国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

仿生梯度圓環(huán)防護(hù)系統(tǒng)的耐撞性設(shè)計(jì)

2022-08-01 07:31:00邢運(yùn)張橋楊先鋒劉華楊嘉陵
航空學(xué)報(bào) 2022年6期
關(guān)鍵詞:抗沖擊圓環(huán)梯度

邢運(yùn),張橋,楊先鋒,*,劉華,楊嘉陵

1. 北京航空航天大學(xué) 航空科學(xué)與工程學(xué)院,北京 100083 2. 北京航空航天大學(xué) 先進(jìn)結(jié)構(gòu)沖擊與仿生力學(xué)實(shí)驗(yàn)室,北京 100083

隨著飛行器結(jié)構(gòu)在強(qiáng)動(dòng)載荷下的抗沖擊力學(xué)性能要求越來越高,相應(yīng)的結(jié)構(gòu)與人體抗沖擊安全防護(hù)問題也受到了廣泛的關(guān)注,成為探究學(xué)術(shù)前沿和突破關(guān)鍵技術(shù)過程中亟待解決的核心課題。針對(duì)飛行器結(jié)構(gòu)的抗沖擊防護(hù)問題,國(guó)內(nèi)外學(xué)者已經(jīng)開展了大量的研究工作,設(shè)計(jì)開發(fā)了一系列傳統(tǒng)的抗沖擊防護(hù)結(jié)構(gòu),主要包括由金屬或復(fù)合材料制成的薄壁構(gòu)件(如波紋梁、方管、多邊形管、圓管、錐管等)、多胞材料(如蜂窩、泡沫、點(diǎn)陣材料)、填充薄壁管件、三明治夾芯結(jié)構(gòu)等。傳統(tǒng)結(jié)構(gòu)的抗沖擊設(shè)計(jì)涉及多種復(fù)雜的非線性力學(xué)現(xiàn)象,除了彈塑性動(dòng)力大變形外,還伴有材料疲勞損傷、斷裂、結(jié)構(gòu)屈曲和坍塌,以及摩擦和接觸等復(fù)雜物理因素,其中還有許多與之相關(guān)的固體力學(xué)和沖擊動(dòng)力學(xué)重大基礎(chǔ)問題沒有解決。此外,目前的傳統(tǒng)抗沖擊防護(hù)結(jié)構(gòu)并沒有全部參與到能量的吸收與耗散過程中,不能滿足較寬廣的適用環(huán)境,因此防護(hù)效率在一定程度上受到了限制,抗沖擊性能很難達(dá)到最優(yōu)化,同時(shí)也造成了很大資源浪費(fèi)。

大自然為設(shè)計(jì)和制造具有優(yōu)異力學(xué)性能的先進(jìn)材料和結(jié)構(gòu)提供了豐富的仿生靈感。通過對(duì)天然生物抗沖擊策略的研究與探索,對(duì)生物身體防護(hù)機(jī)制的模仿與學(xué)習(xí),國(guó)內(nèi)外學(xué)者在仿生抗沖擊防護(hù)研究領(lǐng)域開展了大量工作,研制出多種多樣的新型抗沖擊仿生材料與結(jié)構(gòu)。這些仿生結(jié)構(gòu)具有出色的防護(hù)性能,例如有限的初始峰值力、足夠長(zhǎng)的工作行程、較高的能量吸收能力,因?yàn)樗鼈儽辉O(shè)計(jì)為采用塑性變形或破碎的形式將大部分沖擊動(dòng)能轉(zhuǎn)化為非彈性能耗散。但是,采用塑性變形或破碎形式能量耗散策略的能量吸收結(jié)構(gòu)只能使用一次。當(dāng)受到外部沖擊載荷頻繁作用時(shí),以上防護(hù)結(jié)構(gòu)無法滿足提高可重復(fù)使用耐沖擊性的特定要求。盡管某些可重用防護(hù)結(jié)構(gòu)的抗沖擊性能目前無法與一次性防護(hù)結(jié)構(gòu)相提并論,但它們還具有許多其他優(yōu)異的性能,例如可重構(gòu)性、可編程性和廣泛的適應(yīng)性。特別是當(dāng)抗沖擊結(jié)構(gòu)需要承受極端和復(fù)雜的外部載荷時(shí),結(jié)構(gòu)的可重復(fù)使用性、可編程性以及形狀可重構(gòu)性在防護(hù)系統(tǒng)中就顯得非常重要。

為了解決以上問題,本文嘗試從自然進(jìn)化的動(dòng)物抗沖擊策略中尋求有效的解決方案。在自然界中,動(dòng)物進(jìn)化出的大多數(shù)身體防護(hù)機(jī)制都是可重用且高效的,動(dòng)物利用其生物組織的彈性或黏彈性來抵抗沖擊載荷,這些機(jī)制很少引起生物組織的塑性變形,從而防止了沖擊載荷對(duì)身體的不可逆轉(zhuǎn)傷害,這對(duì)研究沖擊防護(hù)具有重要的生物啟示。近期,Xing和Yang在天然昆蟲角質(zhì)層的空間層次結(jié)構(gòu)中發(fā)現(xiàn)了一種抗沖擊策略。這一發(fā)現(xiàn)表明,昆蟲甲殼角質(zhì)層沿厚度方向具有不連續(xù)的指數(shù)剛度梯度(DC-EXP),可使結(jié)構(gòu)內(nèi)部應(yīng)力達(dá)到最小,從而達(dá)到最佳的抗沖擊性能和防御效果。由此推理,剛度分布對(duì)人造防護(hù)結(jié)構(gòu)的抗沖擊性能也應(yīng)產(chǎn)生重大影響。但是,前人在設(shè)計(jì)可重復(fù)使用防護(hù)結(jié)構(gòu)時(shí)尚未考慮剛度分布對(duì)其抗沖擊能力和防護(hù)性能的確切影響。比如,不同的剛度梯度在沖擊載荷下對(duì)防御結(jié)構(gòu)的防護(hù)性能的作用、不同的剛度梯度設(shè)計(jì)方案對(duì)防御結(jié)構(gòu)的耐沖擊性能的提高程度、最適合結(jié)構(gòu)防護(hù)的剛度梯度分布等問題仍然不清楚。

