国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水稻類病斑突變體基因克隆及發(fā)生機制研究進展

2022-07-16 11:47沈旺鑫史小品杜海波馮志明陳宗祥胡珂鳴范江波左示敏
江蘇農(nóng)業(yè)學(xué)報 2022年3期
關(guān)鍵詞:分子機制表型基因克隆

沈旺鑫 史小品 杜海波 馮志明 陳宗祥 胡珂鳴 范江波 左示敏

摘要: 類病斑突變體 (Lmms) 是研究植物細胞死亡和防御反應(yīng)機制的重要材料。本文對水稻類病斑突變體的最新研究進展進行了綜述。在此基礎(chǔ)上,對進一步加強類病斑突變體及其抑制突變體基因的鑒定與克隆、解析病健組織間細胞命運的精細調(diào)控機制,以及如何利用類病斑突變體開展抗逆分子設(shè)計育種進行了討論。

關(guān)鍵詞: 水稻; 類病斑突變體; 表型; 基因克隆; 分子機制

中圖分類號: Q785?? 文獻標識碼: A?? 文章編號: 1000-4440(2022)03-0837-12

Research advances in gene cloning and occurrence mechanism of rice lesion mimic mutants

SHEN Wang-xin 1 , SHI Xiao-pin 1 , DU Hai-bo 1 , FENG Zhi-ming 1,2 , CHEN Zong-xiang 1,2 , HU Ke-ming 1 , ?FAN Jiang-bo 3 , ZUO Shi-min 1,2,4

(1.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou 225009, China; 2.Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China; 3.School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; 4.Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China)

Abstract:? Lesion mimic mutants (Lmms) are important materials for studying the mechanisms of plant cell death and defense responses. The current research progress of rice Lmms was summarized in this article. Furthermore, we discussed the strengthen of identification and characterization of more rice ?Lmms ?genes and relative inhibition genes, the elucidation of sophisticated regulating mechanism for the fate of cells between lesion tissue and its adjacent healthy tissue, and how to design biotic and abiotic stress resistance/tolerance breeding using the knowledge from Lmms.

Key words: rice; lesion mimic mutants; phenotype; gene cloning; molecular mechanism

植物在應(yīng)對一些病原菌或病原小種侵染時會在侵染點附近產(chǎn)生過敏反應(yīng)(Hypersensitive response, HR),即引起侵染點附近的細胞程序性死亡(Programmed cell death,PCD),以限制病原菌的侵染定殖,使植物產(chǎn)生抗病反應(yīng)。當(dāng)然,在寄主-病原菌間的長期協(xié)同進化過程中,不少病原菌或生理小種可以通過多種方式適應(yīng)或抑制抗病反應(yīng),在寄主植物上成功定殖進而殺死寄主細胞,產(chǎn)生病斑,危害植物生長發(fā)育。自然界中,由于基因突變,有些植物材料在沒有病原菌侵染的情況下,其葉片、葉鞘、莖稈等不同部位也會自發(fā)形成類似病斑癥狀的表型,研究人員將這類材料命名為類病斑或假病斑突變體 [1] 。絕大多數(shù)類病斑突變體被發(fā)現(xiàn)與植物抗病性密切相關(guān),可顯著增強防御相關(guān)基因的表達,激活防御反應(yīng),抑制病原菌的生長,增強抗病性 ?[2-17] ,因此,類病斑突變體的產(chǎn)生多數(shù)被認為與植物的PCD有關(guān)。然而,由于防御系統(tǒng)的持續(xù)或不當(dāng)激活,多數(shù)類病斑突變體均存在不同程度的生長發(fā)育不良,但也有少數(shù)突變體表現(xiàn)正?;蚴苡绊戄^小 [18-19] ,這暗示其在作物廣譜抗病育種中具有重要的應(yīng)用前景。因此,廣泛篩選不同類型的類病斑突變體,克隆相應(yīng)基因并解析其發(fā)生機制,是研究植物抗病分子機制的重要策略,也將為植物抗病分子育種提供新思路,具有重要的理論價值和實際意義。

