張鑫堯,張敏,朱遠(yuǎn)芃,惠曉麗,柴如山,郜紅建,羅來超
巢湖流域磷肥減量施用對稻麥輪作體系作物產(chǎn)量和品質(zhì)的影響
張鑫堯1,張敏1,朱遠(yuǎn)芃1,惠曉麗2,柴如山1,郜紅建1,羅來超1
1安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院/農(nóng)田生態(tài)保育與污染防控安徽省重點實驗室/長江經(jīng)濟(jì)帶磷資源高效利用與水環(huán)境保護(hù)研究中心,合肥 230036;2西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院/旱區(qū)作物逆境生物學(xué)國家重點實驗室,陜西楊凌 712100
【目的】探討稻麥輪作體系下磷肥減量施用對作物籽粒產(chǎn)量與營養(yǎng)品質(zhì)的影響,為巢湖流域稻麥輪作體系下磷肥減量增效,作物優(yōu)質(zhì)生產(chǎn)提供理論依據(jù)?!痉椒ā坑?017—2019年在巢湖流域進(jìn)行磷肥減量施用田間試驗,設(shè)置5個處理:對照(CK,不施磷)、農(nóng)戶模式(P1,磷用量90 kg P2O5·hm-2)、減磷10%(P2,磷用量81 kg P2O5·hm-2)、減磷20%(P3,磷用量72 kg P2O5·hm-2)、減磷30%(P4,磷用量63 kg P2O5·hm-2)。分析磷肥減量施用對水稻和小麥產(chǎn)量及其構(gòu)成要素,籽粒蛋白質(zhì)及組分含量,微量元素及其生物有效性的影響?!窘Y(jié)果】與不施磷相比,施磷水稻和小麥的籽粒產(chǎn)量分別顯著提高了9.8%—28.3%和56.6%—89.7%。減磷10%和20%處理的水稻和小麥籽粒產(chǎn)量與農(nóng)戶模式無顯著差異(>0.05),但減磷30%處理的水稻產(chǎn)量顯著降低14.4%。與農(nóng)戶模式相比,減磷處理顯著影響作物蛋白質(zhì)、醇溶蛋白和谷蛋白含量,對結(jié)構(gòu)蛋白(清蛋白+球蛋白)無顯著影響,減磷20%處理水稻籽粒蛋白質(zhì)和谷蛋白含量降低2.7%和32.3%,減磷30%處理的水稻和小麥籽粒蛋白質(zhì)和谷蛋白含量分別降低6.8%和21.9%、48.4%和31.6%。與不施磷相比,施磷同樣顯著影響水稻和小麥籽粒微量元素含量及其生物有效性。減磷處理較農(nóng)戶模式水稻和小麥籽粒Fe、Cu和Zn含量提高21.2%和19.3%、11.9%和15.8%、14.5%和19.9%;P/Fe、P/Cu和P/Zn摩爾比降低21.6%和26.3%、20.6%和27%、17.7%和21.3%。水稻和小麥籽粒Zn含量隨施磷量的降低而線性增加,減磷處理間的作物籽粒Fe、Mn和Cu含量無顯著差異。水稻籽粒P/Zn摩爾比隨施磷量的降低而降低,減磷處理間籽粒P/Fe、P/Mn和P/Cu摩爾比無顯著差異;小麥籽粒P/Fe、P/Mn、P/Cu和P/Zn摩爾比均隨施磷量的降低而降低,提高了小麥籽粒Fe、Cu和Zn的生物有效性?!窘Y(jié)論】在巢湖流域稻麥輪作區(qū),磷肥減量20%,即磷肥用量由90 kg P2O5·hm-2減至72 kg P2O5·hm-2時仍可保證作物穩(wěn)產(chǎn)。磷肥減量施用雖在一定程度上降低了籽粒蛋白質(zhì)含量和谷蛋白含量,但顯著提高了微量元素Fe、Cu和Zn的含量和生物有效性。綜合考慮,推薦磷肥減量20%為巢湖流域稻麥輪作區(qū)實現(xiàn)磷肥增效及作物高產(chǎn)優(yōu)質(zhì)生產(chǎn)的磷肥優(yōu)化管理措施。
稻麥輪作;磷肥減量;蛋白質(zhì)組分;微量元素含量;生物有效性
【研究意義】水稻和小麥?zhǔn)鞘澜缰匾募Z食作物,供養(yǎng)著90%以上的世界人口,也是人體蛋白質(zhì)和微量礦質(zhì)營養(yǎng)元素的主要來源[1-2]。據(jù)報道,水稻和小麥分別提供我國居民43.0%和20.3%的蛋白質(zhì)攝入,22.1%和25.6%的鐵營養(yǎng)元素攝入,33.8%和20.1%的鋅營養(yǎng)攝入,其營養(yǎng)品質(zhì)的高低對我國居民人體營養(yǎng)健康至關(guān)重要[3-4]。施用磷肥可增加作物產(chǎn)量,改善作物品質(zhì)。但磷肥的不合理施用可導(dǎo)致磷肥利用率低、有限磷資源浪費和水體環(huán)境污染等問題發(fā)生[5-8]。目前,磷肥減量施用是解決農(nóng)田磷盈余的有效措施之一,但減量施用后作物籽粒營養(yǎng)品質(zhì)如何,尚不明確。因此,明確磷肥減量施用對作物產(chǎn)量形成和營養(yǎng)品質(zhì)的影響,可為稻麥輪作體系磷肥增效、作物高產(chǎn)優(yōu)質(zhì)生產(chǎn)提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】施用磷肥對作物產(chǎn)量影響的研究已有大量報道,適量施用磷肥可提高稻麥輪作體系作物籽粒產(chǎn)量[9-12]。而有關(guān)磷肥對糧食作物籽粒蛋白質(zhì)含量影響的研究結(jié)果尚不一致,麥玉輪作體系下施磷0—225 kg P2O5·hm-2時,小麥蛋白質(zhì)含量隨施磷量的增加呈拋物線變化,且以施磷150 kg P2O5·hm-2處理下的蛋白質(zhì)含量最高[13]。稻麥輪作體系下,在施用180 kg P2O5·hm-2的基礎(chǔ)上減磷60%(108 kg P2O5·hm-2)的小麥蛋白質(zhì)含量顯著降低8.6%[14]。在有效磷為26.0 mg·kg-1的水稻土上磷肥減量施用可顯著提高水稻籽粒蛋白質(zhì)含量,且每減施 1 kg P2O5·hm-2,蛋白質(zhì)含量相應(yīng)增加0.50%—0.82%[15]。但也有試驗表明,磷肥減量施用對小麥和水稻籽粒蛋白質(zhì)含量無顯著影響[16-17]。有研究認(rèn)為,在施磷量0—144 kg P2O5·hm-2區(qū)間內(nèi),與不施磷相比,施磷提高清蛋白含量3.8%—13.1%,球蛋白含量呈現(xiàn)隨施磷量的增加呈現(xiàn)先降低后上升的趨勢,醇溶蛋白和谷蛋白含量隨施磷量的增加而增加[18]。在四川仁壽開展的田間試驗表明,磷肥減量施用可顯著提高小麥籽粒清蛋白、球蛋白和醇溶蛋白含量,降低谷蛋白含量[19]。對于作物微量礦質(zhì)營養(yǎng)品質(zhì)而言,在河南封丘開展的長期定位試驗發(fā)現(xiàn),與不施磷相比,施磷使小麥籽粒鐵、銅和鋅含量分別降低29%、19.6%和66.9%,錳含量無顯著差異[20]。而在陜西楊陵,長期施磷下小麥籽粒鐵含量無顯著變化,籽粒鋅和銅含量則隨著施磷量的增加呈先降低后增加的趨勢[21]。也有盆栽試驗結(jié)果表明,與不施磷比,中等供磷水平(0.05 g P2O5·kg-1土)可顯著提高糙米中的鐵、錳、銅和鋅含量[22]。【本研究切入點】目前,關(guān)于磷肥施用對作物影響的報道多數(shù)只關(guān)注對產(chǎn)量、生態(tài)環(huán)境與經(jīng)濟(jì)效益的影響,忽略了對作物籽粒品質(zhì)的影響,且在巢湖流域稻麥輪作體系下開展磷肥減量施用對作物籽粒營養(yǎng)品質(zhì)的影響鮮見報道?!緮M解決的關(guān)鍵問題】本研究于2017—2019年在巢湖流域稻麥輪作體系下開展田間試驗,測定水稻和小麥產(chǎn)量及其構(gòu)成要素、籽粒蛋白質(zhì)及組分含量、微量元素含量及其生物有效性,明確磷肥減量施用對作物產(chǎn)量和籽粒營養(yǎng)品質(zhì)的影響,以期為巢湖流域稻麥輪作體系農(nóng)田磷肥優(yōu)化管理、作物高產(chǎn)優(yōu)質(zhì)提供理論依據(jù)。
