国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

復(fù)合梯度楔形表面上液滴自輸運(yùn)特性的數(shù)值研究

2022-12-30 02:10:44高芳鄭佳宜李準(zhǔn)余延順
表面技術(shù) 2022年11期
關(guān)鍵詞:潤濕親水楔形

高芳,鄭佳宜,李準(zhǔn),余延順

復(fù)合梯度楔形表面上液滴自輸運(yùn)特性的數(shù)值研究

高芳,鄭佳宜,李準(zhǔn),余延順

(南京理工大學(xué) 電子設(shè)備熱控制工信部重點(diǎn)實(shí)驗(yàn)室,南京 210094)

提高表面液滴的自輸運(yùn)速率。在表面引入潤濕梯度和楔形形狀,基于VOF模型(流體體積模型)對表面液滴運(yùn)動(dòng)進(jìn)行數(shù)值研究,并建立一種適用于潤濕梯度和楔形圖案聯(lián)合的模型,分析潤濕梯度和楔形角度對液滴位移的影響。潤濕梯度越大,液滴受不平衡的表面張力越大,液滴移動(dòng)速度越快。潤濕梯度為15 (°)/mm表面上液滴的平均速度比10、5 (°)/mm潤濕梯度的表面分別快42.3%和130%。楔角越大,加速階段的液滴移動(dòng)速度越快,但會(huì)越早失去驅(qū)動(dòng)力而停止移動(dòng),而楔角越小,液滴移動(dòng)位移越大。液滴在40°楔角表面最先停止運(yùn)動(dòng),在20°楔角表面位移比30°和40°楔角表面分別遠(yuǎn)10.3%和32.3%。聯(lián)合潤濕梯度和楔形圖案后,15 (°)/mm表面上的液滴在20°、30°、40°和20°楔角表面上的液滴在15、10 (°)/mm下均能運(yùn)動(dòng)到計(jì)算模型出口,且15 (°)/mm、40°楔角表面液滴的平均速度達(dá)到292 mm/s,比單一梯度表面增長37.7%,比單一楔形圖案表面(20°)增長175.5%。通過調(diào)節(jié)潤濕梯度和楔形角度,可有效控制液滴移動(dòng)速度。聯(lián)合潤濕梯度和楔形圖案的復(fù)合梯度楔形表面能同時(shí)減小潤濕性范圍瓶頸和楔形形狀制約,提高表面液滴的移動(dòng)速度和距離。研究結(jié)果將有助于設(shè)計(jì)高效的液滴輸運(yùn)功能表面,并可將其擴(kuò)展到冷凝裝置、微流體裝置和藥物檢測等領(lǐng)域。

潤濕梯度;界面張力;楔形;自輸運(yùn);兩相流;數(shù)值模擬

近年來,許多研究人員試圖在不同類型的能量系統(tǒng)(如供暖、通風(fēng)、空調(diào)和制冷系統(tǒng))中,通過表面潤濕性改性來控制液滴的自輸運(yùn),以此增強(qiáng)冷凝排水[1-4]。因?yàn)閺V泛用于換熱器翅片的鋁、銅和不銹鋼具有天然親水性,在表面易形成膜狀冷凝,增大傳熱面熱阻,降低傳熱效率[5-6]。因此,傳熱表面上液滴的管控對系統(tǒng)的整體能效至關(guān)重要。液滴的可控自運(yùn)動(dòng)在其他領(lǐng)域也具有廣泛的應(yīng)用前景,如微流體裝置、霧收集、工業(yè)過濾設(shè)備等[7-11]。

大量學(xué)者根據(jù)天然表面(如蜘蛛絲[12-13]和沙漠甲蟲[14-16])的集水功能,引入潤濕梯度和楔形圖案來驅(qū)動(dòng)液滴在表面上移動(dòng)。因受到的表面張力不平衡,液滴能在潤濕梯度表面上向接觸角更小的方向移動(dòng)。早在1992年,Chaudhury等[17]就在硅表面上制備出表面能梯度,以使液滴能在其上自輸運(yùn)。事實(shí)上,為了揭示液滴在潤濕梯度表面上定向輸運(yùn)的機(jī)理和影響因素,學(xué)者已對表面制備及在其上的液滴移動(dòng)進(jìn)行了很多試驗(yàn)和模擬研究,并取得了一些進(jìn)展[18-23]。