為了解決上述問題并設(shè)計(jì)出易于制造的防護(hù)結(jié)構(gòu),本文受昆蟲角質(zhì)層剛度分布的生物啟發(fā),提出一種新型可重復(fù)使用彈性梯度圓環(huán)陣列結(jié)構(gòu),旨在通過調(diào)節(jié)圓環(huán)間彈性模量、半徑和厚度的分布,改變圓環(huán)陣列的相對(duì)剛度梯度,從而減小與內(nèi)部結(jié)構(gòu)的碰撞力,提高圓環(huán)的沖擊防護(hù)特性。

1 仿生剛度梯度圓環(huán)系統(tǒng)

1.1 幾何構(gòu)造和有限元模型

仿生設(shè)計(jì)思路如圖1所示,使用一系列彈性環(huán)陣列結(jié)構(gòu)代替昆蟲角質(zhì)層,類似于集成不同剛度梯度分布的空間分層結(jié)構(gòu),對(duì)內(nèi)部結(jié)構(gòu)起到抗沖擊防護(hù)作用。

圖1 仿生圓環(huán)防護(hù)系統(tǒng)設(shè)計(jì)示意圖Fig.1 Schematic diagram of bionic ring protection system design

根據(jù)Timoshenko提出的彈性解,彈性環(huán)的等效剛度的計(jì)算公式為

(1)

式中:為圓環(huán)基本材料的彈性模量;為圓環(huán)的半徑;為圓環(huán)的厚度;為圓環(huán)的寬度。根據(jù)式(1), 可以通過調(diào)整3個(gè)參數(shù)(彈性模量、半徑、厚度)對(duì)彈性環(huán)系統(tǒng)的剛度梯度編程,從而獲得最佳的抗沖擊性能設(shè)計(jì)方案(見圖2)。

圖2 仿生剛度梯度圓環(huán)防護(hù)系統(tǒng)Fig.2 Bionic stiffness gradient ring protection system

為研究仿生彈性梯度圓環(huán)系統(tǒng)的防護(hù)性能,使用HyperMesh軟件構(gòu)建了具有不同等效剛度梯度分布的單列圓環(huán)系統(tǒng)有限元模型,模型包括3個(gè)部分:剛性質(zhì)量塊、彈性環(huán)系統(tǒng)、剛性底座(見圖3),并用非線性顯式有限元算法工具ANSYS/LS-DYNA來計(jì)算此仿生結(jié)構(gòu)在沖擊載荷下的動(dòng)力響應(yīng)。約束剛性質(zhì)量塊其他方向的自由度,使其只能沿方向(沖擊方向,見圖3)進(jìn)行平移運(yùn)動(dòng),并以的初速度垂直向下撞擊彈性圓環(huán)系統(tǒng)。將剛性底座最下層單元節(jié)點(diǎn)固支約束。彈性圓環(huán)系統(tǒng)采用線彈性材料模型,可以分別調(diào)整單個(gè)圓環(huán)的彈性模量、半徑、厚度來設(shè)計(jì)圓環(huán)系統(tǒng)的等效剛度梯度分布。有限元模型采用8節(jié)點(diǎn)實(shí)體單元?jiǎng)澐志W(wǎng)格,在圓環(huán)厚度方向上至少劃分4層,這可以提供良好的計(jì)算精度并同時(shí)節(jié)省計(jì)算成本(見圖3)。為避免彈性環(huán)之間發(fā)生滲透或相交現(xiàn)象,采用自動(dòng)單面接觸來模擬圓環(huán)系統(tǒng)自身的接觸行為;采用自動(dòng)面-面接觸來模擬撞擊質(zhì)量塊、剛性底座與圓環(huán)系統(tǒng)之間的接觸行為,各接觸面之間的靜動(dòng)摩擦系數(shù)均設(shè)置為0.2。

圖3 仿生圓環(huán)防護(hù)系統(tǒng)有限元模擬示意圖Fig.3 Schematic diagram of finite element simulation of bionic ring protection system

為模仿甲蟲角質(zhì)層防止應(yīng)力波傳播及其防護(hù)性能的功能特點(diǎn),通過參考之前研究昆蟲角質(zhì)層剛度分布的方法,沿沖擊方向同樣提出7種等效剛度梯度(見圖4),分別為指數(shù)函數(shù)分布(EXP)、線性函數(shù)分布(LIN)、對(duì)數(shù)函數(shù)分布(LG)、三角函數(shù)分布(SIN-Ⅰ、SIN-Ⅱ)、二次函數(shù)分布(SQ-Ⅰ、SQ-Ⅱ),并且對(duì)具有這7種不同剛度梯度分布的仿生圓環(huán)系統(tǒng)的防護(hù)性能進(jìn)行比較。以上7種等效剛度梯度分布曲線具有凹形或凸形輪廓,本文中沿沖擊方向(方向)斜率增大的剛度曲線定義為凹曲線,斜率減小的剛度曲線定義為凸曲線(見圖4)。因此,凹形剛度梯度有EXP、SIN-Ⅰ、SQ-Ⅰ,凸型剛度梯度有LG、SQ-Ⅱ、SQ-Ⅱ。

圖4 沿梯度彈性圓環(huán)受沖擊方向(x方向)不同等效剛度分布形式Fig.4 Distribution forms of different equivalent stiffness along impact direction (x direction) of gradient elastic ring

