ag–Cu–Ti(Ti的質(zhì)量分?jǐn)?shù)2%)釬料合金將Ta涂層金剛石釬焊到硬質(zhì)合金(WC–Co)上,通過剪切試驗(yàn)評(píng)估Ta涂層對(duì)單晶金剛石可焊性的促進(jìn)作用。

1 試驗(yàn)

1.1 材料

CVD單晶金剛石由TYUT型微波等離子體化學(xué)氣相沉積系統(tǒng)[14]制備,采用大功率脈沖Nd–YAG激光將其切割成5 mm×5 mm×1 mm的薄片,并進(jìn)行拋光。將純度為99.99%的Ta絲(3 mm×20 mm)均勻固定在Ta板(50 mm×50 mm×3 mm)上,制備成靶材。釬料合金為Ag–Cu–Ti(Ti的質(zhì)量分?jǐn)?shù)2%),釬焊WC–Co襯底的尺寸為10 mm×10 mm×4 mm。

1.2 Ta涂層的制備

利用DGPSA裝置(如圖1所示)進(jìn)行Ta涂層的制備。源極與工件級(jí)的工作偏壓如表1所示。試驗(yàn)工作氣體為氬氣,純度為99.99%,體積流量(sccm)為40 mL/min,工作氣壓為34 Pa。在接通電源后,源極靶材和工件被輝光所覆蓋。在沉積Ta涂層時(shí),先進(jìn)行15 min的Ar+離子轟擊濺射,一方面借助Ar+轟擊將單晶金剛石加熱至高溫(850 ℃);另一方面在金剛石表面形成大量的空位等缺陷,為隨后Ta元素的擴(kuò)散提供通道。然后進(jìn)行Ta涂層的制備,將Ta原子從源極濺射出來,并吸附在金剛石表面,借助空位等缺陷擴(kuò)散到金剛石內(nèi)部,沉積時(shí)間分別為5、15、30、60 min。

表1 源極與工件極的工作偏壓

Tab.1 Bias voltage of source and workpiece electrode

1.3 釬焊及剪切試驗(yàn)

釬焊試驗(yàn)在真空釬焊爐(ZCZKL–160L)中進(jìn)行,金剛石、釬料合金和硬質(zhì)合金按照如圖2a所示位置放置,釬焊試驗(yàn)參數(shù)如表2所示。

圖2 釬焊及剪切示意圖

表2 釬焊實(shí)驗(yàn)參數(shù)

Tab.2 Parameters of vacuum brazing

采用萬能力學(xué)試驗(yàn)機(jī)(ETM503B)對(duì)釬焊樣品的剪切強(qiáng)度進(jìn)行評(píng)估。剪切裝置示意如圖2b所示,載荷為5 kN,加載速度為0.1 mm/min,最大加載能力為45 kN。剪切強(qiáng)度的計(jì)算見式(1)。

式中:s為試驗(yàn)測(cè)得的剪切力;為實(shí)際剪切面積(即金剛石焊接面的面積),此實(shí)驗(yàn)中實(shí)際剪切面積為25 mm2。

1.4 表征測(cè)試

采用掃描電子顯微鏡(SEM,ZEISS–G300)觀察Ta涂層的表面形貌、截面形貌及剪切試樣的截面形貌。利用能譜儀(EDS,Oxford)檢測(cè)Ta涂層橫截面及焊縫的元素分布。采用X射線衍射儀(XRD,Smartlab X,Rigaku)對(duì)Ta涂層進(jìn)行物相分析。