田間試驗于2017—2019年在安徽農(nóng)業(yè)大學(xué)皖中綜合試驗站(117°9′ E,31°25′ N)開展,試驗站地處江淮丘陵南部,屬亞熱帶季風(fēng)氣候,年均氣溫16.2℃,年均降水量1 009.2 mm,年均蒸發(fā)量1 648.9 mm,年均日照1 760.1 h,無霜期253 d左右。2017、2018和2019年試驗站年降雨量分別為951.9、1 495.6和581.7 mm,年均溫分別為17.2、17.1和16.3℃,年光照時數(shù)分別為1 675.8、1 800.7和2 047.2 h。該地區(qū)種植制度以水稻小麥輪作為主,土壤類型為河湖相沉積物母質(zhì)發(fā)育形成的潴育型水稻土。2017年試驗開始時耕層(0—20 cm)土壤的基本理化性質(zhì)見表1。
表1 2017年試驗開始時土壤理化性質(zhì)
田間試驗采用隨機(jī)區(qū)組設(shè)計,共設(shè)置5個處理:對照(CK、不施磷肥)、農(nóng)戶模式(P1,磷肥用量90 kg P2O5·hm-2)、減磷10%(P2,磷肥用量81 kg P2O5·hm-2)、減磷20%(P3,磷肥用量72 kg P2O5·hm-2)、減磷30%(P4,磷肥用量63 kg P2O5·hm-2)。各處理水稻季氮肥施用量為225 kg N·hm-2,小麥季為210 kg N·hm-2,鉀肥用量均為90 kg K2O·hm-2。水稻季氮肥總量的60%和全部磷鉀肥作為基肥撒施后耙地勻漿,30%和10%的氮肥分別于分蘗期和抽穗期撒施;小麥季氮肥總量的70%和全部磷鉀肥以基肥撒施后旋耕,剩余30%的氮肥于拔節(jié)期結(jié)合灌水施入。供試氮肥、磷肥和鉀肥分別為尿素(N 46%)、過磷酸鈣(P2O512%)和氯化鉀(K2O 60%)。水稻和小麥供試品種分別為華兩優(yōu)688和寧麥13。小區(qū)面積為50 m2(12.5 m×4 m),各處理重復(fù)3次。所有處理除磷肥施用量差異外,其他農(nóng)事活動均保持一致,且同當(dāng)?shù)匾话阖S產(chǎn)田。
在水稻和小麥成熟期,在各小區(qū)避開邊行選取5個1 m2的樣方,人工高茬收割裝入已編號的大網(wǎng)袋中,風(fēng)干后機(jī)械脫粒、稱重;從中隨機(jī)取約150 g籽粒,75℃烘干后稱重,計算籽粒水分含量,且以烘干基表示籽粒產(chǎn)量。同時,水稻種植季在每個小區(qū)隨機(jī)選取5穴植株,小麥則隨機(jī)盲抽100穗的植株,從分蘗節(jié)剪除根系,地上部裝入網(wǎng)袋中,風(fēng)干后人工脫粒。稱取50 g籽粒樣品,先用自來水反復(fù)多次清洗,再用去離子水進(jìn)行兩次潤洗后裝入信封,105℃殺青30 min,75℃烘干至恒重,用組織混合研磨儀(MM200,Retsch,德國)粉碎,備用。
稱取0.20 g左右的烘干粉碎后的籽粒樣品于消煮管中,用H2SO4-H2O2法進(jìn)行紅外消解,冷卻至室溫后,加蒸餾水定容至100 ml、搖勻,采用全自動連續(xù)流動分析儀(SAN++,Skalar,荷蘭)測定消解液中氮和磷的濃度。稱取籽粒粉碎樣品0.20 g于微波消解管中,采用濃HNO3-H2O2法,高通量微波消解儀(ETHOS UP,Milestone,意大利)消解,超純水定容,一次性無橡膠活塞注射器聯(lián)合0.22 μm水系濾膜過濾消解液至10 mL離心管中,電感耦合等離子體質(zhì)譜儀(ICAP Qc03030704,ThermoFisher Scientific,美國)測定消解液中的鐵、錳、銅、鋅濃度。
水稻和小麥籽粒蛋白質(zhì)組分測定采用改進(jìn)的連續(xù)提取的方法[23-24]進(jìn)行,依次采用超純水、0.067 mol·L-1HKNaPO4、70%乙醇、0.2%NaOH溶液連續(xù)提取清蛋白、球蛋白、醇溶蛋白和谷蛋白,雙縮脲法顯色后于540 nm處測定吸光值,依建立的標(biāo)準(zhǔn)曲線計算籽粒樣品蛋白質(zhì)各組分含量。
水稻和小麥籽粒微量元素的生物有效性采用磷與微量元素的摩爾比表示[25]。
試驗數(shù)據(jù)用Microsoft Excel 2016進(jìn)行整理計算,采用SPSS 22.0進(jìn)行方差齊性檢驗后,運行單因素方差分析(ANOVA)程序,比較各指標(biāo)之間的差異顯著性,用LSD法進(jìn)行多重比較,顯著水平為0.05(<0.05)。SigmaPlot 12.5作圖。
年份、磷肥處理及其交互效應(yīng)對水稻產(chǎn)量有顯著影響(<0.05)(圖1-a)。與不施磷(CK)相比,農(nóng)戶模式(P1)和減磷10%(P2)、20%(P3)和30%(P4)的水稻籽粒產(chǎn)量分別顯著提高了28.3%、17.2%、24.1%和9.8%。與農(nóng)戶模式相比,減磷30%處理的水稻產(chǎn)量顯著降低14.4%,減磷10%和20%均未顯著降低水稻產(chǎn)量。從不同年份來看,2017年減磷處理與農(nóng)戶模式均無顯著影響;2018年減磷10%和20%時與農(nóng)戶模式無顯著差異,減磷30%顯著降低水稻籽粒產(chǎn)量。
方差分析表明,年份和磷肥處理同樣顯著影響冬小麥籽粒產(chǎn)量(<0.05)(圖1-b)??偟膩砜?,與不施磷相比,農(nóng)戶模式、減磷10%、減磷20%和減磷30%分別顯著提高了68.0%、62.7%、89.7%和56.6%;與農(nóng)戶模式相比,各減磷處理對籽粒產(chǎn)量均無顯著影響。兩個種植年份各減磷處理與農(nóng)戶模式間亦無顯著差異。
條形柱上不同小寫字母表示同一年份不同處理間差異顯著(P<0.05)。下同
水稻產(chǎn)量構(gòu)成要素方差分析結(jié)果表明(圖2-a、2-c和2-e),與不施磷相比,農(nóng)戶模式和減磷處理在一定程度上提高了穗數(shù)和千粒重,對穗粒數(shù)無顯著影響。與農(nóng)戶模式相比,減磷30%顯著降低穗數(shù),千粒重顯著提高3.6%,減磷10%和20%時無顯著差異。分析不同年份結(jié)果可知,2017年各減磷處理較農(nóng)戶模式對水稻穗數(shù)、穗粒數(shù)和千粒重均無顯著影響;2018年減磷20%和30%時提高千粒重分別為4.8%和3.8%,穗數(shù)和穗粒數(shù)無顯著影響。
總的來看,與不施磷相比,農(nóng)戶模式和減磷處理均可顯著提高穗粒數(shù),但穗數(shù)和千粒重?zé)o顯著影響(圖2-b、2-d和2-f)。從兩年結(jié)果來看,2018年減磷10%和20%較農(nóng)戶模式的小麥穗數(shù)、穗粒數(shù)和千粒重?zé)o顯著影響;減磷30%處理的穗粒數(shù)降低8.5%;2019年減磷處理與農(nóng)戶模式間的產(chǎn)量構(gòu)成三要素均無顯著影響。
圖2 稻麥輪作體系下磷肥減量對作物產(chǎn)量構(gòu)成要素的影響
從總體來看,與不施磷相比,農(nóng)戶模式下水稻蛋白質(zhì)含量、球蛋白和谷蛋白含量顯著提高,清蛋白和醇溶蛋白無顯著影響(表2)。與農(nóng)戶模式相比,減磷處理顯著降低籽粒谷蛋白含量,清蛋白和球蛋白無顯著影響。減磷30%處理顯著降低蛋白質(zhì)含量,但提高醇溶蛋白含量。兩年各指標(biāo)變化趨勢基本一致,減磷處理較農(nóng)戶模式可顯著提高醇溶蛋白含量,蛋白質(zhì)含量和谷蛋白含量顯著降低,結(jié)構(gòu)蛋白(清蛋白和球蛋白)含量無顯著影響。
分析小麥蛋白質(zhì)及其組分含量可知(表3),施磷較不施磷處理蛋白質(zhì)含量和谷蛋白含量顯著提高,清蛋白、球蛋白和醇溶蛋白無顯著影響。與農(nóng)戶模式相比,減磷可顯著降低蛋白質(zhì)和谷蛋白含量;減磷20%顯著降低醇溶蛋白含量,清蛋白和球蛋白差異不顯著。2018年減磷處理較農(nóng)戶模式顯著降低蛋白質(zhì)、醇溶蛋白和谷蛋白含量,各減磷處理間蛋白質(zhì)和醇溶蛋白含量差異不顯著,谷蛋白含量隨施磷量的減少而降低(=-0.084+2.31,<0.01);2019年減磷20%和30%時,籽粒谷蛋白含量較農(nóng)戶模式顯著降低,清蛋白、球蛋白和醇溶蛋白無顯著影響。
表2 水稻籽粒蛋白質(zhì)及其組分含量對磷肥減量的響應(yīng)