有關(guān)類病斑突變體基因的定位克隆,早期在擬南芥中的研究較多,目前在擬南芥 [2-3] 、水稻 [4-5,7,10-11] 、玉米 [6] 、花生 [8] 和大豆 [9,12] 等作物中也有廣泛報道。水稻是重要的糧食作物,為全世界一半以上的人口提供食物,研究和鑒定水稻中的類病斑突變體基因具有重要的意義。截至目前,人們已報道了水稻中近100個水稻類病斑突變體,克隆了40余個相關(guān)基因 [13-106] 。本文對這些類病斑突變體的表型特征和遺傳行為進行總結(jié),進而對已克隆的基因及其影響類病斑產(chǎn)生的機制進行歸納,在此基礎(chǔ)上對水稻類病斑突變體的下一步研究重點進行討論和展望。本文希望對從事或欲了解該領(lǐng)域的研究者提供最新的進展介紹,同時希望吸引更多研究者在水稻類病斑的產(chǎn)生機制以及如何利用其產(chǎn)生機制開展抗病分子育種研究等方面開展深入思考與討論,最終為水稻抗病機制解析及育種實踐提供新理論和新思路。

1 水稻類病斑突變體的類型

1.1 水稻類病斑突變體的表型復(fù)雜多樣

自水稻第一個類病斑突變體( Sekiguchi lesion, sl ) [17] 被發(fā)現(xiàn)以來,已報道的近百個水稻類病斑突變體 [4-5,7,10-11,13-106] 在類病斑表型上存在明顯差異,這也可能是不同學(xué)者采用差異化命名方式的緣故,但多數(shù)是以spot leaf(spl)、lesion mimic(lm)和lesion resembling disease(lrd)等開頭進行命名。

總體而言,類病斑突變體間的癥狀差異主要表現(xiàn)在病斑形狀和顏色上,如突變體spl31 [38] 和spl y181? [43] 的類病斑形狀為不規(guī)則型,而spl24 [19,34] 和 dj-lm? [88] 等則表現(xiàn)出非常規(guī)則的類病斑形狀。在顏色上,分別有黑色(SPL3 [6] 和spl16 [30] )、棕紅色(spl18 [31] 和lrd33 [54] )、黑褐色(spl33 [40] 和SPL35 [42] )和白色(spl20 [30] )等多種類型。

另外,不少突變體的類病斑表型呈現(xiàn)一定的組織特異性、發(fā)育依賴性以及易受環(huán)境因素誘導(dǎo)等特征,同時,多數(shù)類病斑突變體的表型會隨著植株的生長發(fā)育而顯著加重(尤其是在孕穗期后期)。如此復(fù)雜多樣的類病斑表型,表明水稻類病斑形成的機制網(wǎng)絡(luò)十分復(fù)雜。

1.2 多數(shù)類病斑突變體呈現(xiàn)發(fā)育依賴性特征

絕大多數(shù)類病斑突變體的病斑產(chǎn)生與植株生長發(fā)育的進程相關(guān),呈現(xiàn)出一定的發(fā)育依賴性特征。如spl1和lbsl1等突變體在播種后15 d左右的早期幼苗中就會出現(xiàn)明顯的類病斑癥狀 [30] ,spl29 [36] 和lmm1 [40] 等突變體的幼苗則分別要到3葉期或4葉期時才會出現(xiàn)類病斑癥狀,而spl11 [25] 和lmm4 [83] 等突變體在苗期基本沒有癥狀,要到分蘗期后才會出現(xiàn)類病斑癥狀??傮w而言,隨著生長發(fā)育的進行,大多數(shù)類病斑突變體的癥狀會逐漸加重,說明生長發(fā)育進程對類病斑的形成會產(chǎn)生顯著影響。