2 結(jié)果與討論

2.1 Ta涂層的物相

不同沉積時(shí)間下Ta涂層的XRD衍射圖譜如圖3所示。從圖3可以看出,在各參數(shù)下Ta涂層物相均為α–Ta、TaC和Ta2C。在衍射峰2為38.5°、55.5°、69.6°時(shí)分別對(duì)應(yīng)BCC結(jié)構(gòu)α–Ta的(110)、(200)、(211)晶面(PDF No 04–0788)。從圖3可觀察到TaC和Ta2C的物相衍射峰。在2=58.6°時(shí)對(duì)應(yīng)TaC的(220)晶面的衍射峰(PDF No 35–0801)。在2=50.1°時(shí)對(duì)應(yīng)Ta2C的(102)晶面的衍射峰(PDF No 32–1280)。Ta涂層均為α相,這是裝置中殘留的氧氣在高溫作用下促使四方結(jié)構(gòu)的β–Ta向其轉(zhuǎn)變的結(jié)果[15-16]。α–Ta涂層可能有助于為單晶金剛石提供良好的抗剪切界面[17]。TaC和Ta2C的形成是因?yàn)殡x子轟擊在金剛石表面形成了空位缺陷層,在沉積過程中Ta原子會(huì)優(yōu)先占據(jù)空位,并與鄰近的C原子反應(yīng),生成TaC和Ta2C。

TaC和Ta2C的晶體結(jié)構(gòu)如圖4所示[18]。根據(jù)Wang等[19]的研究,由于Ta2C受力時(shí)主要在Ta–Ta層間發(fā)生滑移,因而Ta2C具有良好的塑性,且Ta2C具有介于Ta與TaC之間的力學(xué)性能,使其有可能改善金剛石/Ta涂層的界面塑性,提高其界面抗沖擊能力。

圖3 Ta涂層樣品的物相組成

圖4 TaC和Ta2C的晶胞結(jié)構(gòu)模型[18]

2.2 Ta涂層的表面及截面形貌

不同沉積時(shí)間下Ta涂層的表面形貌如圖5a—d所示。由圖5可知,在不同參數(shù)下制備的Ta涂層均致密且連續(xù)。隨著沉積時(shí)間的延長,Ta涂層表面顆粒之間的界限變得越明顯,在沉積時(shí)間大于30 min時(shí),顆粒聚集形成了島狀結(jié)構(gòu)。涂層表面的變化可歸因于Ar+離子的轟擊,以及Ta原子在表面的不充分?jǐn)U散。當(dāng)離子轟擊所形成的空位缺陷超過原子吸附的速度時(shí),涂層表面就會(huì)出現(xiàn)起伏。根據(jù)謝樂公式計(jì)算不同參數(shù)下Ta涂層的平均晶粒尺寸,如表3所示,隨著沉積時(shí)間的延長,其平均晶粒尺寸由約84.24 nm增至約136.11 nm。

不同沉積時(shí)間下Ta涂層的截面形貌如圖6a—d所示。在不同參數(shù)下均形成了連續(xù)的Ta涂層,涂層與單晶金剛石界面處無明顯的孔洞或缺陷。隨著沉積時(shí)間的延長,涂層厚度不斷增加,由Image–Pro測(cè)量Ta涂層厚度隨機(jī)10個(gè)位置的測(cè)量值和平均值可知,涂層厚度從0.35 μm增至7.96 μm(圖6e)。由圖6b—d可明顯看出,Ta涂層由靠近界面的納米晶層和靠近表面的柱狀晶層組成。根據(jù)Movchan等[20]提出的氣相沉積薄膜結(jié)構(gòu)區(qū)模型(SZM,如圖6f所示)可知,所制備的Ta涂層由內(nèi)到外晶粒形貌的變化是因?yàn)殡S著沉積時(shí)間的延長,Ta原子的表面遷移率不斷增大,形核的速率加快,使晶粒由納米晶轉(zhuǎn)變?yōu)槔w維狀的柱狀晶結(jié)構(gòu)[21]。由圖6c中截面元素分布譜線結(jié)果可知,C和Ta元素在界面處發(fā)生了互擴(kuò)散,形成了擴(kuò)散層(Layer Ⅱ),這有利于界面結(jié)合強(qiáng)度的提升。

