国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

也談符號(hào)意識(shí)及其培養(yǎng)

2022-12-21 21:36:15高慧
教育研究與評(píng)論 2022年11期
關(guān)鍵詞:符號(hào)意識(shí)小學(xué)數(shù)學(xué)

摘要:作為數(shù)學(xué)課程要培養(yǎng)的學(xué)生核心素養(yǎng)的主要表現(xiàn)之一,符號(hào)意識(shí)是把符號(hào)視為重要的語言,理解符號(hào)的意義,體會(huì)符號(hào)的特點(diǎn),并根據(jù)非符號(hào)表征的情境創(chuàng)造符號(hào)和使用符號(hào),因而表現(xiàn)為符號(hào)理解、符號(hào)表示、符號(hào)操作三個(gè)方面。根據(jù)這三個(gè)方面表現(xiàn)的關(guān)系,在小學(xué)數(shù)學(xué)教學(xué)中,教師可以重點(diǎn)引導(dǎo)學(xué)生創(chuàng)造數(shù)學(xué)符號(hào)表示意義,操作數(shù)學(xué)符號(hào)發(fā)展意義,并在這一過程中充分理解數(shù)學(xué)符號(hào)的意義,體會(huì)(感悟)數(shù)學(xué)符號(hào)的特點(diǎn)(功能),從而培養(yǎng)學(xué)生的符號(hào)意識(shí)。

關(guān)鍵詞:小學(xué)數(shù)學(xué);符號(hào)意識(shí);符號(hào)表征;符號(hào)操作

一、 符號(hào)意識(shí)的表現(xiàn)

符號(hào)意識(shí)是《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》(以下簡稱“新課標(biāo)”)提出的數(shù)學(xué)課程要培養(yǎng)的學(xué)生核心素養(yǎng)的主要表現(xiàn)之一。仔細(xì)分析新課標(biāo)對(duì)符號(hào)意識(shí)的描述可以發(fā)現(xiàn),其主要表現(xiàn)為三個(gè)方面。首先,“知道符號(hào)表達(dá)的現(xiàn)實(shí)意義”“知道用符號(hào)表達(dá)的運(yùn)算規(guī)律和推理結(jié)論具有一般性”(③④ 中華人民共和國教育部.義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)[S].北京:北京師范大學(xué)出版社,2022:8,8,8。),這指向“符號(hào)理解”。它要求學(xué)生能夠認(rèn)識(shí)常見的數(shù)學(xué)符號(hào)(如數(shù)字符號(hào)、字母符號(hào)、運(yùn)算符號(hào)、關(guān)系符號(hào)、表示圖形的符號(hào)以及具有特定意義的輔助符號(hào)等),理解它們?cè)诰唧w情境中表示的意義,體會(huì)它們所具有的準(zhǔn)確性、簡約性、抽象性、一般性等特點(diǎn)(邵光華,張妍,程玉婷.再談數(shù)學(xué)語言及數(shù)學(xué)語言能力培養(yǎng)[J].教育研究與評(píng)論,2022(7):54。)。其次,“能夠初步運(yùn)用符號(hào)表示數(shù)量、關(guān)系和一般規(guī)律”③,這指向“符號(hào)表征”。它要求學(xué)生能夠創(chuàng)造數(shù)學(xué)符號(hào)表征非數(shù)學(xué)符號(hào)表征的情境。最后,“初步體會(huì)符號(hào)的使用是數(shù)學(xué)表達(dá)和數(shù)學(xué)思考的重要形式”④,這指向“符號(hào)操作”。它要求學(xué)生能夠操作數(shù)學(xué)符號(hào)進(jìn)行運(yùn)算和推理,展開形式化的數(shù)學(xué)思考。