1.3 外界環(huán)境因素會誘導(dǎo)或抑制類病斑癥狀的發(fā)生

外界環(huán)境因素包括光照、濕度、溫度等,不少研究發(fā)現(xiàn)這些環(huán)境因素會或多或少影響類病斑癥狀的發(fā)生或發(fā)生程度。研究結(jié)果顯示,絕大部分水稻類病斑突變體都是受光照影響。通過鋁箔片等遮光處理,發(fā)現(xiàn)spl30 [37] 和SPL35 [42] 等水稻類病斑突變體葉片的遮光部分不會出現(xiàn)類病斑癥狀,說明它們的表型是受光照誘導(dǎo)的。spl7 [23,54] 和lrd32 [86] 等的類病斑表型受溫度影響,如spl7在26 ℃以下不會出現(xiàn)類病斑,但在高于35 ℃時葉片上會出現(xiàn)明顯的類病斑癥狀;與之相反,lrd32的類病斑癥狀在低溫(23 ℃)條件下則發(fā)生得非常明顯。在類病斑突變體 lrds 的研究中還發(fā)現(xiàn),類病斑癥狀的產(chǎn)生還受光波長的影響,如lrd32和lrd40在紅光(波長626~ 629 nm)、藍光(波長465~ 468 nm)和白光(藍光+黃光混合,波長分別為465~ 468 nm 和556~ 559 nm)下均可產(chǎn)生類病斑癥狀,而lrd35和lrd37在藍光和白光下、lrd36只在白光下產(chǎn)生類病斑表型 [54] 。有關(guān)濕度影響類病斑癥狀的研究在水稻上還未見報道,但在擬南芥中,有研究者發(fā)現(xiàn),濕度較高的環(huán)境會抑制 cpnine 突變體的類病斑癥狀產(chǎn)生 [84] ??傮w而言,多數(shù)研究結(jié)果顯示,外界環(huán)境因素對水稻類病斑的產(chǎn)生存在顯著影響。

1.4 類病斑癥狀呈現(xiàn)一定的組織特異性和非特異性特征

比較不同類病斑突變體的癥狀表型,發(fā)現(xiàn)不同突變體的類病斑癥狀在發(fā)生位置上存在明顯差別(圖1)。如,突變體spl22 [30] 、lmes1 [50] ?和ltn1 [53] ?的類病斑癥狀會特異地出現(xiàn)在葉尖上;而spl2 [18] 和spl30 [37] 的類病斑則分布在葉片的一側(cè)。突變體spl19 [30] 、spl26 [34] 和lrd33 [54] 無論在苗期還是生育后期,其在葉脈附近均沒有類病斑癥狀,而主要發(fā)生在葉脈兩側(cè)。與之相反,spl31的類病斑癥狀則會特異地出現(xiàn)在葉脈上 [17] 。

絕大部分類病斑突變體的類病斑癥狀均出現(xiàn)在葉片上,但也有少數(shù)突變體的類病斑癥狀會同時在葉鞘和莖稈等組織部位發(fā)生。如,突變體rlin1 [65] 除了在葉片上有類病斑癥狀外,在葉鞘上也有分布,但是突變體nls-1D [74] 的類病斑癥狀則特異地出現(xiàn)葉鞘上。一般而言,組織非特異性通常是指類病斑發(fā)生在多個組織部位,而發(fā)生在多個組織部位的類病斑突變體通常會出現(xiàn)早衰特征,如突變體spl29 [36] 和SPL35 [42] 。類病斑突變體的組織特異性和非特異性特征,說明突變的相應(yīng)基因在植物生長發(fā)育中具有組織/功能特異性或非特異性表達。

2 水稻類病斑突變體的遺傳方式與基因克隆

2.1 水稻類病斑突變體的遺傳方式

截至目前,所有已報道的水稻類病斑突變體的遺傳模式均符合孟德爾遺傳定律,其中絕大多數(shù)都呈現(xiàn)單基因隱性遺傳,且多為靶基因功能喪失型突變 [10-99] 。但是,也有少數(shù)突變體表現(xiàn)為單基因顯性和/或半顯性遺傳,如spl18 [31] 、OsNPR1/NH1 [58-59] 和rlr1 [69] 等突變體。此外,突變體lrd32 [54] 、nls-1D [74] 和 lmm5 [93] 中的類病斑癥狀受雙基因控制,呈現(xiàn)雙基因隱性遺傳和/或雙基因半顯性遺傳模型。

2.2 水稻類病斑突變體及抑制突變體的基因克隆

隨著遺傳學(xué)和分子生物學(xué)的快速發(fā)展,目前已有41個水稻類病斑突變體中的目標基因被克隆(表1)。其中,大多數(shù)是通過圖位克隆獲得的,但也有少數(shù)采用其他方法,如最新報道的突變體nbl3 [99] ,是采用T-DNA插入位點的側(cè)翼序列法分離獲得的。這表明,經(jīng)典的圖位克隆仍然是目前分離水稻類病斑突變體基因的最主要方法。