楔形圖案表面則是利用液滴在表面上因潤濕差異性產(chǎn)生變形,形成沿著輸運(yùn)方向的半徑差,進(jìn)而產(chǎn)生具有梯度的拉普拉斯壓差,驅(qū)動(dòng)液滴從頂端薄尺寸向底端厚尺寸移動(dòng)。近年來,制備圖案表面的常見方式有等離子濺射法[24]、激光加工法[25]、光刻法[26]、掩模輔助法[27]等。Zhang等[28]將梯形親水材料圖案化到疏水基底上,液滴在表面上自發(fā)從梯形的窄端向?qū)挾虽佌埂hoo等[29]在超疏水基底上制備出三角形的超親水軌道,液滴鋪展速度達(dá)到50~400 mm/s。Alheshibri等[30]用等離子體暴露和HDFT溶液浸泡,使銅表面呈超疏水,而鋁呈超親水,制備鋁/銅潤濕性圖案表面,但液滴的移動(dòng)距離被限制在30 mm。

潤濕梯度表面雖能實(shí)現(xiàn)液滴的自輸運(yùn),但潤濕性范圍瓶頸導(dǎo)致液滴的移動(dòng)距離極大受限。楔形圖案表面的液滴輸運(yùn)則會(huì)受到楔形形狀的制約,遠(yuǎn)距離的輸運(yùn)需要較大的楔形末端尺寸。因此,本研究建立了一種適用于潤濕梯度和楔形圖案聯(lián)合的計(jì)算模型,并基于VOF模型對表面上的液滴運(yùn)動(dòng)進(jìn)行了數(shù)值研究,提供了表面上潤濕梯度、楔形圖案和2種方式聯(lián)合的復(fù)合梯度楔形表面上液滴自輸運(yùn)的動(dòng)力學(xué)特性觀察。研究結(jié)果將有助于設(shè)計(jì)高效的液滴輸運(yùn)功能表面,并可將其擴(kuò)展到冷凝裝置、微流體裝置和藥物檢測等領(lǐng)域。

1 計(jì)算模型與方法

1.1 控制方程

VOF模型通過計(jì)算不同組分在計(jì)算域每個(gè)控制體內(nèi)的體積分?jǐn)?shù),然后利用插值法來得到各組分間的邊界,從而模擬多組分的流動(dòng)情況。

第個(gè)組分在任一單元中的體積分?jǐn)?shù)由式(1)確定:

整個(gè)計(jì)算域中所有組分均服從同一個(gè)動(dòng)量方程:

式中:為密度;為黏度。

考慮表面張力的影響,將CSF(Continuum Surface Force)模型[31]作為源項(xiàng)添加到動(dòng)量方程中。對于兩相流:

式中:σ為組分間的表面張力系數(shù);為截面曲率。

壁面的潤濕梯度通過接觸角設(shè)定,其作用體現(xiàn)在近壁面處流體邊界的法線方向上。該法線方向的變化會(huì)改變界面的曲率,從而間接影響表面張力的大小。

1.2 模型建立

模型的俯視圖如圖1所示。圖1a為潤濕梯度表面,表面接觸角從90°向右每毫米減小,即相鄰不同顏色矩形表面接觸角相差。5 mm后,梯度不變,為15°、10°、5°時(shí),表面梯度分別為15、10、5 (°)/mm。圖1b為楔形圖案表面,灰色區(qū)域?yàn)榻佑|角160°的超疏水基底,黃色區(qū)域?yàn)榻佑|角90°的親水楔形,楔角取20°、30°、40°。圖1c為復(fù)合梯度楔形表面,灰色區(qū)域?yàn)榻佑|角160°的超疏水基底,黃色區(qū)域?yàn)橛H水梯度楔形,接觸角變化與圖1a一致,楔角取值與圖1b一致。模型計(jì)算區(qū)域?yàn)橐粋€(gè)10 mm×10 mm×5 mm的矩形流體域,初始計(jì)算時(shí),在底面上放置一個(gè)半徑為1 mm的半球形液相區(qū)域作為初始液滴圖。采用常壓出入口,因液滴流速較慢,采用層流模型。為更好捕捉氣液界面,采用VOF模型,流體默認(rèn)常熱物性。