同一年份同列不同小寫字母表示數(shù)值間差異顯著(<0.05)。下同
Different lowercase letters in the same column in the same year indicate significant differences between values (<0.05). The same as below
表3 小麥籽粒蛋白質(zhì)及其組分含量對磷肥減量的響應(yīng)
施磷影響水稻籽粒微量元素含量(表4)。與不施磷相比,農(nóng)戶模式的籽粒鐵、銅和鋅含量分別顯著降低21.9%、20.0%和22.9%;減磷處理對籽粒鐵、錳和銅含量無顯著影響,但籽粒鋅含量顯著降低7.2%—16.1%。與農(nóng)戶模式相比,減磷處理籽粒鐵、銅和鋅含量分別顯著提高16.7%—25.1%、7.1%—21.4%和8.7%—20.3%,減磷處理間無顯著影響。從不同年份結(jié)果來看,2017年減磷處理籽粒鐵和鋅含量較農(nóng)戶模式分別顯著提高24.2%—32.5%和16.3%—29.2%,減磷處理間無顯著差異;2018年減磷處理籽粒鐵和銅含量分別顯著提高10.8%—19.5%和36.4%—54.5%;減磷20%和30%時籽粒鋅含量均顯著提高11.5%,籽粒錳含量降低30.4%—40.7%。
表4 稻麥輪作體系下磷肥減量對水稻籽粒微量元素含量的影響
施磷同樣影響冬小麥籽粒微量元素含量(表5)。與不施磷相比,農(nóng)戶模式籽粒鐵、錳、銅和鋅含量分別顯著降低18.7%、16.5%、24.0%和26.2%。與農(nóng)戶模式相比,減磷處理籽粒鐵含量顯著提高15.7%—16.1%;減磷30%處理的籽粒錳、銅和鋅含量分別顯著提高14.6%、28.9%和26.2%,減磷10%和20%處理均無顯著提高。2018年,減磷處理籽粒鐵含量較農(nóng)戶模式顯著提高19.4%—28.2%,減磷30%時的籽粒銅和鋅含量分別顯著提高69.0%和36.4%。2019年減磷處理籽粒鐵含量提高12.2%—18.5%,籽粒錳、銅和鋅含量均無顯著影響。
由于課堂授課時間有限,《導(dǎo)基》這門課的傳統(tǒng)教學(xué)方式只能滿足部分學(xué)生的學(xué)習(xí)需求。而智慧課堂教學(xué)可以在課前、課中、課后各個階段利用網(wǎng)絡(luò)資源平臺給學(xué)生輸送課件、圖片、視頻及練習(xí)等,同時教師還可以根據(jù)具體教學(xué)內(nèi)容實時發(fā)布小問題、討論和頭腦風(fēng)暴,以滿足不同學(xué)情的學(xué)生多方面的學(xué)習(xí)需求。
施磷對水稻籽粒微量元素生物有效性影響顯著(表6)。與不施磷相比,農(nóng)戶模式下的水稻籽粒磷鐵、磷銅和磷鋅摩爾比分別顯著提高42.8%、48.7%和45.2%。與農(nóng)戶模式相比,籽粒磷鋅摩爾比隨施磷量的減少而降低,降幅達(dá)11.1%—23.2%,而籽粒磷錳摩爾比顯著提高23%—34.8%。不同年份結(jié)果分析可知,與農(nóng)戶模式相比,2017年減磷處理僅顯著降低籽粒磷鋅摩爾比14.2%—25.1%,但減磷處理間無顯著差異;2018年減磷處理降低磷鐵、磷銅和磷鋅摩爾比,磷錳摩爾比顯著提高33.0%—47.5%,各減磷處理間無顯著差異??梢?,磷肥減量施用可有效降低水稻籽粒磷鐵、磷銅和磷鋅摩爾比,可在一定程度上提高其生物有效性。
表5 稻麥輪作體系下磷肥減量對小麥籽粒微量元素含量的影響
表6 稻麥輪作體系下磷肥減量對水稻籽粒微量元素生物有效性的影響
由表7可知,施磷同樣影響冬小麥籽粒微量元素生物有效性。與不施磷相比,農(nóng)戶模式小麥籽粒磷鐵、磷錳、磷銅和磷鋅摩爾比分別顯著提高51.1%、45.2%、68.5%和67.9%,且都隨著施磷量的減少而降低。與農(nóng)戶模式相比,減磷30%的籽粒磷鐵、磷錳、磷銅與磷鋅摩爾比分別顯著降低29%、24.1%、36.8%、32.5%。不同年份結(jié)果來看,2018年籽粒磷鐵、磷錳、磷銅與磷鋅摩爾比隨著施磷量的減少而降低;與農(nóng)戶模式相比,減磷30%的籽粒磷鐵、磷錳、磷銅與磷鋅摩爾比分別顯著降低35.7%、32%、49.7%和40.1%。2019年減磷處理籽粒磷鐵、磷錳和磷鋅摩爾比較農(nóng)戶模式顯著降低,但減磷處理間無顯著差異。
表7 稻麥輪作體系下磷肥減量對小麥籽粒微量元素生物有效性的影響
實現(xiàn)農(nóng)作物高產(chǎn)是集約化農(nóng)業(yè)生產(chǎn)中的主要目標(biāo),通過養(yǎng)分優(yōu)化/減量施用實現(xiàn)養(yǎng)分高效利用的前提必須考慮對作物產(chǎn)量的影響。磷肥是農(nóng)業(yè)生產(chǎn)中重要的養(yǎng)分,施磷對作物生長發(fā)育和組織代謝至關(guān)重要,更是保障糧食作物產(chǎn)量的重要措施。本研究結(jié)果表明,在巢湖流域稻麥輪作體系下,施磷顯著提高水稻和小麥產(chǎn)量,其中小麥的增產(chǎn)幅度更大,為69.3%。減磷處理可實現(xiàn)與農(nóng)戶模式P1(90 kg P2O5·hm-2)處理相當(dāng)?shù)漠a(chǎn)量。其主要原因是農(nóng)戶磷肥施用量高于當(dāng)?shù)赝扑]施磷量(63 kg P2O5·hm-2),即磷肥過量施用。我國冬小麥磷肥平均施用量為112.8 kg P2O5·hm-2,稻麥輪作區(qū)有57%的農(nóng)戶過量施磷,其中高產(chǎn)模式下仍有50%的農(nóng)戶磷肥用量偏高,平均有11.6%的減磷潛力[26]。在太湖流域開展的田間試驗表明,僅水稻或小麥季施磷(40 kg P2O5·hm-2)時,水稻和小麥籽粒產(chǎn)量均無顯著影響,水稻和小麥季均施磷與水稻季不施磷相比亦無顯著差異[10]。在有效磷為33.59 mg·kg-1的土壤上開展水稻試驗表明,施磷與不施磷水稻籽粒產(chǎn)量無顯著差異;與施磷150 kg P2O5·hm-2相比,減磷50%和75%(75.0和37.5 kg P2O5·hm-2)的水稻籽粒產(chǎn)量分別顯著提高17.6%和26%[27]。也有研究表明,當(dāng)土壤有效磷為26.0 mg·kg-1時,與當(dāng)?shù)亓?xí)慣施磷量相比,減磷50%(水稻季33.8 kg P2O5·hm-2,小麥季45 kg P2O5·hm-2)時的水稻產(chǎn)量減產(chǎn)12.0%,小麥產(chǎn)量無顯著降低[28]。進(jìn)一步分析產(chǎn)量構(gòu)成要素發(fā)現(xiàn)(圖2),施磷主要通過影響穗數(shù)和穗粒數(shù)來影響籽粒產(chǎn)量。與農(nóng)戶模式相比,減磷10%和20%處理的水稻和小麥的穗數(shù)、穗粒數(shù)和千粒重均無顯著差異,減磷30%時提高水稻千粒重,但顯著降低水稻穗數(shù),穗粒數(shù)無顯著差異。在陜西開展的長期定位試驗表明,施磷較不施磷在提高冬小麥穗數(shù)43%—76%的基礎(chǔ)上增產(chǎn)55.9%—71.9%,當(dāng)磷肥用量超過100 kg P2O5·hm-2時,其相應(yīng)的增產(chǎn)效應(yīng)差異不顯著[29]。在湖南開展的水稻試驗結(jié)果顯示,施磷可顯著提高早稻和晚稻分蘗數(shù),籽粒產(chǎn)量進(jìn)而提高11.5%—22.5%;在常規(guī)磷肥施用量的基礎(chǔ)上減施10%—20%,穗數(shù)、千粒重和產(chǎn)量均無顯著差異,減磷30%處理的早稻和晚稻產(chǎn)量分別降低6.5%和5.3%[30]。也有研究表明,在施磷0—210 kg P2O5·hm-2范圍內(nèi),施磷有助于增加水稻分蘗和成穗率,提高籽粒產(chǎn)量;但過量施磷可因穗粒數(shù)降低而顯著降低產(chǎn)量,且在水稻集約化生產(chǎn)中減磷空間較大(41.7%— 62.5%)[31]??梢?,巢湖流域作物產(chǎn)量構(gòu)成要素中穗數(shù)和穗粒數(shù)對產(chǎn)量的貢獻(xiàn)較大,磷肥合理施用可通過提高群體數(shù),促進(jìn)籽粒庫容充實,從而獲得作物高產(chǎn)或穩(wěn)產(chǎn)。