表1歸納了目前已克隆的41個引起類病斑癥狀的基因及其相關(guān)信息。從基因號上可知,這些基因分布在水稻12條染色體上,其中1號、3號和12號染色體上分布得最多,各有5個基因被克隆;最少的為6號和9號染色體,均只克隆到1個基因。這些基因編碼的蛋白質(zhì)涉及多種功能類別,但總體以酶類居多,有20個,如?;D(zhuǎn)移酶、脂氫過氧化物裂解酶、脂肪酸脫氫酶和ATP-檸檬酸裂解酶A等;其次為編碼未知生理功能的蛋白質(zhì),總計有16個,如鋅指蛋白、錨定蛋白、含NB-ARM結(jié)構(gòu)域的新型蛋白質(zhì)等;其余5個分別編碼具有轉(zhuǎn)錄因子、真核生物翻譯釋放因子、剪切因子等功能的蛋白質(zhì)因子。這些基因廣泛涉及葉綠體、線粒體和高爾基體等細胞器發(fā)育調(diào)控,水楊酸(SA)、乙烯(ET)、茉莉酸(JA)和脫落酸(ABA)等激素合成與代謝信號,免疫信號、光合作用以及泛素化等多種生理生化途徑。另外,發(fā)現(xiàn)大多數(shù)突變體均表現(xiàn)對稻瘟病或白葉枯病的抗性增強,不同程度地激活免疫反應(yīng)。最近報道了一個編碼五肽重復(fù)序列蛋白質(zhì)的基因OsNBL3,其突變除了表現(xiàn)抗病性之外,還表現(xiàn)出對非生物逆境如鹽害具有較強的抗性 [99] 。相比于類病斑突變體基因,水稻類病斑抑制突變體基因的克隆進展總體較慢,迄今只有1例關(guān)于spl11類病斑表型的抑制基因SDS2被鑒定克隆的報道 [26] 。研究結(jié)果顯示,SDS2編碼1個特異性類受體激酶,參與調(diào)控免疫反應(yīng)過程中的一個重要信號分子活性氧(Reactive oxygen species,ROS)的生產(chǎn)。

總體而言,目前已克隆的這些類病斑及類病斑抑制基因所編碼的蛋白質(zhì)涉及的細胞功能復(fù)雜多樣,但多數(shù)均會激活對生物甚至非生物逆境的抗性,這將為進一步研究細胞死亡相關(guān)的免疫調(diào)控網(wǎng)絡(luò)提供重要的基因資源。

3 水稻類病斑的產(chǎn)生機制

植物細胞在受到各種環(huán)境刺激后的早期階段一般都會產(chǎn)生ROS,主要包括超氧陰離子(O2? ·- )、過氧化氫(H2 O2 )、羥基自由基以及一氧化氮(NO)等成分。ROS迸發(fā)是一個十分復(fù)雜的過程,過量積累會產(chǎn)生氧化脅迫,破壞細胞的結(jié)構(gòu),損傷DNA、脂類、蛋白質(zhì)等生物大分子,并最終導(dǎo)致細胞死亡 [107] 。ROS也是調(diào)控植物生長發(fā)育、逆境響應(yīng)和PCD等生理過程的重要信號分子 [108-111] 。已報道的幾乎所有類病斑突變體中均檢測到了ROS過度積累現(xiàn)象,因此,盡管這些突變體基因的信號調(diào)控網(wǎng)絡(luò)/機制還不清楚,但結(jié)合ROS的生理功能,似乎均可將這些類病斑的產(chǎn)生歸結(jié)為ROS的異常迸發(fā)(圖1)。為此,我們從可能誘導(dǎo)ROS產(chǎn)生的因素出發(fā),結(jié)合已克隆的類病斑突變體基因的生物學(xué)功能,將當(dāng)前水稻類病斑的產(chǎn)生機制歸納為以下3個方面:

