胡澳月, 丁宇, 祖麗胡馬爾·圖爾蓀, 李傳青
帶隙可調(diào)鈮酸鉀基鐵電薄膜制備與物性研究
胡澳月, 丁宇, 祖麗胡馬爾·圖爾蓀, 李傳青*
(上海師范大學(xué) 數(shù)理學(xué)院,上海 200234)
以鋇鎳元素共摻形成的鈮酸鉀-鈮鎳酸鋇薄膜(1-)KNbO3-BaNi0.5Nb0.5O3-δ(KN-BNNO)為主要研究對(duì)象,圍繞其材料發(fā)展趨勢(shì):高質(zhì)量鈮酸鉀-鈮鎳酸鋇薄膜材料的關(guān)鍵制備技術(shù)、鈮酸鉀-鈮鎳酸鋇薄膜的微結(jié)構(gòu)、元素化合價(jià)和拉曼聲子模式等內(nèi)容進(jìn)行了研究.
帶隙可調(diào)KN-BNNO鐵電薄膜; 化學(xué)溶液沉積; 結(jié)構(gòu)與物性; 光學(xué)吸收性能
近年來(lái),以信息功能材料為基礎(chǔ)制造的各種光電子器件已廣泛應(yīng)用于人們的日常生活.鈣鈦礦鐵電材料具有良好的鐵電、熱釋電、壓電、介電、電致伸縮和非線性光學(xué)效應(yīng)性能,被廣泛應(yīng)用于信息存儲(chǔ)、自動(dòng)傳感與控制、紅外探測(cè)、光伏發(fā)電,以及軍事對(duì)抗等領(lǐng)域[1].進(jìn)一步提升環(huán)境友好的鐵電材料光電性能,對(duì)推動(dòng)國(guó)民經(jīng)濟(jì)持續(xù)穩(wěn)步發(fā)展和確保國(guó)家安全戰(zhàn)略具有重要意義.
相比于半導(dǎo)體光電轉(zhuǎn)換器件,鐵電薄膜光伏器件因無(wú)需考慮PN結(jié)或肖特基勢(shì)壘結(jié)構(gòu)而具有制備工藝簡(jiǎn)化、光生載流子復(fù)合速率小、開(kāi)路電壓高,以及性能可調(diào)控等特點(diǎn),是新型的光電響應(yīng)特性研究材料. 目前鐵電材料的選取主要有3類(lèi):1) 以Pb(Zr,Ti)O3(PZT)為代表的鈣鈦礦鐵電氧化物材料[2-5];2) 以BiFeO3(BFO)為代表的鉍基鐵電材料[6-7];3) 以Bi2FeCrO6(BFCO)為代表的多鐵鐵電材料[8-9].其中PZT和BFO的光學(xué)帶隙相對(duì)太陽(yáng)能光譜較大,只能吸收20%的太陽(yáng)能光譜;而B(niǎo)FCO雖然帶隙合適,但鉍基集成器件的高溫穩(wěn)定性能問(wèn)題尚未得到解決(Bi元素易揮發(fā)),且鉻屬于劇毒元素,所以仍亟需探索綠色環(huán)保及光電轉(zhuǎn)換效率高的新型吸收材料.
考慮到實(shí)驗(yàn)周期和成本,選取化學(xué)溶液法(CSD)制備前驅(qū)液及薄膜.具體的實(shí)驗(yàn)原料和測(cè)試器件如表1,2所示.采用四步法改進(jìn)配制KN-BNNO前驅(qū)液.為了實(shí)現(xiàn)薄膜化學(xué)配比摻雜改性,形成帶隙可調(diào)吸收層薄膜(如太陽(yáng)能電池Bi2FeCrO6中沉積速率的調(diào)節(jié)),生長(zhǎng)適合于載流子分離和收集的異質(zhì)結(jié)構(gòu).具體操作改進(jìn)如下:1) 按KN化學(xué)計(jì)量比配制其前驅(qū)液,然后在115 ℃下回餾24 h,解決乙醇鈮難溶、易水解的問(wèn)題;2) 把乙醇和冰醋酸按體積比1∶3混合,80oC回餾2 h作為BNNO前驅(qū)液的配制溶劑,解決Ba不溶的問(wèn)題;3) 基于2.5×106mol?L-1物質(zhì)的量濃度要求秘制水的甲醇溶液,用以抑制K2O揮發(fā),解決本項(xiàng)目最關(guān)鍵問(wèn)題;4) 0 ℃水浴下,上述3種前驅(qū)液依組分配比混合,配制KN-BNNO水基前驅(qū)液.對(duì)比已報(bào)道的電化學(xué)和脈沖激光沉積技術(shù),本實(shí)驗(yàn)所采用的水基溶液配制方法中,前驅(qū)液所含OH-可單層致密附著在基片上作為成核結(jié)晶中心,由此抑制同質(zhì)反應(yīng),促進(jìn)異質(zhì)相形成,同時(shí)阻止K2O在濕膜KN-BNNO結(jié)晶退火過(guò)程中的揮發(fā),從而可成功實(shí)現(xiàn)該薄膜結(jié)晶,為太陽(yáng)能電池的制備奠定了基礎(chǔ)[4-9].