液滴在潤濕梯度和楔形圖案表面上的受力如圖2所示。在不平衡表面張力的驅(qū)動(dòng)下,液滴會(huì)向潤濕梯度表面上的高表面能側(cè)移動(dòng)。如圖2a所示,這種力可用高、低表面能側(cè)的液滴接觸角差異表示[32]:

式中:為液滴的半徑;為表面張力;f和r為液滴移動(dòng)方向的前后接觸角;為圓柱極坐標(biāo)系統(tǒng)中的極角,其原點(diǎn)位于液滴軌跡的中心。

楔形圖案表面上的楔角是液滴運(yùn)動(dòng)的驅(qū)動(dòng)力來源,楔形角度會(huì)影響液滴的移動(dòng)速度和距離。如圖2b所示,楔形圖案表面上的驅(qū)動(dòng)力由2個(gè)不同潤濕性表面邊界區(qū)域上液滴的接觸面積確定[33]:

式中:A是常數(shù)。

圖2 液滴定向移動(dòng)示意圖

由于驅(qū)動(dòng)力的方向與邊界垂直,沿方向的驅(qū)動(dòng)力可表示成:

1.3 網(wǎng)格劃分及無關(guān)性驗(yàn)證

采用非結(jié)構(gòu)性網(wǎng)格對計(jì)算與進(jìn)行離散,并對底面進(jìn)行邊界層加密,液滴流動(dòng)區(qū)域再單獨(dú)加密。網(wǎng)格的劃分質(zhì)量及精度對數(shù)值模擬結(jié)果的準(zhǔn)確性有很大影響,因此需對不同網(wǎng)格數(shù)量進(jìn)行網(wǎng)格無關(guān)性驗(yàn)證。在潤濕梯度10 (°)/mm的條件下,分別對網(wǎng)格數(shù)為 156 373、333 925、448 366、663 721和789 935的模型進(jìn)行計(jì)算,對比不同網(wǎng)格數(shù)量下液滴移動(dòng)到出口的時(shí)間。在網(wǎng)格數(shù)為448366、663721和789935時(shí),曲線趨于平緩,因此可認(rèn)為網(wǎng)格數(shù)448 366滿足精度要求,如圖3所示。

1.4 模型驗(yàn)證

為驗(yàn)證本文提出的數(shù)學(xué)模型的準(zhǔn)確性,將模擬結(jié)果與文獻(xiàn)[34-35]進(jìn)行對比。文獻(xiàn)[34]采用VOF模型,在長和高分別為10 mm和1.8 mm的帶有潤濕性梯度的矩形計(jì)算域中,滴入半徑為0.8 mm的半圓形液滴研究水平潤濕梯度表面上梯度大小對液滴運(yùn)動(dòng)過程的影響。圖4a顯示了本模型計(jì)算的9 (°)/mm潤濕梯度下液滴運(yùn)動(dòng)情況與文獻(xiàn)[34]中研究結(jié)果的對比。結(jié)果顯示,液滴在各時(shí)間下的運(yùn)動(dòng)狀態(tài)基本一致,但模擬結(jié)果與文獻(xiàn)相比較慢,在0.026 4 s時(shí),模擬結(jié)果比文獻(xiàn)運(yùn)動(dòng)距離減少了0.51 mm。這是由于液滴的驅(qū)動(dòng)主要取決于液滴和壁面的接觸區(qū)域,在模型底面加密了10層邊界層后,由于網(wǎng)格的細(xì)化,液滴在更小尺寸內(nèi)的移動(dòng)也可被捕捉到,而不會(huì)因?yàn)榫W(wǎng)格過大而被忽略,從而對液滴移動(dòng)的捕捉更加準(zhǔn)確,因此可認(rèn)為潤濕梯度模型的數(shù)值結(jié)果可靠。文獻(xiàn)[35]采用格子–玻爾茲曼模型模擬和實(shí)驗(yàn)相結(jié)合,在親水區(qū)域接觸角25°、疏水區(qū)域接觸角145°的楔形圖案表面上研究了楔角大小對液滴移動(dòng)的影響。圖4b顯示了本模型計(jì)算的楔角15°下液滴運(yùn)動(dòng)情況與文獻(xiàn)[35]中研究結(jié)果的對比。結(jié)果顯示,液滴在各時(shí)間下的運(yùn)動(dòng)狀態(tài)基本一致,因此可認(rèn)為楔形圖案模型的數(shù)值結(jié)果可靠。