3.1 防御反應(yīng)異常引起的類病斑

泛素化修飾在調(diào)節(jié)植物免疫反應(yīng)上具有極其重要的作用,很多防御蛋白質(zhì)在完成信號傳遞后會通過泛素化修飾途徑被及時降解,以免引起過度免疫反應(yīng)影響正常生長發(fā)育。在哺乳動物中,研究發(fā)現(xiàn) BAG 家族基因直接參與啟動PCD。ebr1基因編碼一個E3泛素連接酶,在細胞內(nèi)可與BAG家族蛋白質(zhì)OsBAG4直接互作并通過泛素化促進其降解;相反,ebr1突變體中OsBAG4的蛋白質(zhì)積累水平明顯增高,激發(fā)了PCD和免疫反應(yīng)(圖1),導(dǎo)致類病斑的產(chǎn)生 [67] 。G蛋白復(fù)合體在植物免疫信號調(diào)控中也具有重要作用 [112] 。其中編碼小G蛋白的基因OsRac1激活表達,會引起ROS積累、激活植物免疫反應(yīng) [87] 。spl11基因編碼U-box類型E3泛素連接酶,可促進RhoGAP蛋白SPIN6的泛素化降解,而SPIN6蛋白具有RhoGAP活性并可與OsRac1結(jié)合,促進OsRac1-GTP水解,使其轉(zhuǎn)變?yōu)镺sRac1-GDP失活態(tài)。因此,spl11和SPIN6基因的突變均可引起OsRac1基因的持續(xù)激活,造成ROS過度積累,引起細胞壞死 ?[25,27] 。通過誘變,在spl11背景中獲得1個無類病斑表型的抑制突變體sds2 [97] 。圖位克隆結(jié)果顯示,SDS2可與SPL11直接互作并磷酸化SPL11,SPL11又可以泛素化SDS2引起其降解;進一步研究發(fā)現(xiàn),SDS2可以與類受體胞質(zhì)激酶OsRLCK118相互作用,后者可通過磷酸化OsRbohB,促進ROS的積累。這說明SDS2能否被及時地泛素化降解與ROS過度積累間密切相關(guān),也解釋了SDS2的突變?yōu)楹文芤种苨pl11類病斑表型的機制 [26] 。此外,SPL35編碼1個包含CUE結(jié)構(gòu)域的蛋白質(zhì),能直接與泛素結(jié)合酶OsUBC5a和Delta-COP1、Delta-COP2發(fā)生互作,這些互作蛋白質(zhì)表達水平的下調(diào)均會形成類似SPL35突變體的類病斑表型和激活防衛(wèi)反應(yīng),暗示SPL35突變體的類病斑癥狀產(chǎn)生也與泛素化途徑受影響有關(guān) [42] 。

SA、ET、JA和ABA是調(diào)控植物免疫反應(yīng)的重要激素信號分子。NPR1是水楊酸介導(dǎo)的免疫反應(yīng)中的重要中樞性調(diào)節(jié)因子 [100] 。OsCUL3a突變體中的靶基因OsCUL3a編碼1個基于Cullin3的環(huán)型E3泛素連接酶,其可以與OsRBX1a、OsRBX1b互作形成1個多亞基環(huán)型E3泛素連接酶;同時OsCUL3a也可與OsNPR1互作,并通過26 S蛋白酶體系統(tǒng)促進OsNPR1的降解。因此,OsCUL3a突變體的類病斑產(chǎn)生應(yīng)該與OsNPR1持續(xù)激活引起免疫反應(yīng)有關(guān) [85] 。hpl3突變體表現(xiàn)整片葉的類病斑表型,研究結(jié)果顯示,OsHPL3可通過影響JA等的含量來調(diào)控免疫反應(yīng) [55,104] ,最終影響類病斑的產(chǎn)生。OsEDR1的同源基因SPL3可通過影響ABA和ET的生物合成,調(diào)控活性氧代謝和葉片衰老,導(dǎo)致類病斑表型 [6] 。Osssi2突變體中的SA和/或苯丙噻唑硫代乙酸甲酯(BTH)含量明顯增加,并特異性誘導(dǎo)了OsWRKY45的微弱表達,從而持續(xù)激活免疫反應(yīng),產(chǎn)生類病斑癥狀 [63] 。