Xing和Yang的研究表明,甲蟲中表皮層對(duì)彈性應(yīng)力波的衰減作用以及對(duì)整個(gè)角質(zhì)層的抗沖擊性能影響最大。中表皮最外層的最大剛度約為其最內(nèi)層的8倍。本文以天然甲蟲角質(zhì)層的中表皮層為生物靈感,以半徑為11.6 mm、厚度為3. 2 mm、寬度為12.5 mm的彈性鋼環(huán)作為參考基本環(huán),發(fā)展出圓環(huán)陣列防護(hù)系統(tǒng),從而模仿中表皮層的抗沖擊特性。如果參考基本鋼環(huán)的彈性模量為210 GPa,其等效剛度約為48.179 kN/mm。根據(jù)參考基本鋼環(huán),分別通過調(diào)整環(huán)的彈性模量、半徑、厚度,可以得到圖4中所示的具有7種等效剛度梯度分布的仿生圓環(huán)防護(hù)系統(tǒng)。

1.2 理論分析模型

基于多胞結(jié)構(gòu)受撞擊的理論分析模型,提出一種改進(jìn)的一維質(zhì)量-彈簧模型,研究1.1節(jié)提出的仿生剛度梯度圓環(huán)防護(hù)系統(tǒng)在沖擊載荷下的動(dòng)態(tài)響應(yīng)。為便于理解,首先考慮了單個(gè)環(huán)在質(zhì)量塊的撞擊作用下的改進(jìn)質(zhì)量-彈簧模型,如圖5(a)所示。如圖5(b)所示,單個(gè)環(huán)可以簡(jiǎn)化為1個(gè)集中質(zhì)量()和1個(gè)無質(zhì)量的代表單個(gè)圓環(huán)壓縮特性的彈簧(),可將圓環(huán)壓縮特性近似看作線彈性。

質(zhì)量塊與單環(huán)上邊緣之間的接觸由接觸彈簧(圖5(b)所示的彈簧)表示。在前人研究中,對(duì)于理想彈塑性的多胞結(jié)構(gòu)受撞擊問題,常常將與受壓材料的屈服應(yīng)力相關(guān)的恒力彈簧表示為接觸彈簧,它可以準(zhǔn)確地預(yù)測(cè)質(zhì)量塊與圓環(huán)碰撞過程中的能量耗散。然而,在該研究中,恒力彈簧不再適用于撞擊質(zhì)量塊和線彈性圓環(huán)之間的碰撞,因?yàn)樗鼈冎g接觸力的改變不能被忽略。

圖5 仿生圓環(huán)防護(hù)系統(tǒng)理論模型示意圖Fig.5 Schematic diagram of theoretical model of bionic ring protection system

基于接觸力學(xué),可以引入空心率確定撞擊質(zhì)量塊與線彈性薄壁圓環(huán)之間的碰撞接觸力

=(1-)

(2)

式中:為2個(gè)實(shí)體之間的接觸力;為空心率,計(jì)算公式為

(3)

對(duì)于撞擊質(zhì)量塊和線彈性薄壁圓環(huán)的接觸問題,非赫茲接觸力學(xué)問題的解可提供圓環(huán)的徑向變形(接觸彈簧的變形),計(jì)算公式為

(4)

(5)

式中:為等效模量,計(jì)算公式為

(6)

式中:為撞擊質(zhì)量塊的彈性模量;為圓環(huán)的彈性模量;為撞擊質(zhì)量塊的泊松比;為圓環(huán)的泊松比。

對(duì)于表示薄壁圓環(huán)壓縮力學(xué)行為的線彈性彈簧(),Timoshenko推導(dǎo)出了彈性圓環(huán)的等效剛度,如式(1)所示。則薄壁彈性圓環(huán)的彈簧力可以表示為

=

(7)

式中:為圓環(huán)徑向減小的距離。

對(duì)于圖5(c)所示的單列梯度彈性圓環(huán)系統(tǒng),幾何可重復(fù)性可以將整個(gè)結(jié)構(gòu)簡(jiǎn)化成一系列由1個(gè)無質(zhì)量線彈性彈簧連接1個(gè)集中質(zhì)量塊凝聚的質(zhì)量-彈簧模型(見圖5(d))。假定單列梯度彈性圓環(huán)沿方向受到?jīng)_擊,為在撞擊瞬間圓環(huán)系統(tǒng)第個(gè)集中質(zhì)量塊的位置坐標(biāo)(距受沖擊端的距離),為第個(gè)集中質(zhì)量塊距其初始位置的位移,為第個(gè)彈簧的壓縮距離,計(jì)算公式為

=-+1

(8)

通過對(duì)以上質(zhì)量-彈簧模型的分析,給出了梯度彈性環(huán)系統(tǒng)在沖擊載荷作用下的動(dòng)態(tài)響應(yīng)控制方程

(9)

(10)

(11)

式中:為撞擊質(zhì)量塊的質(zhì)量;為撞擊質(zhì)量塊與圓環(huán)系統(tǒng)中第1個(gè)圓環(huán)碰撞時(shí)的接觸力;為第個(gè)彈性環(huán)的質(zhì)量;為第個(gè)彈性環(huán)的等效剛度,可以通過將第個(gè)彈性環(huán)的彈性模量、半徑、厚度、寬度代入式(1)計(jì)算得到。

問題的初始條件為

(12)

(13)

式中:為撞擊質(zhì)量塊的初始沖擊速度。模型中彈簧不能承受拉力,因此,如果彈簧的壓縮距離<0,此時(shí)在彈簧中沒有任何力存在,彈簧力等于零(=0),直到它受到進(jìn)一步壓縮。本文理論模型通過MATLAB編程求解,采用四階Runge-Kutta算法計(jì)算預(yù)測(cè)撞擊質(zhì)量塊和第1個(gè)圓環(huán)之間的碰撞接觸力以及圓環(huán)系統(tǒng)末端與剛性壁之間的相互作用力。