表1 實(shí)驗(yàn)所需原料和屬性
表2 實(shí)驗(yàn)所用儀器
圖1是KN和KN-0.1BNNO 薄膜的掃描電子顯微鏡(SEM)圖.從圖1(a)和1(c)表面圖及圖1(b)和1(d)斷面圖可以看出,該薄膜是致密的顆粒堆積,大小較為均勻,并且KN-0.1BNNO薄膜結(jié)晶致密性更好.
圖1 KN和KN-0.1BNNO 薄膜的SEM圖.
(a) KN表面; (b) KN斷面; (c) KN-0.1BNNO表面; (d) KN-0.1BNNO斷面
為了證實(shí)Ba/Ni成功共摻雜到KN薄膜,對(duì)樣品進(jìn)行了XPS測(cè)量,結(jié)果如圖2所示.觀察圖2(a),K,Ba,Ni,Nb,O和C的獨(dú)立信號(hào)峰明顯可見(jiàn),未發(fā)現(xiàn)其他雜質(zhì)元素峰.為獲得每個(gè)元素的獨(dú)立信息,XPS實(shí)驗(yàn)數(shù)據(jù)采用洛倫茲和高斯函數(shù)進(jìn)行了擬合.作為例子,圖2(b)~2(f)分別為K 2p,Ba3d,Ni 2p,Nb 3d和O 1s的高分辨率光譜.圖2(b)顯示了位于292.5和295.3 eV處的2個(gè)峰值,分別屬于K 2p3/2和K 2p1/2狀態(tài),這表明鉀處于K+狀態(tài).圖2(c)中,779.6 eV處的峰值為Ba 3d5/2信號(hào),是Ba2+的特征信號(hào).圖2(d)展示的是Nb 3d態(tài)的核級(jí)光譜,光譜中位于206.6和209.4 eV的2個(gè)峰值分別為Nb 3d5/2和Nb 3d3/2態(tài).對(duì)于圖2(e)中的O 1s光譜,529.7 eV處是Nb2O5典型峰,而在較高結(jié)合能531.1 eV處,是Ni與O原子成鍵,即Ni2+取代KN中的Nb5+形成的峰值.圖2(f)中的Ni 2p的XPS峰為855.4,861.5和873.3 eV 3個(gè)分量,分別對(duì)應(yīng)為Ni 2p3/2、衛(wèi)星峰和Ni 2p1/2. 855.4 eV處的峰值與Ni3+,Ni2+-OH,Ni2+-VO的存在有關(guān).衛(wèi)星峰值在861.5 eV處涉及電荷轉(zhuǎn)移配體金屬.這些峰結(jié)合SEM圖,表明KN-0.1BNNO薄膜中存在鎳元素.以上信息被認(rèn)為是KN-0.1BNNO薄膜制備成功的實(shí)驗(yàn)驗(yàn)證.
圖2?。╝) KN-0.1BNNO 薄膜的X射線光發(fā)射光譜,(b) K 2p, (c) Ba 3d, (d) Nb 3d, (e) O 1s和(f) Ni 2p態(tài)及合理的化學(xué)態(tài).虛線和實(shí)線分別表示實(shí)驗(yàn)數(shù)據(jù)和擬合結(jié)果
為證實(shí)KN-0.1BNNO薄膜的結(jié)晶性能良好,對(duì)4種摻雜組分(=0,0.1,0.2和0.3)的樣品進(jìn)行了晶體結(jié)構(gòu)表征.通過(guò)對(duì)比KN材料的標(biāo)準(zhǔn)PDF卡片,可觀察到純KN和KN-0.1BNNO樣品都是典型的單晶峰.與純KN樣品相比,KN-0.1BNNO樣品的擇優(yōu)取向由(110)變?yōu)椋?11),說(shuō)明結(jié)晶峰隨摻雜組分增多有變?nèi)踮厔?shì).同時(shí)隨摻雜組分增多,(111)結(jié)晶峰向低衍射角度移動(dòng).