圖5 不同沉積時(shí)間下Ta涂層的表面形貌和平均晶粒尺寸

表3 根據(jù)XRD結(jié)果計(jì)算2=38.5°的Ta(110)晶面的晶粒尺寸

Tab.3 Calculated average grain sizes of the 2θ=38.5° lattice plane Ta coatings deposited for different time by XRD patterns

圖6 Ta涂層

2.3 Ta涂層單晶金剛石焊接接頭的截面形貌

Ta涂層單晶金剛石與WC–Co焊接接頭的截面形貌如圖7a—d所示。接頭主要由Ta涂層金剛石、焊縫、WC–Co襯底等3個(gè)部分組成。在圖7a—d中,沉積時(shí)間為5 min(圖7a)和15 min(圖7b)時(shí),焊縫中均存在釬料合金中膠黏劑揮發(fā)后留下的直徑約為1 μm的孔洞。這些孔洞缺陷的存在會(huì)減小接頭的實(shí)際承載面積,從而影響其剪切強(qiáng)度[22]。沉積時(shí)間為30 min(圖7c)和60 min(圖7d)時(shí)的焊縫中不存在明顯的孔洞,有利于獲得更高的剪切強(qiáng)度。由圖7e—k中的截面能譜圖可知,在焊縫中,主要成分為釬料合金的Ag–Cu二元共晶合金(圖7g、h)。涂層中的Ta及釬焊基體硬質(zhì)合金中的Co元素均向焊縫中間層擴(kuò)散(圖7f、k),該擴(kuò)散過程有利于接頭強(qiáng)度的提高。

2.4 焊接接頭的剪切強(qiáng)度

焊接接頭的剪切強(qiáng)度結(jié)果如圖8所示。為了明確Ta涂層對(duì)金剛石可焊性的促進(jìn)作用,在相同參數(shù)下對(duì)無Ta涂層單晶金剛石進(jìn)行了焊接。由圖8可知,隨著沉積時(shí)間的延長,接頭的平均剪切強(qiáng)度呈先增大后減小的趨勢(shì);當(dāng)沉積時(shí)間為30 min時(shí),其剪切強(qiáng)度達(dá)到最大值,最大值為115.6 MPa;在沉積時(shí)間為5 min時(shí),其剪切強(qiáng)度最小(24.8 MPa),且與15 min時(shí)的強(qiáng)度(69.1 MPa)都低于無Ta涂層的接頭強(qiáng)度(75.6 MPa)。出現(xiàn)該情況的原因是:焊接采用Ag–Cu–Ti焊料,其自身含有的Ti可在焊接過程中形成TiC,使接頭保持一定的強(qiáng)度,當(dāng)沉積時(shí)間較短時(shí),Ta涂層的厚度較小,其與金剛石的界面擴(kuò)散反應(yīng)較弱,無法提供足夠的界面結(jié)合力,使得剪切強(qiáng)度較低;在沉積時(shí)間為30 min時(shí),Ta涂層的組織致密,界面擴(kuò)散得較充分,使得接頭的焊接強(qiáng)度較高;在沉積時(shí)間為60 min時(shí),Ta涂層接頭的剪切強(qiáng)度低于沉積時(shí)間為30 min時(shí)的剪切強(qiáng)度,但高于無涂層焊接接頭的剪切強(qiáng)度。推測(cè)一方面是因Ta涂層太厚,涂層應(yīng)力較大,降低了接頭強(qiáng)度,另一方面疏松的柱狀晶在剪切受力時(shí)會(huì)因?yàn)楸旧淼拇嘈远l(fā)生斷裂[23]。事實(shí)上,剪切強(qiáng)度的變化與涂層表面的形貌也存在關(guān)聯(lián),當(dāng)沉積時(shí)間為30 min和60 min時(shí),涂層的表面形貌起伏較大、較為粗糙(如圖5所示),這會(huì)增大釬料合金與涂層的接觸面積,從而提高接頭的剪切強(qiáng)度。此外,界面處Ta2C和TaC的存在可在金剛石和Ta涂層界面形成較強(qiáng)的化學(xué)鍵合力,增大接頭的剪切強(qiáng)度,而二者良好的塑性可在一定程度提升金剛石界面的抗剪切能力[24-25]。