蛋白質(zhì)是作物籽粒的重要組成成分,各組分含量及其比例與作物品質(zhì)、加工后商品特性和人體健康需求密切相關(guān)[32]。磷可促進(jìn)作物對氮的吸收、轉(zhuǎn)化和利用,對蛋白質(zhì)品質(zhì)的形成亦有著顯著影響。因此,通過磷肥調(diào)控作物籽粒品質(zhì)已然成為改善作物品質(zhì)的重要方式。施磷對作物品質(zhì)的影響效應(yīng)不一。有研究表明,施磷可在一定程度上提高作物籽粒蛋白質(zhì)含量[13,33]。在華北平原開展的長期施磷定位試驗發(fā)現(xiàn),小麥籽粒蛋白質(zhì)含量隨施磷量的增加呈現(xiàn)線性加平臺趨勢變化,在施磷56 kg P2O5·hm-2達(dá)平臺值[34]。在阿爾及利亞,小麥籽粒蛋白質(zhì)含量隨施磷量的增加呈先升高后降低的趨勢,以60 kg P2O5·hm-2處理的蛋白質(zhì)含量最高,當(dāng)施磷90 kg P2O5·hm-2時顯著降低14%[33]。這可能歸因于高量施磷對作物產(chǎn)量的提升快于對蛋白質(zhì)含量的提升,造成稀釋效應(yīng)[35-37]。本研究結(jié)果表明,施磷可在一定程度上提高水稻和小麥蛋白質(zhì)含量。減磷處理與農(nóng)戶模式相比可顯著降低小麥籽粒蛋白質(zhì)含量達(dá)11.7%—21.9%,減磷30%時水稻蛋白質(zhì)含量降低6.8%,減磷10%和20%均無顯著差異。充足的磷肥供應(yīng)能夠促進(jìn)作物氮代謝,特別是作物灌漿期功能性葉片氮素同化酶(硝酸還原酶和谷氨酰胺合成酶)和蛋白水解酶(內(nèi)肽酶和羧態(tài)酶)活性的高低顯著影響作物籽粒蛋白質(zhì)的合成與積累[38-39],磷肥減量施用后可能在一定程度上影響作物氮代謝,降低功能性葉片和籽粒中氮代謝關(guān)鍵酶活性,不利于籽粒蛋白質(zhì)的合成。
在山東泰安開展的試驗發(fā)現(xiàn),與施磷210 kg P2O5·hm-2相比,減磷50%在不顯著改變小麥籽粒蛋白質(zhì)含量的基礎(chǔ)上提高強筋小麥籽粒球蛋白、醇溶蛋白和谷蛋白含量,改善加工品質(zhì)[38]。水稻籽粒的蛋白質(zhì)及谷蛋白含量隨施磷量的增加而增加,在一定磷肥用量范圍內(nèi)增施磷肥可提高蛋白質(zhì)含量,但磷肥減量施用會降低稻米的加工品質(zhì)[40]。也有研究表明,過高的施磷量并不利于作物籽粒貯藏蛋白的合成與積累。如在麥玉輪作體系下開展的田間試驗表明,在高磷(225 kg P2O5·hm-2)的基礎(chǔ)上減量施用可顯著提高強筋小麥清蛋白4.1%、醇溶蛋白12.2%和谷蛋白7.9%[39]。也有研究認(rèn)為,磷肥對作物蛋白質(zhì)組分的影響與開花期土壤水分條件有關(guān),在水分適宜的條件下小麥籽粒球蛋白、醇溶蛋白和谷蛋白含量隨施磷量的增加而增加,且在開花期輕度虧水條件下,谷蛋白隨施磷量增加而增加的幅度更大,達(dá)16.9%,但清蛋白和谷蛋白在開花期重度干旱則隨施磷量的增加而降低[41]。本研究結(jié)果表明,小麥籽粒谷蛋白含量隨磷肥用量的減少而降低,磷肥每減量施用1 kg P2O5·hm-2時,其含量相應(yīng)降低1.8%。對于水稻來說,減磷處理同樣顯著降低谷蛋白含量,但對清蛋白、球蛋白和醇溶蛋白無顯著影響。究其原因可能是與蛋白質(zhì)各組分的形成時間不同有關(guān),結(jié)構(gòu)蛋白(清蛋白+球蛋白)主要在灌漿初期形成,而貯藏蛋白(醇溶蛋白+谷蛋白)主要在灌漿中后期形成,適宜的磷肥用量才能夠提高籽粒中游離氨基酸的積累及其向蛋白質(zhì)的轉(zhuǎn)化,低磷或高磷條件下均不利于向蛋白質(zhì)的轉(zhuǎn)化與貯藏蛋白的合成與積累[19,38-41]。但磷素對蛋白質(zhì)組分的調(diào)控因供磷水平、或地力條件、亦或是環(huán)境因素而表現(xiàn)不同,其內(nèi)在生理機(jī)制還有待于更深入的研究。
植酸是磷的主要貯藏形式,占總磷的60%—80%,且植酸含量與全磷含量顯著正相關(guān)[54]。有報道指出,作物籽粒磷與微量元素的摩爾比值是衡量籽粒微量元素生物有效性的指標(biāo)[55-56]。在華北平原開展的長期定位試驗發(fā)現(xiàn),施磷處理的小麥籽粒磷含量提高30.8%,磷鋅和磷銅摩爾比隨施磷量的增加而增加,施磷量每增加1 kg P2O5hm-2,磷鋅和磷銅摩爾比分別提高8.3和11.5[56-57]。FROSSARD等[58]也發(fā)現(xiàn)玉米籽粒中鐵的生物有效性與籽粒磷含量顯著負(fù)相關(guān)。在印度的研究表明,香米籽粒磷吸收在施磷處理下提高13.4%,且隨施磷量的增加而增加,微量元素與磷的摩爾比提高,從而降低其生物有效性[45]。本研究表明,與不施磷相比,農(nóng)戶模式下的磷鐵、磷銅和磷鋅摩爾比顯著提高,生物有效性降低;與農(nóng)戶模式相比,磷肥減量施用可顯著降低磷鐵、磷銅和磷鋅摩爾比,提高微量元素的生物有效性。這與RYAN等[59]的結(jié)果相一致。其原因可能是施磷后土壤中的磷與微量元素結(jié)合形成磷酸鹽沉淀而降低土壤微量元素有效含量;也可能是磷阻礙了根部微量元素向地上部的轉(zhuǎn)運與分配,最終導(dǎo)致水稻地上部鐵、鋅等的吸收量顯著降低[55]。此外,郝興順等[60]的研究發(fā)現(xiàn),45個水稻品種糙米鐵、錳和鋅含量變幅較大,分別為5.0—28.6、18.3—34.3和13.2—21.7 mg·kg-1,且籽粒磷含量也存在較大的差異[61]。可見,基因型差異也可能是導(dǎo)致籽粒微量元素含量及其生物有效性差異的原因之一。
在巢湖流域稻麥輪作體系下,由當(dāng)前農(nóng)戶習(xí)慣施磷量90 kg P2O5·hm-2減少至72 kg P2O5·hm-2能保證作物籽粒產(chǎn)量不降低。磷肥減量施用對水稻和小麥籽粒蛋白質(zhì)及其組分含量影響顯著,雖對結(jié)構(gòu)蛋白(清蛋白和球蛋白)無顯著差異,但顯著降低了蛋白質(zhì)含量和貯藏蛋白(醇溶蛋白和谷蛋白)含量,不利于水稻和小麥加工品質(zhì)的提升。此外,磷肥減量施用能夠提高水稻和小麥籽粒鐵、錳、銅和鋅含量,降低磷鐵、磷鋅、磷銅和磷鋅摩爾比,提高其生物有效性。因此,綜合考慮作物籽粒產(chǎn)量與營養(yǎng)品質(zhì),在保證水稻和小麥產(chǎn)量的基礎(chǔ)上,磷肥減量20%(磷肥用量72 kg P2O5·hm-2)施用是實現(xiàn)巢湖流域稻麥輪作區(qū)磷肥減量增效、作物優(yōu)質(zhì)生產(chǎn)的有效途徑之一,可在該區(qū)域推廣使用。
[1] NAGAI T, MAKINO A. Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant and Cell Physiology, 2009, 50(4): 744-755. doi:10.1093/pcp/pcp029.
[2] SHEWRY P R. Wheat. Journal of Experimental Botany, 2009, 60(6): 1537-1553. doi:10.1093/jxb/erp058.
[3] MA G S, JIN Y, LI Y P, ZHAI F Y, KOK F J, JACOBSEN E, YANG X G. Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutrition, 2008, 11(6): 632-638. doi:10.1017/S1368980007001085.
[4] Food and Agriculture Organization of the United Nations. http://www.fao.org/home/zh/, 2019.