1.3 有限元模型驗(yàn)證

為了檢查1.1節(jié)中有限元分析的有效性,基于先前的實(shí)驗(yàn)對(duì)仿生剛度梯度圓環(huán)系統(tǒng)受沖擊載荷問題進(jìn)行了比較研究。在文獻(xiàn)[31]中,實(shí)驗(yàn)測(cè)試了半徑為19.05 mm、厚度為1 mm、寬度為10 mm 的彈性黃銅環(huán)受沖擊載荷時(shí)的動(dòng)態(tài)響應(yīng),如圖6所示,銅環(huán)材料的密度和彈性模量分別為8 199 kg/m、120.4 GPa。建立了對(duì)應(yīng)于實(shí)驗(yàn)的理論模型和有限元模型,計(jì)算了撞擊質(zhì)量塊和銅環(huán)之間的接觸力(見圖6(a))以及金屬環(huán)和剛性壁之間的碰撞力(見圖6(b)),可以發(fā)現(xiàn)有限元數(shù)值結(jié)果與實(shí)驗(yàn)測(cè)量及理論預(yù)測(cè)結(jié)果分別吻合良好。

圖6 單個(gè)金屬圓環(huán)受撞擊時(shí)的典型碰撞接觸力和反作用力Fig.6 Typical collision contact force and reaction force of single metal ring being impacted

此外,將圖5(d)中的九環(huán)質(zhì)量-彈簧理論模型對(duì)1、10、20 m/s 3種初始碰撞速度的沖擊預(yù)測(cè)結(jié)果與有限元數(shù)值模擬結(jié)果進(jìn)行對(duì)比,結(jié)果如圖7所示。從圖7中可以看出,在低速?zèng)_擊情況下,分別通過理論模型預(yù)測(cè)和有限元模擬獲得的接觸力和碰撞反作用力彼此保持一致。以上驗(yàn)證表明有限元模型構(gòu)建的精確性是完全可接受的,可作為可靠手段對(duì)仿生梯度圓環(huán)防護(hù)系統(tǒng)進(jìn)、一步進(jìn)行參數(shù)分析。

圖7 圓環(huán)系統(tǒng)受初速度1 m/s的質(zhì)量塊撞擊時(shí)的數(shù)值模擬與理論預(yù)測(cè)結(jié)果比較Fig.7 Comparison between numerical simulation and theoretical prediction results of ring system impacted by 1 m/s initial velocity mass

2 單列仿生剛度梯度圓環(huán)的參數(shù)化分析

第1節(jié)通過理論模型和實(shí)驗(yàn)對(duì)比驗(yàn)證了有限元分析的準(zhǔn)確性,本節(jié)采用有限元模型來研究具有不同等效剛度梯度分布的單列仿生圓環(huán)系統(tǒng)的抗沖擊能力;同時(shí)評(píng)估剛度曲線輪廓的凹凸形對(duì)防護(hù)性能的影響。評(píng)判仿生圓環(huán)系統(tǒng)防護(hù)性能的重要參考指標(biāo)之一就是沖擊遠(yuǎn)端圓環(huán)和內(nèi)部基底(剛性壁)之間的碰撞力,此碰撞力減小有助于降低內(nèi)部被保護(hù)結(jié)構(gòu)的損傷風(fēng)險(xiǎn),這意味著仿生剛度梯度圓環(huán)系統(tǒng)具有良好的抗沖擊能力。

根據(jù)式(1),圓環(huán)系統(tǒng)等效剛度梯度的分布取決于基體材料的彈性模量、圓環(huán)半徑、圓環(huán)壁厚、寬度。本文圓環(huán)的寬度保持不變(=12.5 mm), 等效剛度分布僅由基體材料(彈性模量)和圓環(huán)半徑與壁厚之比(/)決定。當(dāng)圓環(huán)材料相同時(shí)(彈性模量保持不變),影響等效剛度的核心因素是徑厚比(/),徑厚比越大,剛度越??;徑厚比越小,剛度越大。通過控制徑厚比(/)可以得到相同的等效剛度分布形式,但這并不意味著在下面的情況下,比值/可以被視為一個(gè)獨(dú)立的參數(shù)分析。因?yàn)榘霃交蚝穸鹊膯为?dú)變化將導(dǎo)致2種不同的質(zhì)量(或慣性)分布,并最終導(dǎo)致圓環(huán)系統(tǒng)的抗沖擊響應(yīng)和防護(hù)特性不同。因此,需要討論在獲得相同的等效剛度分布時(shí),彈性模量分布、半徑分布和厚度分布對(duì)圓環(huán)系統(tǒng)防護(hù)性能的影響。

2.1 彈性模量分布對(duì)防護(hù)特性的影響

根據(jù)式(1),保持其他參數(shù)不變,調(diào)整彈性模量以滿足圖4所示的7種不同剛度梯度分布形式。選擇半徑為11.6 mm、厚度為3.2 mm、寬度為12.5 mm的不銹鋼環(huán)作為參考圓環(huán)。參考環(huán)材料的彈性模量為=210 GPa、泊松比=03、密度=7 800 kg/m,進(jìn)一步可計(jì)算出參考環(huán)的等效剛度為48.179 kN/mm。圖8(a)給出了調(diào)整彈性模量分布達(dá)到不同等效剛度分布的圓環(huán)系統(tǒng)在,圖8(b)、圖8(c)則給出了此梯度圓環(huán)系統(tǒng)受到質(zhì)量為0.2 kg、初速度為1 m/s的質(zhì)量塊撞擊作用時(shí),沖擊遠(yuǎn)端圓環(huán)與剛性壁之間的碰撞力曲線。

圖8 通過控制彈性模量設(shè)計(jì)出的具有不同等效剛度梯度的圓環(huán)系統(tǒng)受沖擊時(shí)的反作用力Fig.8 Reaction forces of ring system with different equivalent stiffness gradients under impact designed by controlling elastic modulus

結(jié)果表明,所有碰撞力-時(shí)間曲線只有一個(gè)波峰。為了便于描述,凹形剛度梯度(EXP、SIN-Ⅰ、SQ-Ⅰ)定義為Ⅰ型梯度,凸型剛度梯度(LG、SQ-Ⅱ、SQ-Ⅱ)和LIN定義為Ⅱ型梯度。研究發(fā)現(xiàn),Ⅰ型梯度的峰值力小于Ⅱ型梯度的峰值力。與Ⅱ型梯度中最大的峰值力(由LG得到)相比,Ⅰ型梯度中最小的峰值力(由EXP得到)降低了13.6%。此外,與其他類型相比,Ⅰ型梯度中的峰值力有所延遲。以上結(jié)果說明,凹形剛度梯度會(huì)減緩沖擊力的傳播,并對(duì)內(nèi)部結(jié)構(gòu)具有更好的防護(hù)性能。造成這種現(xiàn)象的一個(gè)重要原因是凹型曲線(Ⅰ型梯度)可以更有效地衰減彈性應(yīng)力波的傳播并同時(shí)在復(fù)合結(jié)構(gòu)中保持更低的應(yīng)力狀態(tài)。