圖3 網(wǎng)格無關(guān)性驗(yàn)證

圖4 模型驗(yàn)證

2 結(jié)果與分析

2.1 潤濕梯度對液滴運(yùn)動(dòng)的影響

本文研究了半徑為1 mm的液滴在15、10、 5 (°)/mm等3個(gè)不同潤濕梯度表面上的自運(yùn)動(dòng),如圖5所示。隨著液滴的移動(dòng),液滴與表面的接觸面積增加,液滴高度降低。液滴運(yùn)動(dòng)可分為3個(gè)階段,第一階段(0~9 ms)如圖6a所示,液滴滴落在3個(gè)固體表面后開始鋪展,15 (°)/mm表面更親水,液滴高度更低,鋪展速度更快。9 ms后,液滴在表面上鋪展完成。因不平衡表面張力的出現(xiàn),液滴開始加速移動(dòng)。作用在液滴上的不平衡表面張力受液滴兩側(cè)接觸角的影響,因此潤濕梯度越大,表面張力驅(qū)動(dòng)力越大,曲線斜率越大,液滴移動(dòng)速度越快。15、10、5 (°)/mm表面上液滴分別在17、22、32 ms時(shí)達(dá)到恒定接觸角處(=6 mm),即速度最大處,如圖6b所示。第三階段,由于表面潤濕梯度的消失,液滴在到達(dá)=6 mm后,在阻力作用下,開始減速移動(dòng)。5 (°)/mm表面上液滴的初始階段斜率較小,即初始速度較小,在還未到達(dá)計(jì)算模型出口(=8.5 mm)時(shí),速度就減至0。15 (°)/mm表面上的潤濕梯度更大,初始階段斜率更大,初始速度更大,因此最先到達(dá)計(jì)算模型出口。全過程平均速度可達(dá)212 mm/s,比10 (°)/mm和5 (°)/mm表面分別快42.3%和130%。

圖5 液滴位移隨時(shí)間變化

圖6 潤濕梯度對液滴移動(dòng)位移和速度的影響

2.2 楔形角度對液滴運(yùn)動(dòng)的影響

為研究楔角對液滴移動(dòng)的影響,在超疏水區(qū)160°、親水區(qū)90°的表面上取楔角為20°、30°、40°,對其上液滴的移動(dòng)規(guī)律進(jìn)行研究。液滴放置在表面后,會(huì)逐漸鋪展到親水和疏水區(qū)域上。由于楔形內(nèi)外潤濕性不同,且沿流動(dòng)方向楔形寬度逐漸增大,液滴會(huì)自發(fā)地向較寬的楔形親水區(qū)域移動(dòng)。曲線斜率先增大、后減小,即液滴移動(dòng)速度先增后減,在=20 ms(=20°)、= 18 ms(=30°)和= 14 ms(=40°)時(shí),液滴速度分別達(dá)到最大,如圖7所示。在加速階段,表面楔角越大,推動(dòng)力在液滴移動(dòng)方向上的分力越大,因此液滴在表面上的速度隨楔角的增大而增大。

隨著液滴移動(dòng),親水區(qū)域?qū)挾戎饾u增加,楔角越大的表面在相同位移處親水區(qū)域的寬度越大,液滴越早完全進(jìn)入親水區(qū)域,從而越早失去向前的驅(qū)動(dòng)力。因此,楔角越大,曲線斜率減小越快,液滴速度下降越快,越早停止移動(dòng)。如40°楔角表面液滴最先停止運(yùn)動(dòng),20°楔角下,液滴最大位移為8.6 mm,比30°和40°楔角表面分別遠(yuǎn)10.3%和32.3%。