[5] BALIGAR V C, FAGERIA N K, HE Z L. Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 2001, 32(7/8): 921-950. doi:10.1081/CSS-100104098.
[6] LóPEZ-ARREDONDO D L, LEYVA-GONZáLEZ M A, GONZáLEZ- MORALES S I, LóPEZ-BUCIO J, HERRERA-ESTRELLA L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65: 95-123. doi:10.1146/ annurev-arplant-050213-035949.
[7] BARROW N J. Soil phosphate chemistry and the P-sparing effect of previous phosphate applications. Plant and Soil, 2015, 397(1/2): 401-409. doi:10.1007/s11104-015-2514-5.
[8] 汪玉, 袁佳慧, 陳浩, 陳光蕾, 趙洪猛, 徐靈穎, 趙旭, 王慎強. 太湖流域典型農(nóng)田土壤磷庫演變特征及環(huán)境風(fēng)險預(yù)測. 土壤學(xué)報, 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20210809.1259.004. html.
WANG Y, YUAN J H, CHEN H, CHEN G L, ZHAO H M, XU L Y, ZHAO X, WANG S Q. Soil phosphorus pool evolution and environmental risk prediction of paddy soil in the Taihu Lake Region. Acta Pedologica Sinica, 2021. https://kns.cnki.net/kcms/ detail/32.1119.P.20210809.1259.004.html. (in Chinese)
[9] YADVINDER-SINGH, DOBERMANN A, BIJAY-SINGH, BRONSONK F, KHIND C S. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Science Society of America Journal, 2000, 64(4): 1413-1422. doi:10.2136/sssaj2000. 6441413x.
[10] WANG Y, ZHAO X, WANG L, ZHAO P H, ZHU W B, WANG S Q. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake region of China. Field Crops Research, 2016, 198: 32-39. doi:10.1016/j.fcr.2016.08.025.
[11] 陳浩, 汪玉, 袁佳慧, 朱文彬, 王慎強. 太湖稻麥輪作區(qū)減施磷肥對土壤供磷和小麥吸收磷的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2018, 37(4): 741-746. doi:10.11654/jaes.2017-1551.
CHEN H, WANG Y, YUAN J H, ZHU W B, WANG S Q. The effect of phosphorus-reduction on soil phosphorus supply and wheat phosphorus uptake in a rice-wheat rotation system in the Taihu Lake Region. Journal of Agro-Environment Science, 2018, 37(4): 741-746. doi:10.11654/jaes.2017-1551. (in Chinese)
[12] 張陽陽, 張淑利, 謝迎新, 康國章, 陳波, 馬冬云, 王晨陽, 郭天財. 沿黃淮稻麥輪作區(qū)農(nóng)田土壤磷庫現(xiàn)狀及減量施磷農(nóng)學(xué)效應(yīng)初探. 河南農(nóng)業(yè)科學(xué), 2021, 50(3): 67-73. doi:10.15933/j.cnki.1004-3268. 2021.03.009.
ZHANG Y Y, ZHANG S L, XIE Y X, KANG G Z, CHEN B, MA D Y, WANG C Y, GUO T C. Phosphorus pool and agronomic effects of phosphorus fertilizer reduction in rice-wheat rotation field along the Yellow River and Huai River of China. Journal of Henan Agricultural Sciences, 2021, 50(3): 67-73. doi:10.15933/j.cnki.1004-3268.2021. 03.009. (in Chinese)
[13] 毛鳳梧, 趙會杰, 段藏祿. 潮土麥田施磷對小麥品質(zhì)的影響初探. 河南農(nóng)業(yè)大學(xué)學(xué)報, 2001, 35(4): 400-402. doi:10.16445/j.cnki. 1000-2340.2001.04.027.
MAO F W, ZHAO H J, DUAN C L. A primary study of the effect of phosphorus fertilizer application on the wheat quality on the alluvial soil. Journal of Henan Agricultural University, 2001, 35(4): 400-402. doi:10.16445/j.cnki.1000-2340.2001.04.027. (in Chinese)
[14] ZHU X K, LI C Y, JIANG Z Q, HUANG L L, FENG C N, GUO W S, PENG Y X. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat. Journal of Integrative Agriculture, 2012, 11(7): 1103-1110. doi:10.1016/S2095-3119(12)60103-8.
[15] 王蘇影, 潘曉華, 吳建富, 石慶華. 施磷量對雙季早、晚稻產(chǎn)量及稻米品質(zhì)的影響. 中國土壤與肥料, 2011(2): 39-43. doi:10.3969/j. issn.1673-6257.2011.02.007.
WANG S Y, PAN X H, WU J F, SHI Q H. Effects of amount P-applied on yield and rice quality of double-cropping rice. Soils and Fertilizers Sciences in China, 2011(2): 39-43. doi:10.3969/j.issn.1673-6257.2011. 02.007. (in Chinese)
[16] 王鵬, 張定一, 王姣愛, 裴雪霞. 氮、磷、鉀肥對強筋小麥臨優(yōu)145產(chǎn)量及品質(zhì)的影響. 山西農(nóng)業(yè)科學(xué), 2006, 34(3): 50-52. doi:10. 3969/j.issn.1002-2481.2006.03.017.