進(jìn)一步分析可以發(fā)現(xiàn),三個(gè)方面是緊密聯(lián)系的。符號(hào)理解和符號(hào)表征是互逆的過程,一個(gè)是從符號(hào)到意義,另一個(gè)是從意義到符號(hào)。在沒有符號(hào)之前,符號(hào)表征是符號(hào)理解的基礎(chǔ),即先根據(jù)意義創(chuàng)造符號(hào)表征,再由此理解符號(hào)的意義。而有了基本符號(hào)之后,符號(hào)理解則是符號(hào)表征的基礎(chǔ),即先理解基本符號(hào)的意義,再由此針對(duì)具體情境創(chuàng)造符號(hào)表征。在符號(hào)理解和符號(hào)表征的基礎(chǔ)上,可以通過符號(hào)操作展開形式化的數(shù)學(xué)思考,從而獲得數(shù)學(xué)結(jié)論,解決數(shù)學(xué)問題。此外需要指出的是,體會(huì)數(shù)學(xué)符號(hào)的特點(diǎn)特別重要,它有助于“感悟符號(hào)的數(shù)學(xué)功能”,形成符號(hào)表征和符號(hào)操作的意識(shí)。

實(shí)際上,布魯納的認(rèn)知表征理論認(rèn)為:智慧發(fā)展的一般進(jìn)程是,從動(dòng)作表征經(jīng)圖像表征而達(dá)到符號(hào)表征的世界。從這個(gè)角度看,在數(shù)學(xué)課程領(lǐng)域,符號(hào)意識(shí)其實(shí)就和核心素養(yǎng)的另一個(gè)主要表現(xiàn)——幾何直觀類似:幾何直觀是把圖形視為重要的語言,讀圖,體會(huì)圖形的特點(diǎn)(直觀),并根據(jù)非圖形表征的情境作圖和用圖,因而表現(xiàn)為圖形理解、圖形表征和圖形操作三個(gè)方面(程茂山.也談幾何直觀的培養(yǎng)[J].教育研究與評(píng)論(小學(xué)教育教學(xué)),2022(9):69。);符號(hào)意識(shí)是把符號(hào)視為重要的語言,理解符號(hào)的意義,體會(huì)符號(hào)的特點(diǎn),并根據(jù)非符號(hào)表征的情境創(chuàng)造符號(hào)和使用符號(hào),因而表現(xiàn)為符號(hào)理解、符號(hào)表示、符號(hào)操作三個(gè)方面。

二、 符號(hào)意識(shí)的培養(yǎng)

根據(jù)上述符號(hào)意識(shí)三個(gè)方面表現(xiàn)的關(guān)系,在小學(xué)數(shù)學(xué)教學(xué)中,教師可以重點(diǎn)引導(dǎo)學(xué)生創(chuàng)造數(shù)學(xué)符號(hào)表示意義,操作數(shù)學(xué)符號(hào)發(fā)展意義,并在這一過程中充分理解數(shù)學(xué)符號(hào)的意義,體會(huì)(感悟)數(shù)學(xué)符號(hào)的特點(diǎn)(功能),從而培養(yǎng)學(xué)生的符號(hào)意識(shí)。