圖7 楔形角度對液滴移動(dòng)位移和速度的影響

2.3 潤濕梯度和楔形圖案聯(lián)合對液滴運(yùn)動(dòng)的影響

為進(jìn)一步提高液滴的移動(dòng)速率和距離,將潤濕梯度和楔形圖案聯(lián)合,提出復(fù)合梯度楔形表面。如圖8所示,在15 (°)/mm潤濕梯度和20°楔角下,液滴在復(fù)合梯度楔形表面上的整體運(yùn)動(dòng)趨勢分別與楔形圖案表面和潤濕梯度表面基本一致。因復(fù)合梯度楔形表面增加了楔形圖案,在不平衡表面張力和楔角形成的推動(dòng)力的共同作用下,液滴在復(fù)合梯度楔形表面的曲線斜率更大,移動(dòng)速度更大、距離更遠(yuǎn)。因此,15 (°)/mm表面上的液滴在20°、30°、40°和20°楔角表面上的液滴在15 (°)/mm和10 (°)/mm下均能運(yùn)動(dòng)到計(jì)算模型出口,且15 (°)/mm、20°楔角表面液滴的平均速度可達(dá)292 mm/s,比單一梯度表面[15 (°)/mm]增長37.7%,比單一楔形圖案表面(20°)增長175.5%。

圖8 楔形角度和潤濕梯度聯(lián)合對液滴移動(dòng)的影響

3 結(jié)論

本文對液滴在不同潤濕梯度和楔形角度表面上的移動(dòng)進(jìn)行了數(shù)值模擬。模擬結(jié)果表明,潤濕梯度越大,液滴受不平衡的表面張力越大,液滴移動(dòng)速度越大。潤濕梯度為15(°)/mm表面上液滴的平均速度可達(dá)到212 mm/s,比10(°)/mm和5(°)/mm表面分別快42.3%和130%。楔角越大,加速階段的液滴移動(dòng)速度越大,但會(huì)越早失去驅(qū)動(dòng)力而停止移動(dòng),而楔角越小,液滴移動(dòng)位移越大。液滴在40°楔角表面最先停止運(yùn)動(dòng),在20°楔角表面位移為8.6 mm,比30°和40°楔角表面分別遠(yuǎn)10.3%和32.3%。聯(lián)合潤濕梯度和楔形圖案后,15(°)/mm表面上的液滴在20°、30°、40°和20°楔角表面上的液滴在15(°)/mm和10(°)/mm下均能運(yùn)動(dòng)到計(jì)算模型出口,且15(°)/mm、40°楔角表面液滴的平均速度達(dá)到292 mm/s,比單一梯度表面增長37.7%,比單一楔形圖案表面(20°)增長175.5%。

[1] ALWAZZAN M, EGAB K, PENG Ben-li, et al. Cond-ensation on Hybrid-Patterned Copper Tubes (I): Characte-rization of Condensation Heat Transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991-1004.

[2] ALWAZZAN M, EGAB K, PENG Ben-li, et al. Conde-nsation on Hybrid-Patterned Copper Tubes (II): Visualiz-ation Study of Droplet Dynamics[J]. International Journal of Heat and Mass Transfer, 2017, 112: 950-958.

[3] YANG K S, LIN K H, TU Cheng-wei, et al. Experimental Investigation of Moist Air Condensation on Hydrophilic, Hydrophobic, Superhydrophilic, and Hybrid Hydrophobic- Hydrophilic Surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1032-1041.

[4] PENG Ben-li, MA Xue-hu, LAN Zhong, et al. Experim-ental Investigation on Steam Condensation Heat Transfer Enhancement with Vertically Patterned Hydrophobic- Hydrophilic Hybrid Surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38.

[5] SOMMERS A D, YING J, EID K F. Predicting the Onset of Condensate Droplet Departure from a Vertical Surface Due to Air Flow—Applications to Topographically- Mod-ified, Micro-Grooved Surfaces[J]. Experimental Thermal and Fluid Science, 2012, 40: 38-49.

[6] RAFATI NASR M, FAUCHOUX M, BESANT R W, et al. A Review of Frosting in Air-to-Air Energy Exchangers[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 538-554.

[7] SCHELLENBERGER F, ENCINAS N, VOLLMER D, et al. How Water Advances on Superhydrophobic Surfaces[J]. Physical Review Letters, 2016, 116(9): 096101.

[8] BAI Hao, JU Jie, ZHENG Yong-mei, et al. Functional Fibers with Unique Wettability Inspired by Spider Silks[J]. Advanced Materials, 2012, 24(20): 2786-2791.