WANG P, ZHANG D Y, WANG J A, PEI X X. The effect of the nitrogen, phosphorus, potassium fertilizer application on the yield and quality of high gluten wheat Linyou 145. Journal of Shanxi Agricultural Sciences, 2006, 34(3): 50-52. doi:10.3969/j.issn.1002- 2481.2006.03.017. (in Chinese)
[17] 龔金龍, 張洪程, 李杰, 常勇, 戴其根, 霍中洋, 許軻, 魏海燕, 李德劍, 李炳維, 沙安勤, 周有炎, 羅學(xué)超, 朱鎮(zhèn). 施磷量對超級稻南粳44產(chǎn)量和品質(zhì)的影響. 中國水稻科學(xué), 2011, 25(4): 447-451. doi:10.3969/j.issn.1001-7216.2011.04.017.
GONG J L, ZHANG H C, LI J, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y, LI D J, LI B W, SHA A Q, ZHOU Y Y, LUO X C, ZHU Z. Effects of phosphorus levels on grain yield and quality of super rice Nanjing 44. Chinese Journal of Rice Science, 2011, 25(4): 447-451. doi:10.3969/j.issn.1001-7216.2011.04.017. (in Chinese)
[18] 姜宗慶, 封超年, 黃聯(lián)聯(lián), 郭文善, 朱新開, 彭永欣. 施磷量對不同類型專用小麥產(chǎn)量和品質(zhì)的調(diào)控效應(yīng). 麥類作物學(xué)報, 2006, 26(5): 113-116. doi:10.3969/j.issn.1009-1041.2006.05.025.
JIANG Z Q, FENG C N, HUANG L L, GUO W S, ZHU X K, PENG Y X. Effect of phosphorus application on grain yield and quality of wheat for different end uses. Journal of Triticeae Crops, 2006, 26(5): 113-116. doi:10.3969/j.issn.1009-1041.2006.05.025. (in Chinese)
[19] 柳偉偉. 增施磷肥和氮肥后移對四川丘陵旱地中強筋小麥籽粒產(chǎn)量和品質(zhì)的影響[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2019.
LIU W W. Effects of phosphorus fertilization and nitrogen fertilization postpone management on grain yield and quality of medium gluten wheat and medium-strong gluten wheat in hilly of Sichuan Province[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese)
[20] LI B Y, ZHOU D M, CANG L, ZHANG H L, FAN X H, QIN S W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil and Tillage Research, 2007, 96(1/2): 166-173. doi:10.1016/j.still.2007.05.005.
[21] 昝亞玲. 氮磷對旱地冬小麥產(chǎn)量、養(yǎng)分利用及籽粒礦質(zhì)營養(yǎng)品質(zhì)的影響[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2012.
ZAN Y L. Effect of nitrogen and phosphorus fertilizer rate on yield, nutrient utilization and grain mineral nutrient quality of wheat in dryland[D]. Yangling: Northwest A & F University, 2012. (in Chinese)
[22] 郝虎林, 楊肖娥, 馮英, 吳春勇. 供磷水平對鐵、錳、銅、鋅在稻株中分布和糙米品質(zhì)的影響. 植物營養(yǎng)與肥料學(xué)報, 2009, 15(6): 1350-1356. doi:10.3321/j.issn: 1008-505X.2009.06.015.
HAO H L, YANG X E, FENG Y, WU C Y. Effects of P fertilizer level on distribution of Fe, Mn, Cu and Zn and brown rice qualities in rice(L.). Plant Nutrition and Fertilizer Science, 2009, 15(6): 1350-1356. doi:10.3321/j.issn: 1008-505X.2009.06.015. (in Chinese)
[23] LUO L C, HUI X L, WANG Z H, ZHANG X, XIE Y H, GAO Z Q, CHAI S X, LU Q L, LI T L, SUN M, CHANG L, BAI Y L, MALHI S S. Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield, protein content and its components in semiarid areas of China. Field Crops Research, 2019, 240: 86-94. doi:10. 1016/j.fcr.2019.06.002.
[24] ZHANG X X, SHI Z Q, JIANG D, H?GY P, FANGMEIER A. Independent and combined effects of elevated CO2and post-anthesis heat stress on protein quantity and quality in spring wheat grains. Food Chemistry, 2019, 277: 524-530. doi:10.1016/j.foodchem.2018. 11.010.
[25] ZHANG Y Q, SHI R L, REZAUL K M, ZHANG F S, ZOU C Q. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. Journal of Agricultural and Food Chemistry, 2010, 58(23): 12268-12274. doi:10.1021/jf103039k.
[26] 黃倩楠, 黨海燕, 黃婷苗, 侯賽賓, 王朝輝. 我國主要麥區(qū)農(nóng)戶施肥評價及減肥潛力分析. 中國農(nóng)業(yè)科學(xué), 2020, 53(23): 4813-4834. doi:10.3864/j.issn.0578-1752.2020.23.009.
HUANG Q N, DANG H Y, HUANG T M, HOU S B, WANG Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(23): 4813-4834. doi:10.3864/j.issn.0578- 1752.2020.23.009. (in Chinese)
[27] 張錦濱, 王曉云, 孟圓, 孫玉香, 馬洪波. 不同磷肥用量對水稻產(chǎn)量效益、磷肥利用率及土壤養(yǎng)分的影響. 中國農(nóng)學(xué)通報, 2021, 37(32): 96-101.
ZHANG J B, WANG X Y, MENG Y, SUN Y X, MA H B. Effects of different amounts of phosphate fertilizer on rice yield, fertilizer utilization and soil nutrients. Chinese Agricultural Science Bulletin, 2021, 37(32): 96-101. (in Chinese)
[28] 王桂苓, 馬友華, 孫興旺, 宋法龍, 張麗娟, 徐宏軍, 肖圣輝. 巢湖流域麥稻輪作農(nóng)田徑流氮磷流失研究. 水土保持學(xué)報, 2010, 24(2): 6-10, 29. doi:10.13870/j.cnki.stbcxb.2010.02.010.
WANG G L, MA Y H, SUN X W, SONG F L, ZHANG L J, XU H J, XIAO S H. Study of nitrogen and phosphorus runoff in wheat-rice rotation farmland in Chao Lake Basin. Journal of Soil and Water Conservation, 2010, 24(2): 6-10, 29. doi:10.13870/j.cnki.stbcxb.2010. 02.010. (in Chinese)
[29] 馬清霞, 王朝輝, 惠曉麗, 張翔, 張悅悅, 侯賽賓, 黃寧, 羅來超, 張世君, 黨海燕. 基于產(chǎn)量和養(yǎng)分含量的旱地小麥?zhǔn)┝琢亢屯寥烙行Я變?yōu)化. 中國農(nóng)業(yè)科學(xué), 2019, 52(1): 73-85. doi:10.3864/j.issn. 0578-1752.2019.01.008.
MA Q X, WANG Z H, HUI X L, ZHANG X, ZHANG Y Y, HOU S B, HUANG N, LUO L C, ZHANG S J, DANG H Y. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production. Scientia Agricultura Sinica, 2019, 52(1): 73-85. doi:10.3864/j.issn.0578-1752. 2019.01.008. (in Chinese)
[30] 易均, 謝桂先, 劉強, 田昌, 譚力彰, 李旭, 何石福, 石敦杰. 磷肥減施對雙季稻生長和產(chǎn)量及磷肥利用率的影響. 湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版), 2016, 42(2): 197-201. doi:10.13331/j.cnki.jhau. 2016.02.017.
YI J, XIE G X, LIU Q, TIAN C, TAN L Z, LI X, HE S F, SHI D J. Effects of phosphorus fertilizer reduction on the growth, yield and its utilization efficiency of double cropping rice. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(2): 197-201. doi:10.13331/j.cnki.jhau.2016.02.017. (in Chinese)
[31] 付雪蛟, 馬暢, 付立東. 施磷量對濱海鹽堿稻區(qū)水稻生長發(fā)育及產(chǎn)量的影響. 東北農(nóng)業(yè)科學(xué), 2022, 47(1): 5-10. doi:10.16423/j.cnki. 1003-8701.2022.01.002.