在以上模型中,沿仿生梯度圓環(huán)系統(tǒng)受沖擊方向(方向)具有指數(shù)剛度梯度(EXP)的模型對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生的碰撞力最小(圖8(c))。這是因?yàn)镋XP剛度梯度在衰減彈性應(yīng)力波傳播方面具有優(yōu)勢(shì),在撞擊過程中可有效減小作用在內(nèi)部結(jié)構(gòu)上的碰撞力。此外,還有一個(gè)重要事實(shí)可以解釋以上發(fā)現(xiàn),相比于其他梯度分布形式,EXP剛度梯度可以通過將剛性、柔順性2個(gè)相互排斥的特性很好地結(jié)合起來,在材料的承載力和彈性之間達(dá)到更好的折衷策略。

2.2 半徑分布對(duì)防護(hù)特性的影響

保持其他參數(shù)不變,通過調(diào)整圓環(huán)半徑獲得具有圖4中所示的不同剛度梯度分布的圓環(huán)系統(tǒng),在相同沖擊條件下的防護(hù)性能。計(jì)算發(fā)現(xiàn),可得到與2.1節(jié)類似的結(jié)論。

圖9給出了具有不同圓環(huán)半徑分布形式的梯度圓環(huán)系統(tǒng)在沖擊載荷作用下,圓環(huán)系統(tǒng)遠(yuǎn)端與內(nèi)部剛性壁之間的碰撞力曲線。具有Ⅰ型梯度(EXP、SIN-Ⅰ、SQ-Ⅰ)的圓環(huán)系統(tǒng)產(chǎn)生的碰撞力曲線只有一個(gè)波峰,而具有Ⅱ型梯度(LG、SQ-Ⅱ、SQ-Ⅱ、LIN)的圓環(huán)系統(tǒng)產(chǎn)生的碰撞力曲線有2個(gè)波峰(圖9)。Ⅱ型梯度產(chǎn)生的第1個(gè)碰撞力波峰出現(xiàn)在Ⅰ型梯度的波峰之前,第2個(gè)波峰出現(xiàn)在其他波峰之后。研究還可以發(fā)現(xiàn),Ⅱ型梯度產(chǎn)生的第2個(gè)波峰值小于第1個(gè)波峰值。這是因?yàn)榇藭r(shí)的圓環(huán)系統(tǒng)質(zhì)量分布不再像圖8所示的那樣均勻。圓環(huán)的質(zhì)量會(huì)隨著半徑的增加而增加,因此,圓環(huán)系統(tǒng)遠(yuǎn)端的慣性也隨之增加。在相同的碰撞條件下,圓環(huán)的壓縮深度隨著慣性的增加而減小,從而導(dǎo)致較小的碰撞反力。與Ⅱ型梯度相比(LG、SQ-Ⅱ、SQ-Ⅱ、LIN),I型梯度(EXP、SIN-Ⅰ、SQ-Ⅰ)仍在遠(yuǎn)端圓環(huán)與內(nèi)部結(jié)構(gòu)之間的碰撞力曲線中只產(chǎn)生一個(gè)峰值(見圖9(b)),這不僅延遲了內(nèi)部結(jié)構(gòu)受到碰撞的時(shí)間,而且同時(shí)減少了沖擊初期防護(hù)系統(tǒng)與被保護(hù)結(jié)構(gòu)之間的碰撞次數(shù)。與第2.1節(jié)結(jié)論相似,與具有2個(gè)I型剛度梯度(SIN-Ⅰ、SQ-Ⅰ)的圓環(huán)系統(tǒng)相比,具有指數(shù)剛度梯度(EXP)的圓環(huán)系統(tǒng)對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生更小的碰撞力峰值,相比SIN-Ⅰ梯度下降了2.32%,相比SQ-Ⅰ梯度下降了1.42%(圖9)。

圖9 通過控制半徑設(shè)計(jì)出的具有不同等效剛度梯度的圓環(huán)系統(tǒng)受沖擊時(shí)的反作用力Fig.9 Reaction forces of ring system with different equivalent stiffness gradients under impact designed by controlling radius

2.3 壁厚分布對(duì)防護(hù)特性的影響

剛度梯度分布也取決于圓環(huán)的壁厚,討論了不同壁厚對(duì)梯度圓環(huán)系統(tǒng)防護(hù)性能的影響,其中/與2.2節(jié)保持相同。圖10繪制了在相同的沖擊條件下,具有不同壁厚分布的仿生剛度梯度圓環(huán)系統(tǒng)與內(nèi)部結(jié)構(gòu)碰撞的作用力曲線。I型梯度和Ⅱ型梯度的碰撞力-時(shí)間曲線基本上保持相同的趨勢(shì)。與2.2節(jié)結(jié)果一致,Ⅱ型梯度(LG、SQ-Ⅱ、SQ-Ⅱ、LIN)產(chǎn)生的碰撞力曲線具有2個(gè)峰值(見圖10),但是,第2峰值力大大增加,并且當(dāng)其峰值過高時(shí),可能會(huì)對(duì)內(nèi)部結(jié)構(gòu)造成嚴(yán)重破壞。以上現(xiàn)象也可以通過梯度圓環(huán)系統(tǒng)中的質(zhì)量分布來解釋。圓環(huán)系統(tǒng)遠(yuǎn)端的慣性隨著壁厚的減小而不斷減小,因此,即使圓環(huán)具有相同的剛度分布,壁更薄的圓環(huán)更容易被壓縮更大的深度并導(dǎo)致更大的反作用力峰值。