(一) 引導(dǎo)學(xué)生創(chuàng)造數(shù)學(xué)符號(hào)表示意義

數(shù)學(xué)源于對(duì)現(xiàn)實(shí)世界的抽象。數(shù)學(xué)研究對(duì)象和結(jié)論,或者說數(shù)學(xué)概念和命題,也就是數(shù)學(xué)意義,常常需要?jiǎng)?chuàng)造數(shù)學(xué)符號(hào)來表示(有時(shí)可以借助自然語言符號(hào)來表示)。教學(xué)中,教師要引導(dǎo)學(xué)生經(jīng)歷創(chuàng)造數(shù)學(xué)符號(hào)表示數(shù)學(xué)意義的過程,體會(huì)到數(shù)學(xué)符號(hào)表征既有“講道理”的必然成分,也有“人為規(guī)定”的偶然成分,即“理性”的“創(chuàng)造”。這體現(xiàn)了弗賴登塔爾的“再創(chuàng)造”教育思想,能幫助學(xué)生充分理解數(shù)學(xué)符號(hào)的意義,體會(huì)數(shù)學(xué)符號(hào)的簡約性、一般性特點(diǎn),同時(shí)感受數(shù)學(xué)的文化本質(zhì)。如果學(xué)生先入為主地記住了教材中采用的和要求掌握的現(xiàn)代通用的數(shù)學(xué)符號(hào),教師要引導(dǎo)學(xué)生嘗試創(chuàng)造不同的數(shù)學(xué)符號(hào)表示相同的數(shù)學(xué)意義,并適當(dāng)展現(xiàn)數(shù)學(xué)史上人類創(chuàng)造過的不同的數(shù)學(xué)符號(hào);同時(shí),要引導(dǎo)學(xué)生比較不同的數(shù)學(xué)符號(hào),體會(huì)它們的優(yōu)劣。這正如波利亞所說的:“讓你的學(xué)生提出問題,要不就像他們自己提問的那樣由你去提出這些問題;讓你的學(xué)生給出解答,要不就像他們自己給出的那樣由你去給出解答?!保▎讨巍げɡ麃?數(shù)學(xué)的發(fā)現(xiàn)(第二卷)[M].劉景麟,曹之江,鄒清蓮,譯.呼和浩特:內(nèi)蒙古人民出版社,1981:179。)例如,十進(jìn)位值制記數(shù)法是算術(shù)發(fā)展史上的重大創(chuàng)造,而現(xiàn)代通用的阿拉伯?dāng)?shù)字是這一記數(shù)法的重要表現(xiàn)形式。在小學(xué)數(shù)學(xué)“數(shù)與運(yùn)算”內(nèi)容的教學(xué)中,教師要引導(dǎo)學(xué)生嘗試創(chuàng)造數(shù)概念的符號(hào)表征(即記數(shù)法),通過手指記數(shù)、實(shí)物記數(shù)、結(jié)繩記數(shù)、刻痕記數(shù)、算籌記數(shù)、算盤記數(shù)、古羅馬數(shù)字記數(shù)、漢字記數(shù)、阿拉伯?dāng)?shù)字記數(shù)等活動(dòng)“再現(xiàn)”人類記數(shù)史(石志群.數(shù)學(xué)符號(hào)教學(xué):基于原理,發(fā)揮價(jià)值[J].教育研究與評(píng)論(中學(xué)教育教學(xué)),2022(3):4546。),體會(huì)現(xiàn)代通用的阿拉伯?dāng)?shù)字所蘊(yùn)含的簡潔的“數(shù)碼”思想(用不同的符號(hào)表示不同的數(shù))、整體的“進(jìn)制”思想(將多個(gè)小的計(jì)數(shù)單位組成一個(gè)大的計(jì)數(shù)單位)和直觀的“位值”思想(用不同的位置表示不同的計(jì)數(shù)單位),認(rèn)識(shí)其他記數(shù)法的不足(比如算籌記數(shù)、算盤記數(shù)、古羅馬數(shù)字記數(shù)沒有很好地體現(xiàn)“數(shù)碼”思想,古羅馬數(shù)字記數(shù)、漢字記數(shù)沒有很好地體現(xiàn)“位值”思想)。同時(shí)說明:十進(jìn)制記數(shù)法與非十進(jìn)制(如二進(jìn)制、八進(jìn)制、十二進(jìn)制、六十進(jìn)制)記數(shù)法相比,并沒有特別明顯的優(yōu)勢,更多地是因?yàn)槿祟惽『糜惺畟€(gè)手指以及十這個(gè)數(shù)不大不小(表示常見的數(shù)時(shí)所用的數(shù)碼和數(shù)位平衡得較好,都不多不少)而被廣泛采用。