圖7 釬焊截面

Fig.7 Brazing cross section

圖8 釬焊后焊接接頭的剪切強(qiáng)度

3 結(jié)論

利用DGPSA技術(shù)在CVD單晶金剛石表面制備了均勻致密的Ta涂層。在Ta涂層與金剛石的界面處形成了包含TaC和Ta2C碳化物的擴(kuò)散層。在合金化溫度為850 ℃下,隨著沉積時(shí)間的延長(由5 min增至60 min),涂層的晶粒尺寸從84.24 nm增至136.11 nm,厚度從0.35 μm增至7.96 μm。涂層與金剛石界面緊密結(jié)合,無明顯孔洞或其他缺陷。合金化后采用Ag–Cu–Ti(Ti的質(zhì)量分?jǐn)?shù)2%)釬料合金實(shí)現(xiàn)了Ta涂層金剛石與硬質(zhì)合金的連接,剪切試驗(yàn)表明,當(dāng)Ta涂層的沉積時(shí)間為30 min和60 min時(shí),二者的剪切強(qiáng)度均大于無Ta涂層釬焊樣品的剪切強(qiáng)度,證實(shí)Ta涂層對(duì)單晶金剛石的可焊性具有促進(jìn)作用。在沉積時(shí)間為30 min時(shí),Ta涂層樣品的接頭剪切強(qiáng)度相對(duì)最大,達(dá)到了115.6 MPa。這可歸因于雙輝技術(shù)在金剛石界面形成的碳化物和擴(kuò)散層促進(jìn)了Ta涂層與金剛石的結(jié)合,進(jìn)而提高了接頭的剪切強(qiáng)度。

[1] ZHU R H, MIAO J Y, LIU J L, et al. High Temperature Thermal Conductivity of Free-Standing Diamond Films Prepared by DC Arc Plasma Jet CVD[J]. Diamond and Related Materials, 2014, 50: 55-59.

[2] JI Zhe, LIN Qiang, HUANG Zhe-wei, et al. Enhanced Lubricity of CVD Diamond Films by In-Situ Syntheti-zation of Top-Layered Graphene Sheets[J]. Carbon, 2021, 184: 680-688.

[3] MILLAR P, BIRCH R B, KEMP A J, et al. Synthetic Diamond for Intracavity Thermal Management in Com-pact Solid-State Lasers[J]. IEEE Journal of Quantum Ele-ctronics, 2008, 44(8): 709-717.

[4] PEREZ G, MARéCHAL A, CHICOT G, et al. Diamond Semiconductor Performances in Power Electronics Appli-cations[J]. Diamond and Related Materials, 2020, 110: 108154.

[5] LIANG Jian-bo, NAKAMURA Y, ZHAN Tian-zhuo, et al.Fabrication of High-Quality GaAs/Diamond Heterointer-face for Thermal Management Applications[J]. Diamond and Related Materials, 2021, 111: 108207.

[6] FRANCISCO F R, MORO J R, CORAT E J, et al. Effect of Heat Treatment on Microstructure and Mechanical Pro-perty of Diamonds Substrates Brazed with Active Filler Metal[J]. Defect and Diffusion Forum, 2014, 353: 254- 258.

[7] 王博, 魏世丞, 王玉江, 等. 磁控濺射技術(shù)制備二氧化鈦薄膜研究進(jìn)展[J]. 表面技術(shù), 2018, 47(8): 257-264.

WANG Bo, WEI Shi-cheng, WANG Yu-jiang, et al. Tita-nium-Oxide Thin Films Prepared by Magnetron Sputte-ring Method[J]. Surface Technology, 2018, 47(8): 257-264.