RAR1是植物防衛(wèi)反應(yīng)中的關(guān)鍵調(diào)控因子 [105] 。研究結(jié)果顯示,突變體ttm1的類病斑表型與OsPti1a基因被破壞有關(guān),該基因編碼一個蛋白質(zhì)激酶,負調(diào)控水稻的防御反應(yīng);而ttm1抑制OsRAR1基因表達時,可顯著抑制突變體中的免疫反應(yīng),表明OsPti1a基因負向調(diào)節(jié)OsRAR1 介導(dǎo)的免疫反應(yīng) [60] 。抗病相關(guān)蛋白OsEDR1可與OsMPKK10.2互作并抑制其活性,當(dāng)病原菌入侵時,OsMPKK10.2被激酶磷酸化后會激活OsMPK6,OsMPK6進而又磷酸化OsEDR1并促進其降解,進一步釋放OsMPKK10.2,使得OsMPKK10.2-OsMPK6信號級聯(lián)被放大,增強水稻的免疫反應(yīng)。因此,在OsEDR1突變體中,OsMPKK10.2和OsMPK6的活性均得到了明顯增強,免疫反應(yīng)被持續(xù)激活,引起類病斑癥狀。在OsEDR1突變體中,如果敲除OsMPKK10.2,則雙突變體的類病斑癥狀明顯減弱,證明OsEDR1突變體產(chǎn)生的類病斑癥狀與OsMPKK10.2激活的免疫反應(yīng)有關(guān) [103] 。

總體而言,目前有關(guān)免疫反應(yīng)中如何快速誘導(dǎo)PCD和ROS的產(chǎn)生機制還不清楚,利用更多的類病斑突變體有望加快這一調(diào)控網(wǎng)絡(luò)的解析。

3.2 光合系統(tǒng)和細胞器異常引起的類病斑

目前,在已克隆的類病斑突變基因中,有6個基因編碼的蛋白質(zhì)亞細胞定位于葉綠體、4個定位于內(nèi)質(zhì)網(wǎng)、2個定位于線粒體和1個定位于過氧化物酶體。有報道顯示,植物細胞的細胞壁、質(zhì)膜、葉綠體、線粒體、過氧化物酶體和內(nèi)質(zhì)網(wǎng)等部位均可產(chǎn)生ROS,其中葉綠體、線粒體、過氧化物酶體是ROS 產(chǎn)生的最主要細胞器 [113] 。不少研究結(jié)果顯示,光合系統(tǒng)中存在1個精準的穩(wěn)態(tài)調(diào)控系統(tǒng),該系統(tǒng)失衡一般均會引起ROS積累 [71] 。如,SPL32編碼1個鐵氧還蛋白依賴性谷氨酸合酶 Fd-GOGAT ,該基因編碼產(chǎn)物定位于葉綠體,其突變會降低光呼吸速率,破壞ROS清除途徑,導(dǎo)致ROS大量積累,引起細胞死亡 [39] 。ELL1編碼細胞色素P450單加氧酶,參與葉綠體發(fā)育,其突變體ELL1的葉綠素含量明顯下降,葉綠體降解相關(guān)基因上調(diào)表達,葉綠體降解嚴重,最終導(dǎo)致ROS的過量積累,引起細胞壞死 [86] 。有研究結(jié)果顯示,葉綠素合成途徑中許多酶的功能喪失或葉綠素合成受阻均可能導(dǎo)致類病斑表型 [65] 。葉綠素合成關(guān)鍵酶 LPOR和NADPH 可催化原葉綠素酸酯生成葉綠素酸酯, fgl 突變體中總?cè)~綠素酸酯和感光葉綠素酸酯含量均明顯下降,在強光照條件下,突變體 fgl 中新出的葉片會迅速黃化并產(chǎn)生類似病變的癥狀 [70] 。WLL1編碼二氧四氫蝶啶合成酶,參與核黃素合成,由于WLL1基因功能的缺失引發(fā)ROS積累和葉綠體的退化,從而引起突變體發(fā)生細胞死亡 [106] 。