同樣地,教學(xué)數(shù)的大小比較、四則運(yùn)算以及分?jǐn)?shù)概念、小數(shù)概念、負(fù)數(shù)概念乃至各種圖形及其關(guān)系時(shí),可以讓學(xué)生嘗試創(chuàng)造表示等于、不等于、大于、小于、加、減、乘、除、運(yùn)算順序、分?jǐn)?shù)、小數(shù)、負(fù)數(shù)、點(diǎn)、線、角、三角形、四邊形、圓、平行、垂直等含義的符號(hào),并適當(dāng)介紹有關(guān)符號(hào)的演變過程。(有關(guān)歷史可參見:徐品芳,張紅.數(shù)學(xué)符號(hào)史[M].北京:科學(xué)出版社,2006;關(guān)于等號(hào)、不等號(hào)的教學(xué)案例可參見:劉勁苓,文靜.數(shù)學(xué)文化素養(yǎng)話題之十一:等號(hào)和不等號(hào)[J].教育視界,2022(29)。)

再如,字母表示數(shù)是代數(shù)發(fā)展史上的基礎(chǔ)性創(chuàng)造。最初,字母表示的是確定的未知數(shù)(常量),由此發(fā)展出了方程方法;后來,字母可以表示不確定的任意數(shù)(變量),由此發(fā)展出了具有較強(qiáng)一般性的代數(shù)知識(shí)體系(包括函數(shù)內(nèi)容)。在小學(xué)數(shù)學(xué)“數(shù)量關(guān)系”的教學(xué)中,教師要引導(dǎo)學(xué)生從具體的例子中尋找一般的數(shù)量關(guān)系,進(jìn)而創(chuàng)造這些一般規(guī)律的符號(hào)表征,如用符號(hào)(字母式子)表示數(shù)位分解、因數(shù)分解以及和差關(guān)系、倍比關(guān)系、更復(fù)雜的組合關(guān)系,表示五種運(yùn)算律以及一些有趣的運(yùn)算規(guī)律,表示分?jǐn)?shù)的基本性質(zhì)、分?jǐn)?shù)的四則運(yùn)算法則,表示比例的基本性質(zhì)、正比例關(guān)系、反比例關(guān)系,表示等式的基本性質(zhì),表示多邊形的內(nèi)角和公式、多種平面圖形的面積公式、多種立體圖形的體積公式,表示釘子板上的多邊形的面積公式、圖形縮放前后面積的變化規(guī)律、表面涂色的正方體的有關(guān)規(guī)律,表示諸如圖1等所示的圖形拼擺中的一般數(shù)量關(guān)系,表示現(xiàn)實(shí)中常見的諸如“路程=速度×?xí)r間”等的數(shù)量關(guān)系……體會(huì)其中“講道理”的必然成分和“人為規(guī)定”的偶然成分。

這里值得一提的是,新課標(biāo)在小學(xué)部分刪去了方程的有關(guān)內(nèi)容(移到了初中部分)。因此,在小學(xué)數(shù)學(xué)教學(xué)中,更多地要引導(dǎo)學(xué)生從不確定的任意數(shù)(變量)的角度看字母表示。比如,小明有x張漫畫卡,小華比小明多5張漫畫卡,那么小華有x+5張漫畫卡。這一信息放在可用方程求解的具體問題中時(shí),x可以是確定的未知數(shù)(常量),但教師更多地要引導(dǎo)學(xué)生體會(huì)“x+5表示比x多5的數(shù)量”的一般性。

(二) 引導(dǎo)學(xué)生操作數(shù)學(xué)符號(hào)發(fā)展意義

數(shù)學(xué)在抽象的基礎(chǔ)上,通過對(duì)研究對(duì)象和結(jié)論的形式化運(yùn)算和推理獲得進(jìn)一步發(fā)展,形成更多的結(jié)論和方法,即抽象結(jié)構(gòu)。這里的形式化運(yùn)算和推理主要表現(xiàn)為符號(hào)操作。教學(xué)中,有了數(shù)學(xué)符號(hào)表征之后,教師要引導(dǎo)學(xué)生根據(jù)形式化規(guī)則操作數(shù)學(xué)符號(hào),獲得新的數(shù)學(xué)符號(hào)表征,從而發(fā)展新的意義。在這一過程中,學(xué)生能更充分地體會(huì)到數(shù)學(xué)符號(hào)的簡約性、一般性特點(diǎn),形成良好的符號(hào)意識(shí)。