[8] 朱振東, 劉豪, 張?zhí)? 等. 金剛石表面鍍覆技術(shù)與應(yīng)用的研究進(jìn)展[J]. 超硬材料工程, 2021, 33(3): 28-32.

ZHU Zhen-dong, LIU Hao, ZHANG Tian, et al. Research Progress of Plating Technology on the Diamond Surface and Its Application[J]. Superhard Material Engineering, 2021, 33(3): 28-32.

[9] 張麗, 張彥. 化學(xué)鍍的研究進(jìn)展及發(fā)展趨勢(shì)[J]. 表面技術(shù), 2017, 46(12): 104-109.

ZHANG Li, ZHANG Yan. Research Progress and Development Trend of Chemical Plating[J]. Surface Technology, 2017, 46(12): 104-109.

[10] XU Zhong, XIONG F F. Double Glow Plasma Surface Alloying/Metallurgy Technology[M]//Plasma Surface Met-allurgy. Singapore: Springer Singapore, 2017: 33-62.

[11] LIN N, ZOU J, LI M, et al. Review on Improvements in Surface Performance of TiAl-Based Alloys by Double Glow Plasma Surface Alloying Technology[J]. Reviews on Advanced Materials Science, 2016, 44(3): 238-256.

[12] GAO Jie, HEI Hong-jun, SHEN Yan-yan, et al. Tempe-rature Dependence of W Metallic Coatings Synthesized by Double Glow Plasma Surface Alloying Technology on CVD Diamond Films[J]. Applied Surface Science, 2015, 356: 429-437.

[13] 曹巖, 高潔, 鄭可, 等. 316L不銹鋼表面Ta涂層的制備及性能[J]. 中國表面工程, 2019, 32(6): 29-36.

CAO Yan, GAO Jie, ZHENG Ke, et al. Fabrication and Properties of Ta Coating on 316L Stainless Steel[J]. China Surface Engineering, 2019, 32(6): 29-36.

[14] AN K, YU S W, LI X J, et al. Microwave Plasma Reactor with Conical-Reflector for Diamond Deposition[J]. Vac-uum, 2015, 117: 112-120.

[15] ZHANG Meng, MA Yong, GAO Jie, et al. Mechanical, Electrochemical, and Osteoblastic Properties of Gradient Tantalum Coatings on Ti6Al4V by Prepared Plasma Allo-ying Technique[J]. Coatings, 2021, 11(6): 631.

[16] MATSON D W, MCCLANAHAN E D, LEE S L, et al. Properties of Thick Sputtered Ta Used for Protective Gun Tube Coatings[J]. Surface and Coatings Technology, 2001, 146/147: 344-350.

[17] GLADCZUK L, PATEL A, SINGH PAUR C, et al. Tanta-lum Films for Protective Coatings of Steel[J]. Thin Solid Films, 2004, 467(1/2): 150-157.

[18] 馬淑紅, 焦照勇, 黃肖芬, 等. TaC和Ta2C結(jié)構(gòu)穩(wěn)定性、電子結(jié)構(gòu)及力學(xué)性能的研究[J]. 原子與分子物理學(xué)報(bào), 2014, 31(1): 149-154.

MA Shu-hong, JIAO Zhao-yong, HUANG Xiao-fen, et al. A Theoretical Study of Structure Stability, electronic and Mechanical Properties of TaC and Ta2C[J]. Journal of Atomic and Molecular Physics, 2014, 31(1): 149-154.

[19] WANG B, DE LEON N, WEINBERGER C R, et al. A Theoretical Investigation of the Slip Systems of Ta2C[J]. Acta Materialia, 2013, 61(11): 3914-3922.

[20] MOVCHAN B, DEMCHISHIN A V. Structure and Pro-perties of Thick Condensates of Nickel, Titanium, Tung-sten, Aluminum Oxides, and Zirconium Dioxide in Vacu-um[J]. Physics of Metals and Metallography, 1969, 28(4): 653-660.