圖3?。╝) KN-xBNNO薄膜的室溫XRD光譜,(b) 相對(duì)應(yīng)的放大XRD數(shù)據(jù)
為清楚識(shí)別和準(zhǔn)確指認(rèn)拉曼聲子模式,以KN-0.1BNNO樣品為例,測(cè)試了KN-0.1BNNO薄膜的室溫拉曼光譜,如圖4所示.分析了該薄膜拉曼聲子模式數(shù)量、位置及峰強(qiáng)等.由圖4可知,聲子中心位置與溫度相關(guān),因此很容易識(shí)別室溫條件下的振動(dòng)模式.此外,因?yàn)镵N-0.1BNNO樣品是多晶,測(cè)量所得信號(hào)是許多傾斜角的平均,它與聲子波向量沒(méi)有嚴(yán)格的聯(lián)系,既不平行于也不垂直于特定的晶體軸,因此可以適當(dāng)?shù)胤峙淇v向和橫向聲子模式.在低波數(shù)和中波數(shù)區(qū),樣品的拉曼譜主要表征為:1) 約190 cm-1處,源于(E+A1)(TO2,LO2)的一個(gè)Fano-型的干擾下降峰;2) 區(qū)中心在240 cm-1左右的尖銳A1(TO1)模式;3) 區(qū)中心在260 cm-1左右的寬A1(LO4)+A1(TO4)模式;4) 在高波數(shù)區(qū)(500~850 cm-1),確認(rèn)為約在530 cm-1的(B1+B3)(TO3)聲子模式;5) 在600 cm-1處的A1(TO2);6) 在860 cm-1處的A1(LO3).在已報(bào)道的文獻(xiàn)中,低頻模式是與A-O振動(dòng)有關(guān)的,特別是Ba2+/K+離子形成的平移聲子和納米簇,類(lèi)似于單相KNbO3-5%Bi(Me,Yb)O3薄膜.對(duì)該組分薄膜拉曼聲子模式的指認(rèn)基本與對(duì)應(yīng)組分陶瓷的相符合.
圖4 KN-0.1BNNO薄膜的室溫拉曼光譜
在現(xiàn)有的基礎(chǔ)上通過(guò)CSD方法合成了不同鋇和鎳元素?fù)诫s濃度的KN-xBNNO水基前驅(qū)液,采用旋涂技術(shù)在導(dǎo)電襯底上制備該變BNNO摻雜濃度的鐵電薄膜. 通過(guò)分析微觀形貌、晶格結(jié)構(gòu)、化合價(jià)和拉曼聲子模式等信息,調(diào)整樣品制備工藝參數(shù)(退火時(shí)間、溫度、壓強(qiáng)、氣氛等)使其最優(yōu)化,制備出帶隙小、表面缺陷少、結(jié)晶致密、厚度可控的高質(zhì)量鐵電光伏薄膜,為實(shí)現(xiàn)帶隙可調(diào)、載流子高效分離,以及對(duì)可見(jiàn)光可高效吸收的光伏器件提供研究基礎(chǔ).
[1] ZHONG W L. Ferroelectric Physics [M]. Beijing: Science Press, 1996.
[2] NAUMOV I I, FU H X. Spontaneous polarization in one-dimensional Pb(Zr,Ti)O3nanowires [J]. Physical Review Letters, 2005,95(24):247602.
[3] ZHENG F G, XIN Y, HUANG W. et al. Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr,Ti)O3thin film [J]. Journal of Materials Chemistry A, 2014,2(5):1363-1368.
[4] SCOTT J F, FAN H J, KAWASAKI S, et al. Terahertz emission from tubular Pb(Zr,Ti)O3nanostructures [J]. Nano Letters, 2008,8(12):4404-4409.
[5] KIM J, YANG S A, CHOI Y C, et al. Ferroelectricity in highly ordered arrays of ultra-thin-walled Pb(Zr,Ti)O3nanotubes composed of nanometer-sized perovskite crystallites [J]. Nano Letters, 2008,8(7):1813-1818.
[6] WANG L F, MA H, CHANG L, et al. Ferroelectric BiFeO3as an oxide dye in highly tunable mesoporous all-oxide photovoltaic heterojunctions [J]. Small, 2017,13(1):1602355.
[7] JI W, YAO K, LIANG Y C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3thin film [J]. Advanced Materials, 2010,22(15):1763-1766.
[8] NECHACHE R, HARNAGEA C, LI S, et al. Bandgap tuning of multiferroic oxide solar cells [J]. Nature Photon, 2015,9(1):61-67.
[9] NECHACHE R, COJOCARU C V, HARNAGEA C, et al. Epitaxial patterning of Bi2FeCrO6double perovskite nanostructures: multiferroic at room temperature [J]. Advanced Materials, 2011,23(15):1724-1729.