例如,在小學(xué)數(shù)學(xué)“數(shù)與運(yùn)算”內(nèi)容的教學(xué)中,在學(xué)生理解了“相同計(jì)數(shù)單位的個(gè)數(shù)相加減”以及“個(gè)數(shù)和個(gè)數(shù)相乘除得到結(jié)果的個(gè)數(shù),計(jì)數(shù)單位和計(jì)數(shù)單位相乘除得到結(jié)果的計(jì)數(shù)單位”的算理之后(一開始不是很理解的話,也可以在具體計(jì)算中慢慢理解),教師可以引導(dǎo)學(xué)生探索基于現(xiàn)代通用的阿拉伯?dāng)?shù)字(記數(shù)符號(hào))的計(jì)算形式(規(guī)則),從而實(shí)現(xiàn)以20以內(nèi)的不進(jìn)位、進(jìn)位加法和不退位、退位減法以及表內(nèi)乘法和除法計(jì)算為基礎(chǔ),通過符號(hào)操作完成多位數(shù)乃至小數(shù)的四則運(yùn)算(主要指向現(xiàn)代常用的豎式,也可以是其他形式,如乘法的“鋪地錦”)。有了合適的計(jì)算形式(規(guī)則),學(xué)生不需要具體地考慮(就像計(jì)算20以內(nèi)的不進(jìn)位、進(jìn)位加法和不退位、退位減法以及表內(nèi)乘法和除法那樣)兩個(gè)數(shù)的運(yùn)算結(jié)果是多少,而只需要對(duì)數(shù)字(記數(shù)符號(hào))進(jìn)行相應(yīng)的符號(hào)操作,得到最終的符號(hào)表征,從而體會(huì)到形式化的符號(hào)操作因?yàn)椴豢紤]情境背景和具體意義而簡化了思維,具有簡約性。與此同時(shí),教師還可以引導(dǎo)學(xué)生探索、比較基于其他記數(shù)法的四則運(yùn)算形式(規(guī)則),從中深入體會(huì)阿拉伯?dāng)?shù)字的優(yōu)越性。

再如,在小學(xué)數(shù)學(xué)“數(shù)量關(guān)系”內(nèi)容的教學(xué)中,教師可以引導(dǎo)學(xué)生基于數(shù)位分解、因數(shù)分解、和差關(guān)系、倍比關(guān)系等的符號(hào)表征(字母式子),通過利用運(yùn)算律進(jìn)行式子變形(符號(hào)操作),得到(或說明)一些有趣的運(yùn)算規(guī)律。以蘇教版小學(xué)數(shù)學(xué)三年級(jí)下冊(cè)“有趣的乘法計(jì)算”的教學(xué)為例,可以通過(10a+b)×11=110a+11b=100a+10(a+b)+b的符號(hào)操作說明兩位數(shù)乘11的計(jì)算規(guī)律,也可以通過(10a+b)(10a+10-b)=100a(a+1)-10ab+10ab+b(10-b)=100a(a+1)+b(10-b)的符號(hào)操作說明“頭同尾合十”的兩位數(shù)乘法計(jì)算規(guī)律。同樣地,“和與積的奇偶性”“3的倍數(shù)的特征”乃至在圖2中用“十字形”任意框出的五個(gè)數(shù)之和與中間數(shù)的關(guān)系等一般的數(shù)量關(guān)系(規(guī)律),都可以基于一般化的符號(hào)表征(字母式子),通過符號(hào)操作(利用運(yùn)算律進(jìn)行式子變形)得到(或說明)。