[21] 王啟民. 電弧離子鍍MCrAlY高溫防護(hù)涂層及復(fù)合涂層的研究[D]. 沈陽: 中國科學(xué)院金屬研究所, 2006: 102-105.

WANG Qi-min. Study on Ion Plating MCrAlY High Tem-perature Protective Coating and Composite Coating[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006: 102-105.

[22] 陳伯蠡. 焊接工程缺欠分析與對(duì)策[M]. 北京: 機(jī)械工業(yè)出版社, 1998: 81.

CHEN Bo-li. Analysis and Countermeasures of Welding Defects in Engineering[M]. Beijing: China Machine Press, 1998: 81.

[23] 田孟昆, 余志明, 劉學(xué)璋, 等. 過渡層對(duì)銅基金剛石薄膜的影響[J]. 中國表面工程, 2011, 24(4): 19-24.

TIAN Meng-kun, YU Zhi-ming, LIU Xue-zhang, et al. Diamond Films Deposited on Copper with Different Inte-rlayers[J]. China Surface Engineering, 2011, 24(4): 19-24.

[24] 赫曉東, 關(guān)春龍, 李垚, 孫曄. EB?PVD制備的Ni?Cr? Al?Y高溫合金箔力學(xué)性能[J]. 中國有色金屬學(xué)報(bào), 2004, 14(S1): 255-258.

HE Xiao-dong, GUAN Chun-long, LI Yao, SUN Ye, et al. Mechanical Properties of Ni-Cr-Al-Y Superalloy Foil by EB-PVD[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(S1): 255-258.

[25] 閆志巧, 熊翔, 肖鵬, 等. Ta?C化合反應(yīng)生成TaC的過程[J]. 稀有金屬材料與工程, 2006, 35(S2): 209-212.

YAN Zhi-qiao, XIONG Xiang, XIAO Peng, et al. Conver-sion Process of TaC by Combination Reaction of Ta with C[J]. Rare Metal Materials and Engineering, 2006, 35(S2): 209-212.

Effect of Ta Coating on Welding Strength of CVD Single-crystal Diamond

1,1,1,2,1,1,1,1

(1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2. National Key Laboratory of Science and Technology on Vacuum Electronics, University of Electronic Science and Technology, Chengdu 610054, China)

The work aims to improve the weldability of diamond and facilitate the bonding between the diamond and hetero-geneous alloy. Ta coating was deposited on chemical vapor deposition (CVD) single-crystal diamond (not powder or particle) surface with large-size via double glow plasma surface alloying (DGPSA) technique. Then, the Ta-coated single-crystal diamond and cemented carbide (WC-Co) were brazed with Ag-Cu-2wt.%Ti brazing alloy at 810 ℃ for 10 min in vacuum furnace. The phase composition, surface micro morphology and element distribution of Ta coating and the cross-sectional morphology after brazing were characterized byX-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). Furthermore, to verify the effectively weldability of Ta coating for single-crystal diamond, a universal testing machine was used to conduct a shear fracture test on the brazing samples of single-crystal diamond with Ta coating and without Ta coating (control group) to explore the interfacial bonding strength after brazing. After alloying at 850 ℃, the thickness of Ta coating increased gradually from 0.35 μm to 7.96 μm for deposition of 5, 15, 30 and 60 min, the grain grew from the nano-crystal to columnar crystal, and the average grain size increased from ~84.24 nm to ~136.11 nm according to the XRD pattern and Scherrer's equation with the deposition time at the same temperature of alloying (850 ℃). The surface of Ta coating sags and crests increased with the increase of deposition time and this surface unevenly improved the flow of brazing alloy and enhanced the adhesion between Ta-coated single-crystal diamond and WC-Co during brazing. Besides, combined with the SEM of cross-sectional morphology and EDS, the Ta coating was composed of deposited layer I and diffused layer Ⅱ. This diffused layer was mainly composed of TaC and Ta2C. These two metal carbides with good mechanical properties were generated at the single-crystal diamond/Ta coating interface. The Ta2C had mechanical properties between Ta and TaC, which made it possible to improve the interface plasticity and impact resistance of single-crystal diamond/Ta coating. In addition, this carbides layer played a vital transition function at the interface between the single-crystal diamond and the Ta coating. The well bonding was provided at this interface by this layer during shearing test. After shearing test, the shear strength first increased and then decreased as the deposition time of Ta coating increased. When the deposition time is 30 min, the thickness of Ta coating is 3.47 μm. The maximum shear strength (115.6 MPa) after brazing with WC-Co is obtained, which is greater than the shear strength (75.6 MPa) of brazing samples without Ta coating. It is proved that Ta coating can obviously promote the weldability of single-crystal diamond. It is worth noting that the sample with the longest deposition time (60 min) and the largest Ta coating thickness (7.96 μm) do not have the greatest shear strength.