FU X J, MA C, FU L D. Effects of phosphorus application on growth and yield of rice in coastal salt-alkali rice area. Journal of Northeast Agricultural Sciences, 2022, 47(1): 5-10. doi:10.16423/j.cnki.1003- 8701.2022.01.002. (in Chinese)
[32] SHEWRY P R. Improving the protein content and composition of cereal grain. Journal of Cereal Science, 2007, 46(3): 239-250. doi:10.1016/j.jcs.2007.06.006.
[33] DUNCAN E G, O’SULLIVAN C A, ROPER M M, BIGGS J S, PEOPLES M B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Research, 2018, 226: 56-65. doi:10.1016/j.fcr. 2018.07.010.
[34] ZHANG W, LIU D Y, LIU Y M, CHEN X P, ZOU C Q. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (L.). Journal of Agricultural and Food Chemistry, 2017, 65(8): 1473-1482. doi:10.1021/acs.jafc.6b04778.
[35] BOUKHALFA DERAOUI N, HANIFI MEKLICHE L, MEKLICHE A, CHELOUFI H, BABAHANI S. Influence of phosphorus fertilizers application on phosphorus use efficiency and grain protein of winter wheat in alkaline-calcareous soil, southern Algeria. Indian Journal of Agricultural Research, 2020, 54: 51-57.
[36] 姜東, 戴廷波, 荊奇, 曹衛(wèi)星, 趙輝, 周琴, 范雪梅, 陳榮振, 馮國華, 劉東濤, 張愛君. 氮磷鉀肥長期配合施用對冬小麥籽粒品質(zhì)的影響. 中國農(nóng)業(yè)科學(xué), 2004, 37(4): 566-571.
JIANG D, DAI T B, JING Q, CAO W X, ZHAO H, ZHOU Q, FAN X M, CHEN R Z, FENG G H, LIU D T, ZHANG A J. Effects of long-term combined application of N, P and K fertilizer on grain quality in winter wheat. Scientia Agricultura Sinica, 2004, 37(4): 566-571. (in Chinese)
[37] MAEOKA R E, SADRAS V O, CIAMPITTI I A, DIAZ D R, FRITZ A K, LOLLATO R P. Changes in the phenotype of winter wheat varieties released between 1920 and 2016 in response to in-furrow fertilizer: biomass allocation, yield, and grain protein concentration. Frontiers in Plant Science, 2020, 10: 1786. doi:10.3389/fpls.2019. 01786.
[38] 王旭東, 于振文, 石玉, 王小燕. 磷對小麥旗葉氮代謝有關(guān)酶活性和籽粒蛋白質(zhì)含量的影響. 作物學(xué)報, 2006, 32(3): 339-344. doi:10.3321/j.issn: 0496-3490.2006.03.004.
WANG X D, YU Z W, SHI Y, WANG X Y. Effects of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein contents in grains of wheat. Acta Agronomica Sinica, 2006, 32(3): 339-344. doi:10.3321/j.issn: 0496-3490.2006. 03.004. (in Chinese)
[39] 王平, 尹燕枰, 付國占, 郭營, 蔡瑞國, 梁太波, 耿慶輝, 鄔云海, 王振林. 施磷對小麥旗葉氮代謝關(guān)鍵酶活性和子粒蛋白質(zhì)含量的影響. 植物營養(yǎng)與肥料學(xué)報, 2009, 15(1): 24-31. doi:10.3321/j.issn: 1008-505X.2009.01.004.
WANG P, YIN Y P, FU G Z, GUO Y, CAI R G, LIANG T B, GENG Q H, WU Y H, WANG Z L. Effect of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein content of wheat grains. Plant Nutrition and Fertilizer Science, 2009, 15(1): 24-31. doi:10.3321/j.issn: 1008-505X.2009.01.004. (in Chinese)
[40] 王偉妮, 魯劍巍, 何予卿, 李小坤, 李慧. 氮、磷、鉀肥對水稻產(chǎn)量、品質(zhì)及養(yǎng)分吸收利用的影響. 中國水稻科學(xué), 2011, 25(6): 645-653. doi:10.3969/j.issn.1001-7216.2011.06.012.
WANG W N, LU J W, HE Y Q, LI X K, LI H. Effects of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice. Chinese Journal of Rice Science, 2011, 25(6): 645-653. doi:10.3969/j.issn.1001-7216.2011.06.012. (in Chinese)
[41] 劉孝成, 趙廣才, 石書兵, 常旭虹, 王德梅, 陶志強, 楊玉雙, 王美, 郭明明, 亓振, 王雨. 肥水調(diào)控對冬小麥產(chǎn)量及籽粒蛋白質(zhì)組分的影響. 核農(nóng)學(xué)報, 2017, 31(7): 1404-1411. doi:10.11869/j.issn.100- 8551.2017.07.1404.
LIU X C, ZHAO G C, SHI S B, CHANG X H, WANG D M, TAO Z Q, YANG Y S, WANG M, GUO M M, QI Z, WANG Y. Effects of fertilizer and water regulation on yield and grain protein components of winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(7): 1404-1411. doi:10.11869/j.issn.100-8551.2017.07.1404. (in Chinese)
[42] CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. Review: Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20. doi:10.1094/CCHEM-87-1-0010.
[43] SU D, ZHOU L J, ZHAO Q, PAN G, CHENG F M. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (L.) grains. Journal of Agricultural and Food Chemistry, 2018, 66(7): 1601-1611. doi:10.1021/acs.jafc.7b04883.
[44] 俄勝哲, 袁繼超, 丁志勇, 姚鳳娟, 喻小平, 羅付香. 氮磷鉀肥對稻米鐵、鋅、銅、錳、鎂、鈣含量和產(chǎn)量的影響. 中國水稻科學(xué), 2005, 19(5): 434-440. doi:10.16819/j.1001-7216.2005.05.009.
E S Z, YUAN J C, DING Z Y, YAO F J, YU X P, LUO F X. Effect of N, P, K fertilizers on Fe, Zn, Cu, Mn, Ca and Mg contents and yields in rice. Chinese Journal of Rice Science, 2005, 19(5): 434-440. doi:10.16819/j.1001-7216.2005.05.009. (in Chinese)
[45] SRIVASTAVA P C, BHATT M, PACHAURI S P, TYAGI A K. Effect of zinc application methods on apparent utilization efficiency of zinc and phosphorus fertilizers under basmati rice-wheat rotation. Archives of Agronomy and Soil Science, 2014, 60(1): 33-48. doi:10.1080/ 03650340.2013.770145.
[46] 靳靜靜, 王朝輝, 戴健, 王森, 高雅潔, 曹寒冰, 于榮. 長期不同氮、磷用量對冬小麥籽粒鋅含量的影響. 植物營養(yǎng)與肥料學(xué)報, 2014, 20(6): 1358-1367. doi:10.11674/zwyf.2014.0605.
JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R. Effects of long-term N and P fertilization With different rates on Zn concentration in grain of winter wheat. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1358-1367. doi:10.11674/zwyf.2014.0605. (in Chinese)
[47] 惠曉麗, 王朝輝, 羅來超, 馬清霞, 王森, 戴健, 靳靜靜. 長期施用氮磷肥對旱地冬小麥籽粒產(chǎn)量和鋅含量的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50(16): 3175-3185. doi:10.3864/j.issn.0578-1752.2017.16.012.
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Scientia Agricultura Sinica, 2017, 50(16): 3175-3185. doi:10.3864/j.issn.0578-1752.2017.16.012. (in Chinese)
[48] ZHANG W, ZHANG W S, WANG X Z, LIU D Y, ZOU C Q, CHEN X P. Quantitative evaluation of the grain zinc in cereal crops caused by phosphorus fertilization. A meta-analysis. Agronomy for Sustainable Development, 2021, 41(1): 1-12. doi:10.1007/s13593- 020-00661-0.
[49] HUI X L, LUO L C, WANG S, CAO H B, HUANG M, SHI M, MALHI S S, WANG Z H. Critical concentration of available soil phosphorus for grain yield and zinc nutrition of winter wheat in a zinc-deficient calcareous soil. Plant and Soil, 2019, 444(1/2): 315-330. doi:10.1007/s11104-019-04273-w.