[10] BENNETT J W, GRINBERG I, DAVIES P K, et al. Pb-free semiconductor ferroelectrics: a theoretical study of Pd-substituted Ba(Ti1-xCe)O3solid solutions [J]. Physical Review B, 2010,82(18):184106.
[11] QI T, GRINBERG I, RAPPE A M. Band-gap engineering via local environment in complex oxides [J]. Physical Review B, 2011,83(22):224108.
[12] GOU G Y, BENNETT J W, TAKENAKA H, et al. Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNi)O3-xsolid solutions: effects of cation arrangement on band gap [J]. Physical Review B, 2011,83(20):205115.
[13] GRINBERG I, WES D V, TORRES M, et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials [J]. Nature, 2013,503(7477):509-513.
[14] WANG F G, RAPPE A M. First-principles calculation of the bulk photovoltaic effect in KNbO3and (K,Ba)(Ni,Nb)O3-δ[J]. Physical Review B, 2015,91(16):165124.
[15] LI C Q, WANG F, SUN Y Y, et al. Lattice dynamics, phase transition, and tunable fundamental band gap of photovoltaic (K,Ba)(Ni,Nb)O3-δceramics from spectral measurements and first-principles calculations [J]. Physical Review B, 2018,97(9):094109.
[16] LI C Q, CUI A Y, CHEN F F, et al. Preparation and characterization of narrow bandgap ferroelectric (K,Ba)(Ni,Nb)O3-δfilms for mesoporous all-oxide solar cells [J]. New Journal of Physics, 2019,21:013011.
[17] LI C Q, JIANG K, JIANG J C, et al. Enhanced photovoltaic response of lead-free ferroelectric solar cells based on (K,Bi)(Nb,Yb)O3films [J]. Physical Chemistry Chemical Physics, 2020,22(6):3691-3701.
[18] HAWLEY C J, WU L Y, XIAO G, et al. Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3-δ](=0,0.1) [J]. Physical Review B, 2017,96(5):054117.
[19] PASCUAL-GONZALEZ C, SCHILEO G, FETEIRA A. Band gap narrowing in ferroelectric KNbO3-Bi(Yb,Me)O3(Me=Fe or Mn) ceramics [J]. Applied Physics Letters, 2016,109(13):132902.
[20] LOMBARDI J, PEARSALL F, LI W L, et al. Synthesis and dielectric properties of nanocrystalline oxide perovskites, [KNbO3]1-x[BaNi0.5Nb0.5O3-δ], derived from potassium niobate KNbO3by gel collection [J]. Journal of Materials Chemistry C, 2016,4(34):7989-7998.
[21] GONZALEZ C P, SCHILEO G, KHESRO A, et al. Band gap evolution and a piezoelectric-to-electrostrictive crossover in (1-)[KNbO3]-[(Ba0.5Bi0.5)(Nb0.5Zn0.5)O3]ceramics [J]. Journal of Materials Chemistry C, 2017,5(8):1990-1996.
Research on the preparation and physical properties of KNbO3-based ferroelectric films with tunable bandgaps
HUAoyue, DINGYu, ZU Lihumaer·tuersun, LIChuanqing*
(College of Mathematics and Science, Shanghai Normal University, Shanghai 200234, China)
The material development trend and key preparation technique of barium and nickel co-doped potassium niobate (1-)KNbO3-xBaNi0.5Nb0.5O3-δ(KN-BNNO) thin films were mainly focused on in this paper. Besides, the microstructure, as well as combining state and Raman phonons modes of KN-BNNO thin films were investigated.
band-gap-tunable KN-BNNO ferroelectric film; chemical solution deposition; structure and physics feature; optical absorption property
10.3969/J.ISSN.1000-5137.2022.04.002
2022-04-22
國(guó)家自然科學(xué)基金(12104310)
胡澳月(1999—), 女, 本科生. E-mail: huaoyuejason@foxmail.com
李傳青(1981—), 女, 講師, 主要從事鐵電半導(dǎo)體材料與光伏技術(shù)方面的研究. E-mail: lichuanqing@shnu.edu.cn
胡澳月, 丁宇, 祖麗胡馬爾·圖爾蓀, 等. 帶隙可調(diào)鈮酸鉀基鐵電薄膜制備與物性研究 [J]. 上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022,51(4):401?406.
HU A Y, DING Y, ZU L, et al. Research on the preparation and physical properties of KNbO3?based ferroelectric films with tunable bandgaps [J]. Journal of Shanghai Normal University(Natural Sciences), 2022,51(4):401?406.
O 469
A
1000-5137(2022)04-0401-06
(責(zé)任編輯:顧浩然)