圖10 通過控制壁厚設(shè)計(jì)出的具有不同等效剛度梯度的圓環(huán)系統(tǒng)受沖擊時(shí)的反作用力Fig.10 Reaction forces of ring system with different equivalent stiffness gradients under impact designed by controlling wall thickness

與具有不同彈性模量分布和不同半徑分布的梯度圓環(huán)系統(tǒng)在沖擊載荷下的動(dòng)態(tài)響應(yīng)一致,通過調(diào)整厚度分布得到具有Ⅰ型剛度梯度分布的圓環(huán)系統(tǒng)會(huì)對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生更小的峰值力。結(jié)果表明,具有EXP剛度梯度的圓環(huán)系統(tǒng)對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生的碰撞力峰值相比SIN-Ⅰ梯度下降了4.43%,相比SQ-Ⅰ梯度下降了2.58%,可以得到與前面各節(jié)相同的結(jié)論。

2.4 不同單列仿生剛度梯度圓環(huán)的防護(hù)特性比較

為便于描述,將具有不同彈性模量分布的梯度圓環(huán)系統(tǒng)稱為E型,將具有不同半徑分布的梯度圓環(huán)系統(tǒng)稱為R型,將具有不同壁厚分布的梯度圓環(huán)系統(tǒng)稱為T型。

如2.1~2.3節(jié)中所述,具有EXP剛度分布的圓環(huán)系統(tǒng)在相同沖擊條件下對(duì)內(nèi)部防護(hù)結(jié)構(gòu)產(chǎn)生的碰撞力最小,這與天然甲蟲角質(zhì)層結(jié)構(gòu)演化的結(jié)果一致??紤]到結(jié)構(gòu)的制造成本和重量,仿生剛度梯度圓環(huán)系統(tǒng)的質(zhì)量是一個(gè)重要的設(shè)計(jì)指標(biāo)。圖11分別給出了具有不同彈性模量,半徑和厚度分布的每種梯度圓環(huán)系統(tǒng)對(duì)內(nèi)部防護(hù)結(jié)構(gòu)產(chǎn)生的碰撞力峰值及其自身總質(zhì)量。圖11(a)~圖11(c)顯示,E型、R型、T型梯度圓環(huán)系統(tǒng)對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生的碰撞力峰值隨分布形式改變具有相同的變化趨勢(shì),其中EXP剛度梯度導(dǎo)致最小的碰撞反力。E型梯度圓環(huán)系統(tǒng)的質(zhì)量不變(見圖12(a)),R型梯度圓環(huán)系統(tǒng)的質(zhì)量隨梯度分布形式改變的趨勢(shì)與T型梯度圓環(huán)系統(tǒng)相反(見圖11(e)、圖11(f))。這是因?yàn)榘霃脚c厚度分別為式(1)的分母和分子,當(dāng)分別調(diào)節(jié)半徑和厚度這2個(gè)參數(shù)得到相同的等效剛度時(shí),半徑和厚度的增大和減小趨勢(shì)相反,這使得圓環(huán)系統(tǒng)最終獲得的質(zhì)量正好相反。同樣對(duì)于EXP剛度梯度分布,T型梯度圓環(huán)系統(tǒng)對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生的碰撞力峰值比E型梯度圓環(huán)系統(tǒng)產(chǎn)生的大1.86%,而質(zhì)量卻比E型梯度圓環(huán)系統(tǒng)降低了22.4%;比R型對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生的碰撞力峰值大3.91%,而質(zhì)量下降了更多,達(dá)到46.4%。因此,當(dāng)工程師設(shè)計(jì)人工合成先進(jìn)防御結(jié)構(gòu)時(shí),應(yīng)同時(shí)考慮其防護(hù)性能,質(zhì)量以及制造成本來選擇一種最佳折衷策略。

圖11 具有不同等效剛度梯度分布的圓環(huán)系統(tǒng)在相同沖擊載荷作用下產(chǎn)生的反作用力峰值和自身質(zhì)量Fig.11 Reaction force peak and its own mass of ring system with different equivalent stiffness gradient distributions under the same impact load

本文還分別計(jì)算了E型、R型、T型梯度圓環(huán)系統(tǒng)對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生的碰撞力沖量(見表1)。研究發(fā)現(xiàn),具有指數(shù)剛度分布(EXP)的T型梯度圓環(huán)系統(tǒng)對(duì)內(nèi)部防護(hù)結(jié)構(gòu)產(chǎn)生的碰撞力沖量最小。以上結(jié)果表明,具有指數(shù)剛度分布(EXP)的T型梯度圓環(huán)系統(tǒng)可能會(huì)成為工程應(yīng)用中最佳的選擇,因?yàn)樗宰钶p的質(zhì)量使得對(duì)內(nèi)部防護(hù)結(jié)構(gòu)產(chǎn)生的碰撞沖量達(dá)到最小。

表1 E型、R型、T型梯度圓環(huán)系統(tǒng)對(duì)內(nèi)部結(jié)構(gòu)產(chǎn)生的碰撞力沖量Table 1 Impulses of impact force generated by E-type, R-type and T-type gradient ring systems on internal structure