[9] AYOIB A, HASHIM U, GOPINATH S C B, et al. Design and Fabrication of PDMS Microfluidics Device for Rapid and Label-Free DNA Detection[J]. Applied Physics A, 2020, 126(3): 1-8.

[10] SUN Ling-yu, BIAN Fei-ka, WANG Yu, et al. Bioins-pired Programmable Wettability Arrays for Droplets Manipulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(9): 4527-4532.

[11] YANG Shao-lin, LI Mao-hui, FANG Guo-li, et al. Flexible Cement-Sand Coated Cotton Fabrics with Superhydro-philic and Underwater Superoleophobic Wettability for the Separation of Water/Oil Mixtures and Oil-in-Water Emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125611.

[12] ZHENG Yong-mei, BAI Hao, HUANG Zhong-bing, et al. Directional Water Collection on Wetted Spider Silk[J]. Nature, 2010, 463(7281): 640-643.

[13] VENKATESAN H, CHEN Jian-ming, LIU Hai-yang, et al. A Spider-Capture-Silk-Like Fiber with Extremely High- Volume Directional Water Collection[J]. Advanced Functional Materials, 2020, 30(30): 2002437.

[14] WANG Qiu-yue, YANG Fu-chao, GUO Zhi-guang. The Intrigue of Directional Water Collection Interface: Mech-anisms and Strategies[J]. Journal of Materials Chemistry A, 2021, 9(40): 22729-22758.

[15] LEI Jun, GUO Zhi-guang. A Fog-Collecting Surface Mimicking the Namib Beetle: Its Water Collection Efficiency and Influencing Factors[J]. Nanoscale, 2020, 12(13): 6921-6936.

[16] N?RGAARD T, DACKE M. Fog-Basking Behaviour and Water Collection Efficiency in Namib Desert Darkling Beetles[J]. Frontiers in Zoology, 2010, 7: 23.

[17] CHAUDHURY M K, WHITESIDES G M. How to Make Water Run Uphill[J]. Science, 1992, 256(5063): 1539- 1541.

[18] 原子超, 詹海洋, 劉聰, 等. 浸潤性表面液滴定向輸運(yùn)研究進(jìn)展[J]. 表面技術(shù), 2021, 50(8): 1-17.

YUAN Zi-chao, ZHAN Hai-yang, LIU Cong, et al. Research Progress on Droplet Directional Transport on Wetting Surfaces[J]. Surface Technology, 2021, 50(8): 1-17.

[19] 王鑫, 陳振乾. 梯度潤濕表面上液滴定向遷移及合并行為的格子Boltzmann模擬[J]. 計(jì)算力學(xué)學(xué)報(bào), 2019, 36(4): 511-519.

WANG Xin, CHEN Zhen-qian. Simulation of Droplet Directional Migration and Coalescence on Gradient Wetting Surfaces by Lattice Boltzmann Method[J]. Chinese Journal of Computational Mechanics, 2019, 36(4): 511-519.

[20] BAI Fan, LI Yu-ke, ZHANG Hong-na, et al. A Numerical Study on Viscoelastic Droplet Migration on a Solid Substrate Due to Wettability Gradient[J]. Electrophoresis, 2019, 40(6): 851-858.

[21] DIEWALD F, LAUTENSCHLAEGER M P, STEPHAN S, et al. Molecular Dynamics and Phase Field Simulations of Droplets on Surfaces with Wettability Gradient[J]. Computer Methods in Applied Mechanics and Engin-eering, 2020, 361: 112773.

[22] HOU Y P, FENG S L, DAI L M, et al. Droplet Manipu-lation on Wettable Gradient Surfaces with Micro-/Nano- Hierarchical Structure[J]. Chemistry of Materials, 2016, 28(11): 3625-3629.

[23] LU Yang, SHEN Yi-zhou, TAO Jie, et al. Droplet Direct-ional Movement on the Homogeneously Structured Superh-y-drophobic Surface with the Gradient Non-Wetta-bility[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2020, 36(4): 880-888.

[24] SCHUTZIUS T M, ELSHARKAWY M, TIWARI M K, et al. Surface Tension Confined (STC) Tracks for Capillary- Driven Transport of Low Surface Tension Liquids[J]. Lab on a Chip, 2012, 12(24): 5237-5242.