CVD single-crystal diamond; double glow plasma surface alloying; Ta coating; Ag-Cu-Ti brazing alloy; vacuum brazing; bonding strength

TG113.26+3

A

1001-3660(2022)11-0445-07

10.16490/j.cnki.issn.1001-3660.2022.11.042

2021–11–12;

2022–02–12

2021-11-12;

2022-02-12

國家自然科學(xué)基金(51901154);山西省自然科學(xué)基金(201901D211092);山西省科技重大專項(xiàng)(20181102013);“1331項(xiàng)目”山西省工程研究中心資助項(xiàng)目(PT201801)

National Natural Science Foundation of China (51901154); Natural Science Foundation of Shanxi Province (201901D211092); Science and Technology Major Project of Shanxi (20181102013); Fund for Shanxi "1331 Project" (PT201801)

毛雅梅(1995—),女,碩士,主要研究方向?yàn)榻饎偸砻娓男院徒饎偸附印?/p>

MAO Ya-mei (1995-), Female, Master, Research focus: surface modification and welding of diamond.

高潔(1989—),女,博士,主要研究方向?yàn)榈入x子體表面改性、金剛石表面金屬化及焊接。

GAO Jie (1989-), Female, Doctor, Associate professor, Research focus: plasma surface modification, diamond surface metallization and welding.

毛雅梅, 黑鴻君, 高潔, 等. Ta涂層對(duì)CVD單晶金剛石焊接強(qiáng)度的影響[J]. 表面技術(shù), 2022, 51(11): 445-451.

MAO Ya-mei, HEI Hong-jun, GAO Jie, et al. Effect of Ta Coating on Welding Strength of CVD Single-crystal Diamond[J]. Surface Technology, 2022, 51(11): 445-451.

責(zé)任編輯:彭颋

猜你喜歡
釬焊單晶金剛石
簡(jiǎn)易金剛石串珠鋸的設(shè)計(jì)
石材(2020年10期)2021-01-08 09:19:54
釬焊
大尺寸低阻ZnO單晶襯弟
大尺寸低阻ZnO單晶襯底
一種特殊的金剛石合成結(jié)構(gòu)裝置
超薄金剛石帶鋸鍍層均勻性研究
SiC_p/2024Al復(fù)合材料與SiC陶瓷的軟釬焊
焊接(2016年3期)2016-02-27 13:01:27
安徽省金剛石找礦簡(jiǎn)史
大尺寸低阻ZnO 單晶襯底
大尺寸低阻ZnO 單晶襯底
旬阳县| 班玛县| 彩票| 吴江市| 台东县| 辉县市| 阜康市| 沈丘县| 荔波县| 崇文区| 九台市| 汝州市| 平江县| 桑植县| 德格县| 罗甸县| 百色市| 大英县| 深圳市| 嘉鱼县| 克山县| 杭州市| 漾濞| 平乐县| 大安市| 鄯善县| 鲁甸县| 茶陵县| 西乌珠穆沁旗| 临海市| 喀喇| 湖州市| 梧州市| 务川| 汉寿县| 精河县| 巨鹿县| 航空| 长治市| 东丰县| 新余市|