[50] 買文選, 田霄鴻, 陸欣春, 楊習(xí)文. 磷鋅肥配施對冬小麥籽粒鋅生物有效性的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2011, 19(6): 1243-1249.
MAI W X, TIAN X H, LU X C, YANG X W. Effect of Zn and P supply on grain Zn bioavailability in wheat. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1243-1249. (in Chinese)
[51] 趙婷婷, 王春麗, 趙秀蘭. 不同磷肥對水稻根表鐵膜及砷鎘吸收的影響: 以石灰?guī)r黃壤性水稻土為例. 中國環(huán)境科學(xué), 2021, 41(1): 297-306. doi:10.19674/j.cnki.issn1000-6923.2021.0036.
ZHAO T T, WANG C L, ZHAO X L. Effects of different phosphate fertilizers on iron plaque amount on root surface and arsenic and cadmium uptake by rice grown in a limestone yellow loamy paddy soil. China Environmental Science, 2021, 41(1): 297-306. doi:10. 19674/j.cnki.issn1000-6923.2021.0036. (in Chinese)
[52] SHEN H, YAN X L, ZHAO M, ZHENG S L, WANG X R. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates. Environmental and Experimental Botany, 2002, 48(1): 1-9. doi:10.1016/S0098-8472(02) 00009-6.
[53] WEN Z H, LI H G, SHEN J B, RENGEL Z. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 2017, 416(1/2): 377-389. doi:10.1007/s11104-017-3214-0.
[54] BOHN L, MEYER A S, RASMUSSEN S K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B, 2008, 9(3): 165-191. doi:10.1631/jzus.b0710640.
[55] KUTMAN U B, YILDIZ B, CAKMAK I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science, 2011, 53(1): 118-125. doi:10.1016/j.jcs.2010.10.006.
[56] ZHANG Y Q, DENG Y, CHEN R Y, CUI Z L, CHEN X P, YOST R, ZHANG F S, ZOU C Q. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil, 2012, 361(1/2): 143-152. doi:10.1007/s11104-012-1238-z.
[57] 趙榮芳, 鄒春琴, 張福鎖. 長期施用磷肥對冬小麥根際磷、鋅有效性及其作物磷鋅營養(yǎng)的影響. 植物營養(yǎng)與肥料學(xué)報, 2007, 13(3): 368-372. doi:10.3321/j.issn: 1008-505X.2007.03.003.
ZHAO R F, ZOU C Q, ZHANG F S. Effects of long-term P fertilization on P and Zn availability in winter wheat rhizoshpere and their nutrition. Plant Nutrition and Fertilizer Science, 2007, 13(3): 368-372. doi:10.3321/j.issn: 1008-505X.2007.03.003. (in Chinese)
[58] FROSSARD E, BUCHER M, M?CHLER F, MOZAFAR A, HURRELL R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture, 2000, 80(7): 861-879. doi:10.1002/(sici)1097-0010(20000515)80: 7<861: aid-jsfa601>3.0.co;2-p.
[59] RYAN M H, MCINERNEY J K, RECORD I R, ANGUS J F. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of Food and Agriculture, 2008, 88(7): 1208-1216. doi:10.1002/jsfa.3200.
[60] 郝興順, 姜雨含, 吳玉紅, 田霄鴻, 許偉, 張春輝, 陳浩, 秦宇航, 蒙天竣. 漢中地區(qū)秈稻鋅、鐵、錳營養(yǎng)基因型差異及葉面噴鋅對籽粒鋅含量的影響. 中國稻米, 2019, 25(4): 74-77. doi:10.3969/j.issn. 1006-8082.2019.04.019.
HAO X S, JIANG Y H, WU Y H, TIAN X H, XU W, ZHANG C H, CHEN H, QIN Y H, MENG T J. Genotypic difference in zinc, iron and manganese in indica rice and the effects of foliar application zinc fertilizer on zinc concentration of rice in Hanzhong area. China Rice, 2019, 25(4): 74-77. doi:10.3969/j.issn.1006-8082.2019.04.019. (in Chinese)
[61] ROSE T J, PARIASCA-TANAKA J, ROSE M T, FUKUTA Y, WISSUWA M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Research, 2010, 119(1): 154-160. doi:10.1016/j.fcr.2010.07.004.
Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin
1College of Resources and Environment, Anhui Agricultural University/Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention/Research Center of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, Hefei 230036;2College of Natural Resources and Environment, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
【Objective】The aim of this study was to explore the effects of reduced phosphorus (P) application on crop yield and nutritional quality, so as to provide a theoretical basis for increasing the P use efficiency and producing high grain quality of crops under the rice-wheat crop rotation system in the Chaohu Lake Basin.【Method】A field trial of reduced P application rates was conducted from 2017 to 2019 with five treatments in the Chaohu Lake Basin, which were contrast (CK, No phosphorus), farmers’ application rate (P1, 90 kg P2O5·hm-2), 10% P reduction (P2, 81 kg P2O5·hm-2), 20% P reduction (P3, 72 kg P2O5·hm-2), and 30% P reduction (P4, 63 kg P2O5·hm-2). The effects of reduced P application rates on rice and wheat grain yield and its components, grain protein and fraction content, micronutrients and their bioavailability were analyzed.【Result】Compared with no P application, the P application significantly increased the grain yield of rice and wheat by 9.8% to 28.3% and 56.6% to 89.7%, respectively. The 10% and 20% P reduction treatments for rice and wheat grain yield were not significantly different from the farmers’ P fertilizer application (>0.05). However, the rice yields under the 30% P reduction treatment were significantly decreased by 14.4%. Compared with the farmers’ P application rate, the P reduction treatments significantly affected the crop protein, gliadin and glutenin content, while which had no significant effect on structural protein (albumin and globulin); the P reduction of 20% reduced rice grain protein and glutenin content by 2.7% and 32.3%, respectively. Compared with farmers’ P application rate, the grain protein and glutenin content of rice and wheat under the 30% phosphorus reduction treatment reduced by 6.8% and 21.9%, 48.4% and 31.6%, respectively. Phosphorus application also significantly affected the micronutrients content and bioavailability in rice and wheat grains. Compared with the farmers’ P application rate, P reduction treatments increased iron (Fe), copper (Cu) and zinc (Zn) concentration in rice and wheat grains by 21.2% and 19.3%, 11.9% and 15.8%, 14.5% and 19.9%, respectively; meanwhile, P/Fe, P/Cu and P/Zn molar ratios also reduced by 21.6% and 26.3%, 20.6% and 27%, 17.7% and 21.3%, respectively. The grain zinc concentration of rice and wheat increased linearly with decreasing P application, while the iron, manganese (Mn) and Cu concentrations were no significant differences among the P reduction treatments. P/Zn molar ratio of rice reduced with lower P application, but the P/Fe, P/Mn and P/Cu molar ratios had no significant differences among P reduction treatments. The P/Fe, P/Mn, P/Cu and P/Zn molar ratios in wheat grains reduced with lower P application, and then increasing the bioavailability of Fe, Cu and Zn in wheat grains.【Conclusion】In the rice-wheat crop rotation area of the Chaohu Lake Basin, reduced P application by 20% (from 90 kg P2O5·hm-2reduction to 72 kg P2O5·hm-2) could still ensure stable crop yields. The reduced application of P fertilizer significantly increased the micronutrients concentration and its bioavailability in rice and wheat grains, although the grain protein and glutenin content lower than the farmers’ P application rate. In conclusion, the P3 (20% reduction in P fertilizer application based on the farmers’ P application rate) was the recommended P fertilizer rate to achieve P use efficiency and double high (yield and quality) of crop production in the rice-wheat rotation areas of the Chaohu Lake Basin.
rice-wheat rotation; phosphate fertilizer reduction; protein components; micronutrient concentration; bioavailability
10.3864/j.issn.0578-1752.2022.19.009
2021-08-19;
2021-12-07
安徽省科技重大專項(202103a06020012,18030701188)、中國工程科技發(fā)展戰(zhàn)略安徽研究院2020年咨詢研究項目(2020-05)、安徽農(nóng)業(yè)大學(xué)科研啟動項目(RC521903)
張鑫堯,E-mail:2422685787@qq.com。張敏,E-mail:438087133@qq.com。張鑫堯與張敏為同等貢獻(xiàn)作者。通信作者羅來超,E-mail:luolaichao0106@163.com
(責(zé)任編輯 李云霞)