2.5 碰撞能量傳遞關(guān)系

以具有指數(shù)剛度分布(EXP)的T型梯度圓環(huán)系統(tǒng)為例,計(jì)算在碰撞過程中的能量傳遞關(guān)系,來說明抗沖擊結(jié)構(gòu)和碰撞物的能量是如何轉(zhuǎn)換的。本算例中,圓環(huán)系統(tǒng)的參數(shù)與2.3節(jié)相同。質(zhì)量為0.2 kg、初速度為1 m/s的質(zhì)量塊撞擊圓環(huán)系統(tǒng)后,質(zhì)量塊變?yōu)榉聪蜻\(yùn)動(dòng),動(dòng)能下降(見圖12(a)),耗散的動(dòng)能轉(zhuǎn)化為圓環(huán)系統(tǒng)的變形能和振動(dòng)動(dòng)能,這2部分能量組成圓環(huán)系統(tǒng)的總能量。當(dāng)質(zhì)量塊撞擊最外部圓環(huán)(圓環(huán)1)時(shí),質(zhì)量塊動(dòng)能開始減小,圓環(huán)1能量增加。隨后,碰撞能量依次向內(nèi)部傳遞,位置越靠?jī)?nèi)的圓環(huán)吸收能量越高(見圖12(b));當(dāng)能量首次傳遞到最內(nèi)部圓環(huán)時(shí),由于最內(nèi)部圓環(huán)與內(nèi)部結(jié)構(gòu)發(fā)生碰撞,從而反向壓縮較外部圓環(huán),使得能量由內(nèi)向外傳遞。與由外向內(nèi)傳遞時(shí)趨勢(shì)相反,由內(nèi)向外傳遞時(shí)各圓環(huán)吸收的能量逐次降低,最終各圓環(huán)的能量趨于穩(wěn)定。在碰撞過程中,質(zhì)量塊的動(dòng)能先逐漸降低至零,之后反向加速,動(dòng)能逐漸增加,等碰撞結(jié)束系統(tǒng)穩(wěn)定后的質(zhì)量塊動(dòng)能大約減少20%。

圖12 碰撞過程中各部分能量Fig.12 Energy of each part during collision

3 仿生圓環(huán)陣列的防護(hù)特性分析

根據(jù)以上研究,可以知道具有EXP剛度梯度的單列圓環(huán)系統(tǒng)具有最佳的防護(hù)性能。在此基礎(chǔ)上,進(jìn)一步研究了圓環(huán)陣列結(jié)構(gòu)(見圖13)的抗沖擊特性。以上設(shè)計(jì)策略可以應(yīng)用于各種尺寸比例和更多的工程防護(hù)結(jié)構(gòu)中。例如,在撞擊速度為1 m/s的質(zhì)量塊沖擊作用下,研究了仿生圓環(huán)陣列結(jié)構(gòu)的防護(hù)性能,撞擊圓環(huán)陣列結(jié)構(gòu)的質(zhì)量塊質(zhì)量為0.2 kg。圓環(huán)陣列中環(huán)的參數(shù)(彈性模量=210 GPa、半徑=10 mm、寬度=12.5 mm),均保持不變。壁厚的分布使每個(gè)圓環(huán)陣列的剛度梯度滿足指數(shù)(EXP)分布。

圖13 仿生梯度圓環(huán)陣列防護(hù)系統(tǒng)Fig.13 Bionic gradient ring array protection system

圖14顯示了在具有指數(shù)剛度梯度(EXP)的圓環(huán)陣列結(jié)構(gòu)中,彈性應(yīng)力傳播過程的數(shù)值模擬結(jié)果。在撞擊開始時(shí),沖擊力主要作用在撞擊質(zhì)量塊正下方的3列圓環(huán)系統(tǒng)上。隨著沖擊過程的進(jìn)行,質(zhì)量塊正下方兩側(cè)的圓環(huán)系統(tǒng)也開始承受沖擊載荷。但是,數(shù)值結(jié)果表明,單列圓環(huán)系統(tǒng)離撞擊質(zhì)量塊的距離越遠(yuǎn),受沖擊載荷的影響越小。

在沖擊應(yīng)力傳播過程中,最大應(yīng)力值沿沖擊方向逐漸減小(見圖14)。當(dāng)沖擊載荷作用于圓環(huán)陣列結(jié)構(gòu)時(shí),最外層圓環(huán)產(chǎn)生的最大應(yīng)力為145.8 MPa,而當(dāng)應(yīng)力波傳輸?shù)皆撽嚵凶顑?nèi)層的圓環(huán)時(shí),圓環(huán)陣列中最大應(yīng)力僅為71.6 MPa,降低了50.9%。這表明該圓環(huán)陣列結(jié)構(gòu)對(duì)彈性應(yīng)力波的傳播具有良好的衰減效果,可以減小結(jié)構(gòu)內(nèi)環(huán)的應(yīng)力水平防止該陣列結(jié)構(gòu)發(fā)生破壞。另外,圖14顯示在沖擊方向上具有指數(shù)剛度梯度(EXP)的圓環(huán)陣列結(jié)構(gòu)可以使彈性應(yīng)力波沿著沖擊方向的傳播減速。為了清晰地解釋這個(gè)問題,研究沿沖擊方向?qū)鞑ゾ嚯x分為3個(gè)相等的部為了比較沿沖擊方向具有不同剛度梯度分布的仿生圓環(huán)陣列結(jié)構(gòu)的防護(hù)性能,本文還分別計(jì)算了圓環(huán)陣列結(jié)構(gòu)與內(nèi)部基板之間的碰撞力(見圖15)。分析表明,這些受生物啟發(fā)的圓環(huán)陣列結(jié)構(gòu)可以幫助降低作用在被保護(hù)結(jié)構(gòu)(基板)上的碰撞力。研究證明凹形剛度梯度(EXP、SIN-Ⅰ、SQ-Ⅰ)具有更好的防護(hù)效果,在凹形剛度梯度中,EXP剛度分布導(dǎo)致產(chǎn)生更小的碰撞力峰值。在相同沖擊條件下,與沒有受任何保護(hù)的基板相比,作用在受仿生剛度梯度(EXP)圓環(huán)陣列結(jié)構(gòu)保護(hù)的基板上的碰撞力峰值降低了96%。盡管被保護(hù)的基板受沖擊的時(shí)間增加,但作用在基板上的沖量總量減少了68%。

圖14 仿生梯度圓環(huán)陣列防護(hù)系統(tǒng)經(jīng)受撞擊不同時(shí)刻應(yīng)力圖Fig.14 Stress diagram of bionic gradient ring array protection system at different moments of impact

圖15 仿生圓環(huán)陣列結(jié)構(gòu)與底部基座之間的碰撞力曲線Fig.15 Collision force curves between bionic ring array structure and bottom base