此外,列方程解決實(shí)際問題是最典型的先創(chuàng)造數(shù)學(xué)符號(hào)(列方程)表示意義,再操作數(shù)學(xué)符號(hào)(利用性質(zhì)解方程,不考慮實(shí)際意義)發(fā)展意義(得結(jié)果,還具有實(shí)際意義)的過程,可以充分展現(xiàn)數(shù)學(xué)符號(hào)的簡約性、一般性。雖然方程的有關(guān)內(nèi)容移到了初中,但是在小學(xué)數(shù)學(xué)教學(xué)中,教師還可以適當(dāng)滲透方程思想,以體現(xiàn)符號(hào)表征與操作在解決問題時(shí)的優(yōu)勢。例如,實(shí)際問題“甲庫搬出240袋水泥到乙?guī)旌?,甲庫還比乙?guī)於?30袋,則原來乙?guī)毂燃讕焐俣嗌俅?,因?yàn)楸瘸R姷摹罢l給誰后就同樣多”的問題更復(fù)雜,學(xué)生解決時(shí)常常理不清數(shù)量關(guān)系。如果借助符號(hào)表征和操作來解決,則很簡單:由(甲-240)-(乙+240)=130,得(甲-乙)=610。

最后需要指出的是,雖然在創(chuàng)造數(shù)學(xué)符號(hào)表示意義以及操作數(shù)學(xué)符號(hào)發(fā)展意義的過程中,學(xué)生可以較好地理解符號(hào)的意義,但是,因?yàn)榉?hào)具有不同程度的抽象性,其意義也常??梢宰兓R虼?,教師還需要注意反過來,引導(dǎo)學(xué)生閱讀所給符號(hào),適當(dāng)發(fā)散思維,解釋各種可能的意義。比如,將“0”理解為“沒有”或“一種臨界狀態(tài)”。再如,將“=”理解為“計(jì)算結(jié)果”或“等量關(guān)系”。又如,將“2a+2b”理解為長方形周長的一般形式。

(高慧,南京師范大學(xué)附屬中學(xué)新城小學(xué)北校區(qū)。)

猜你喜歡
符號(hào)意識(shí)小學(xué)數(shù)學(xué)
用符號(hào)化思想點(diǎn)亮小學(xué)數(shù)學(xué)課堂
數(shù)學(xué)錯(cuò)題的自主管理與有效利用研究
成才之路(2016年26期)2016-10-08 11:34:32
建模思想在數(shù)學(xué)教學(xué)中的滲透研究
成才之路(2016年26期)2016-10-08 11:31:43
農(nóng)村學(xué)校數(shù)學(xué)生活化教學(xué)探析
成才之路(2016年26期)2016-10-08 11:22:10
培養(yǎng)學(xué)生自主探究能力的策略研究
成才之路(2016年26期)2016-10-08 11:18:41
體驗(yàn)式學(xué)習(xí)在數(shù)學(xué)教學(xué)中的應(yīng)用研究
成才之路(2016年25期)2016-10-08 10:50:54
培養(yǎng)數(shù)學(xué)意識(shí)發(fā)展思維能力的研究
成才之路(2016年25期)2016-10-08 10:12:56
小學(xué)階段數(shù)學(xué)符號(hào)意識(shí)研究綜述
小學(xué)生數(shù)學(xué)符號(hào)意識(shí)的培養(yǎng)
小學(xué)數(shù)學(xué)教學(xué)中發(fā)展學(xué)生符號(hào)意識(shí)的有效策略
高雄市| 邛崃市| 缙云县| 鸡西市| 鄱阳县| 漠河县| 连山| 阳春市| 平南县| 无为县| 威远县| 建平县| 玉门市| 唐山市| 巫山县| 德格县| 平凉市| 临洮县| 湾仔区| 武强县| 沈阳市| 乐都县| 忻城县| 兴安县| 广德县| 赤峰市| 昭通市| 五莲县| 黑山县| 西贡区| 萍乡市| 民乐县| 穆棱市| 巫山县| 运城市| 丰都县| 迁西县| 滁州市| 佛山市| 天峻县| 安宁市|