[25] KOSTAL E, STROJ S, KASEMANN S, et al. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superh-ydrophobic Surface Micropatterns Using Femtosecond Lasers[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(9): 2933-2941.

[26] 張倩倩, 漆雪蓮, 張會(huì)臣. 超疏水結(jié)構(gòu)對AZ91D鎂合金微摩擦磨損性能的影響[J]. 表面技術(shù), 2018, 47(11): 102-108.

ZHANG Qian-qian, QI Xue-lian, ZHANG Hui-chen. Effect of Superhydrophobic Structure on Microfriction and Wear Properties of AZ91D Magnesium Alloy[J]. Surface Technology, 2018, 47(11): 102-108.

[27] BAI Hao, WANG Lin, JU Jie, et al. Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns[J]. Advanced Materials, 2014, 26(29): 5025-5030.

[28] ZHANG Ji-lin, HAN Yan-chun. Shape-Gradient Comp-osite Surfaces: Water Droplets Move Uphill[J]. Langmuir, 2007, 23(11): 6136-6141.

[29] KHOO H S, TSENG F G. Spontaneous High-Speed Transport of Subnanoliter Water Droplet on Gradient Nanotextured Surfaces[J]. Applied Physics Letters, 2009, 95(6): 063108.

[30] ALHESHIBRI M H, ROGERS N G, SOMMERS A D, et al. Spontaneous Movement of Water Droplets on Patterned Cu and Al Surfaces with Wedge-Shaped Gradients[J]. Applied Physics Letters, 2013, 102(17): 174103.

[31] BRACKBILL J U, KOTHE D B, ZEMACH C. A Continuum Method for Modeling Surface Tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.

[32] SHEN Chao-qun, LIU Ling-bo, WU Su-chen, et al. Lattice Boltzmann Simulation of Droplet Condensation on a Surface with Wettability Gradient[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(7): 1403-1413.

[33] XU Bo, CHEN Zhen-qian. Droplet Movement on a Composite Wedge-Shaped Surface with Multi-Gradients and Different Gravitational Field by Molecular Dyna-mics[J]. Microgravity Science and Technology, 2018, 30(4): 571-579.

[34] 麥彥博, 付宇航, 楊帆. 水平潤濕性梯度表面上液滴運(yùn)動(dòng)數(shù)值模擬[J]. 價(jià)值工程, 2016, 35(23): 209-211.

MAI Yan-bo, FU Yu-hang, YANG Fan. Numerical Simulation of Droplet Movement on a Horizontal Wett-ability Gradient Surface[J]. Value Engineering, 2016, 35(23): 209-211.

[35] ZHANG Xiao-yu, HUANG Meng-yu, JI Qian, et al. Lattice Boltzmann Modeling and Experimental Study of Water Droplet Spreading on Wedge-Shaped Pattern Sur-fa-ce[J]. International Journal of Heat and Mass Transfer, 2019, 130: 857-861.

Numerical Study on Droplet Self-transport on Composite Gradient Wedge-shaped Surface

,,,

(MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing 210094, China)