分:第1部分包括圖13所示的1、2、3號(hào)圓環(huán),第2部分包括圖13所示的4、5、6號(hào)圓環(huán),第3部分包括圖13所示的7、8、9號(hào)圓環(huán)。彈性波經(jīng)過第1~3部分傳播路徑分別花費(fèi)0.04、0.07、0.11 ms(見圖14),證明應(yīng)力波速沿沖擊方向降低。

為說明仿生梯度圓環(huán)的抗斜撞擊特性,本文計(jì)算了質(zhì)量塊與豎直方向成45°角、以1 m/s的初速度撞擊梯度圓環(huán)陣列的工況。結(jié)果表明,在同時(shí)期圓環(huán)產(chǎn)生的應(yīng)力有所降低(見圖16(a)),這是因?yàn)楫a(chǎn)生斜撞擊后,縱向的撞擊速度減小造成的。但是由于橫向載荷的作用,在橫向產(chǎn)生的變形更大(見圖16(b))。由于同縱列各圓環(huán)相連但各縱列圓環(huán)之間存在間隙,因此橫向變形沒有傳遞更遠(yuǎn),這對(duì)結(jié)構(gòu)的防護(hù)能力是有利的。

圖16 仿生梯度圓環(huán)陣列防護(hù)系統(tǒng)經(jīng)受斜撞擊時(shí)應(yīng)力和變形圖Fig.16 Stress and deformation diagram of bionic gradient ring array protection system subjected to oblique impact

此外,考慮相鄰縱列圓環(huán)之間的橫向擠壓非線性特點(diǎn),建立縱列無間隔圓環(huán)陣列,并與有間隔圓環(huán)陣列的抗沖擊特性進(jìn)行對(duì)比分析。結(jié)果表明,考慮了縱列圓環(huán)之間的橫向擠壓非線性特點(diǎn)的圓環(huán)陣列,受到相同撞擊載荷時(shí),應(yīng)力場(chǎng)分布更廣,但是最大應(yīng)力減小(見圖17)。這是因?yàn)?,圓環(huán)之間的非線性橫向擠壓作用耗散了更多沖擊能量,使圓環(huán)內(nèi)部應(yīng)力水平降低。此外,圓環(huán)之間的非線性橫向擠壓作用還降低了圓環(huán)陣列與內(nèi)部結(jié)構(gòu)的碰撞力(見圖18),提升了防護(hù)效果。

圖17 考慮橫向擠壓和非線性變形特點(diǎn)的應(yīng)力圖(T=0.119 95 ms)Fig.17 Strain diagram considering transverse extrusion and nonlinear deformation (T=0.119 95 ms)

圖18 考慮橫向擠壓和非線性變形特點(diǎn)的碰撞反力曲線Fig.18 Collision reaction curve considering transverse extrusion and nonlinear deformation characteristics

4 結(jié) 論

1) 分析了具有不同剛度梯度的單列圓環(huán)系統(tǒng)在沖擊載荷下的動(dòng)態(tài)響應(yīng),結(jié)果表明,凹形剛度梯度可以顯著改善仿生圓環(huán)系統(tǒng)的防護(hù)性能,使圓環(huán)系統(tǒng)內(nèi)部始終保持較低的應(yīng)力狀態(tài)并且降低了施加到內(nèi)部受保護(hù)結(jié)構(gòu)上的碰撞力和沖擊沖量。

2) 通過研究圓環(huán)彈性模量、半徑和厚度分布對(duì)仿生剛度梯度圓環(huán)系統(tǒng)防護(hù)特性的影響,結(jié)果表明,通過調(diào)整圓環(huán)厚度分布達(dá)到相同等效剛度梯度的形式可以達(dá)到最佳的防護(hù)效果,它可以使整個(gè)圓環(huán)系統(tǒng)總質(zhì)量最輕,同時(shí)對(duì)內(nèi)部防護(hù)結(jié)構(gòu)產(chǎn)生的碰撞沖量最小。

3) 通過調(diào)整圓環(huán)厚度分布進(jìn)一步研究了在沖擊載荷作用下仿生圓環(huán)陣列結(jié)構(gòu)的防護(hù)性能,結(jié)果表明,具有指數(shù)剛度梯度(EXP)的仿生圓環(huán)陣列結(jié)構(gòu)可以使自身的應(yīng)力水平達(dá)到最低,并且對(duì)內(nèi)部防護(hù)結(jié)構(gòu)的沖擊影響減到最小。提出的仿生策略顯著提高了防護(hù)結(jié)構(gòu)的抗沖擊性能和防護(hù)效果,與沒有防護(hù)的情況相比,可大大減小內(nèi)部防護(hù)結(jié)構(gòu)受到損傷的風(fēng)險(xiǎn)。

猜你喜歡
抗沖擊圓環(huán)梯度
加權(quán)全能量最小的圓環(huán)形變
一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
豬圓環(huán)病毒病的發(fā)生、診斷和防治
一例鴨圓環(huán)病毒病的診斷
內(nèi)置加勁環(huán)T型管節(jié)點(diǎn)抗沖擊承載力計(jì)算
一種自適應(yīng)Dai-Liao共軛梯度法
一類扭積形式的梯度近Ricci孤立子
圓環(huán)上的覆蓋曲面不等式及其應(yīng)用
ACR抗沖擊改性劑的合成及其在聚乳酸改性中的應(yīng)用研究
一種抗沖擊減震橡膠
蒙阴县| 个旧市| 正镶白旗| 栖霞市| 仁化县| 安阳市| 开鲁县| 蒙自县| 青岛市| 康定县| 隆尧县| 荣成市| 西安市| 定兴县| 赣州市| 焦作市| 桐乡市| 阳信县| 郑州市| 阳城县| 丰原市| 雷波县| 富民县| 神农架林区| 南华县| 平乐县| 金坛市| 休宁县| 屏边| 汝南县| 左云县| 平乐县| 北票市| 沐川县| 阿鲁科尔沁旗| 嘉荫县| 汉川市| 若尔盖县| 勐海县| 秭归县| 宜黄县|