The control of droplets on heat transfer surfaces is crucial to the overall energy efficiency of the system, and self-transport of droplets can be controlled by surface wettability modification. Influenced by natural surfaces in nature, many scholars have introduced wetting gradients and wedge patterns to drive droplets to move on surfaces. Although the surface of the wetting gradient can realize the self-transportation of droplets, the bottleneck of the wettability range greatly limits the moving distance of the droplets. Droplet transport on the surface of the wedge pattern is restricted by the shape of the wedge, and larger wedge tip size is required for long-distance transport. This paper aimsto study the directional self-transport of droplets and further improve the self-transport rate of droplets, in addition to introducing wettability gradient and wedge-shape, and the two were combined on the surface. Based on the VOF (volume fluid model)model, a model suitable for the combination of wettability gradient and wedge-shape pattern is used to analyze the effects of wettability gradient and wedge angle on the droplet displacement by numerical simulation. The results show that the moving speed of the droplet can be effectively controlled by adjusting the wetting gradient and wedge angle. The unbalanced surface tension of the droplets increases with the wetting gradient, leading to higher moving velocities. The average velocity of the droplets on the surface with a wettability gradient of 15 (°)/mm was 42.3% and 130% faster than that on the surfaces of 10 (°)/mm and 5 (°)/mm. For larger wedge angle, although the speed of droplet was higher during the acceleration phase, it would stop earlier due to the loss of the driving force.The smaller wedge angle, the greater the displacement of the droplet. The droplet firstlystopped moving on the surface of 40° wedge angle, and the displacement on the surface of 20° wedge angle was 10.3% and 32.3% farther than that on the surface of 30° and 40° wedge angle, respectively. Due to the combination of the wettability gradient and wedge-shape on the composite gradient wedge-shaped surface, under the combined action of the unbalanced surface tension and the driving force formed by the wedge angle, the droplet moves faster and further on the composite gradient wedge surface. After combined wetting gradient and wedge pattern, droplets on 20° wedge angle surface at 15 (°)/mm and 10 (°)/mmcan move to the exit of the calculation model, and the average velocity of the droplet on the surface with 15 (°)/mm and 40° wedge angle reaches 292 mm/s, which is 37.7% higher than that of the single gradient surface and 175.5% higher than that of the single wedge pattern surface (20°).The composite gradient wedge-shaped surface that combined the wettability gradient and the wedge pattern can simultaneously reduce the bottleneck of the wettability range and the wedge shape restriction and improve the moving speed and distance of the droplets. The research results will help design efficient droplet transport functional surfaces and extend the fields of condensing devices, microfluidic devices, and drug detection.

wettability gradient; interfacial tension; wedge-shape; self-transport; two-phase flow; numerical simulation

TQ022.1

A

1001-3660(2022)11-0405-07

10.16490/j.cnki.issn.1001-3660.2022.11.038

2021–11–09;

2022–03–28

2021-11-09;

2022-03-28

國家自然科學(xué)基金項(xiàng)目(51706101)

The National Natural Science Foundation of China (51706101)

高芳(1996—),女,碩士研究生,主要研究方向?yàn)橐旱屋斶\(yùn)。

GAO Fang (1996-),F(xiàn)emale, Postgraduate, Research focus: droplet transport.

鄭佳宜(1986—),女,博士,副教授,主要研究方向?yàn)橐旱蝿?dòng)力學(xué)。

ZHENG Jia-yi (1986-), Female, Doctor, Associate professor, Research focus: droplet dynamics.

高芳, 鄭佳宜, 李準(zhǔn), 等. 復(fù)合梯度楔形表面上液滴自輸運(yùn)特性的數(shù)值研究[J]. 表面技術(shù), 2022, 51(11): 405-411.

GAO Fang, ZHENG Jia-yi, LI Zhun, et al. Numerical Study on Droplet Self-transport on Composite Gradient Wedge-shaped Surface[J]. Surface Technology, 2022, 51(11): 405-411.

責(zé)任編輯:劉世忠

猜你喜歡
潤濕親水楔形
基于低場核磁共振表征的礦物孔隙潤濕規(guī)律
親水作用色譜法測定食品中5種糖
History of the Alphabet
鋼絲繩楔形接頭連接失效分析與預(yù)防
Eight Surprising Foods You’er Never Tried to Grill Before
腹腔鏡下胃楔形切除術(shù)治療胃間質(zhì)瘤30例
乙醇潤濕對2種全酸蝕粘接劑粘接性能的影響
預(yù)潤濕對管道潤濕性的影響
銀川親水體育中心場館開發(fā)與利用研究
親水改性高嶺土/聚氨酯乳液的制備及性能表征
闽清县| 珲春市| 鄂托克前旗| 延吉市| 沧源| 汕尾市| 英吉沙县| 治县。| 宁晋县| 会昌县| 会宁县| 崇阳县| 定结县| 拉萨市| 兴海县| 玛纳斯县| 绥滨县| 辽中县| 游戏| 壤塘县| 永丰县| 平遥县| 个旧市| 北海市| 龙南县| 福鼎市| 浑源县| 牟定县| 罗源县| 勐海县| 安义县| 布拖县| 特克斯县| 寻乌县| 石泉县| 天镇县| 海兴县| 海门市| 土默特左旗| 樟树市| 清河县|