突變體 dj-lm 中的靶基因編碼蛋白質(zhì)OsDRP1E,其突變直接影響線粒體嵴的形態(tài)發(fā)生變化。在哺乳動物中,線粒體嵴異常會導(dǎo)致細胞色素c從線粒體釋放到細胞質(zhì)中,誘導(dǎo)細胞內(nèi)富含半胱氨酸的天冬氨酸蛋白水解酶產(chǎn)生活性,發(fā)生凋亡蛋白酶的級聯(lián)反應(yīng),降解細胞內(nèi)的重要蛋白質(zhì),導(dǎo)致細胞死亡 [114] 。因此,推測突變體 dj-lm 中的類病斑表型可能也與線粒體嵴異常導(dǎo)致線粒體中細胞色素c不正常釋放有關(guān),但是具體機制尚不明確 [88] 。最近報道的OsNBL3基因編碼一個PPR蛋白,也是線粒體發(fā)育和功能發(fā)揮的重要組成部分,其破壞可使水稻發(fā)生類病斑 [99] 。SPL28蛋白參與高爾基體的物質(zhì)運輸途徑,可能參與囊泡運輸調(diào)控,其突變體會破壞H2 O2 的平衡、光合系統(tǒng)的穩(wěn)定以及光合脅迫適應(yīng)性,引起類病斑癥狀和早衰現(xiàn)象 [35,71] 。這些研究結(jié)果表明,光合系統(tǒng)及一些細胞器的功能正常與否可能是影響一些突變體產(chǎn)生類病斑的原因之一,但是具體的分子調(diào)控機制還不清楚,有待深入研究。

3.3 其他途徑異常引起的類病斑

研究結(jié)果顯示,一些涉及生長發(fā)育信號等途徑的異常,也會引起ROS的過度積累,最終觸發(fā)細胞死亡(圖1)。如,OsLOL1編碼水稻中的1個C2C2型鋅指蛋白,可與OsbZIP58互作并通過其激活OsKO2基因表達,進而影響赤霉素生物合成和超氧化物歧化酶的活性,導(dǎo)致ROS清除能力下降,造成局部的細胞死亡 [57,101] 。 LMR 編碼1個與多種細胞活性相關(guān)(AAA-type)的ATP酶,可介導(dǎo)多囊泡體的囊泡運輸,抑制水稻的免疫反應(yīng)和細胞死亡,因此其突變體表現(xiàn)為免疫反應(yīng)過度激活和細胞壞死 [51] 。noe1編碼水稻過氧化氫酶 OsCATC ,負責(zé)降解H2 O2 ,在noe1突變體中的H2 O2 含量明顯增高,同時激活硝酸還原酶活性并且促發(fā)一氧化氮(NO)的產(chǎn)生,而NO也是參與水稻中H2 O2 ?誘導(dǎo)葉片細胞死亡的重要因子 [14] 。spl7 編碼1個熱脅迫轉(zhuǎn)錄因子,在其敲除和過表達時均會引起ROS積累,導(dǎo)致類病斑表型,在spl7突變體中抑制 NADPH 氧化酶活性時,可明顯抑制突變體中的ROS積累,減弱類病斑表型 [24] 。

在醫(yī)學(xué)研究中,5-羥色胺是一種神經(jīng)遞質(zhì),能保護神經(jīng)元免受興奮神經(jīng)毒素的損害,但5-羥色胺有致死細胞的作用 [17] 。SPL5編碼SF3b3剪切因子,可能是通過調(diào)節(jié)植物RNA剪接來負調(diào)控細胞死亡和抗性應(yīng)答 [22] 。最新的研究結(jié)果顯示,SPL5可能是通過OsWRKY14負向調(diào)控5-羥色胺代謝,因此,SPL5突變體中的類病斑癥狀可能與其積累過多的5-羥色胺有關(guān),當(dāng)然,SPL5基因突變也可能會影響其他觸發(fā)類病斑的生物學(xué)途徑 [28] 。rlin1編碼1個可能參與四吡咯生物合成途徑的糞卟啉原Ⅲ氧化酶,因為堿基替換產(chǎn)生了錯義突變,形成氨基酸的變化,異源表達rlin1時可以互補rlin1的類病斑表型,進一步通過組織化學(xué)分析結(jié)果表明,rlin1突變體中伴隨著ROS的積累,表明四吡咯參與了水稻類病斑的形成 [65] 。spl29編碼尿苷二磷酸- N -乙酰葡糖胺焦磷酸化酶,在spl29突變體中,超氧化物歧化酶活性增加而過氧化氫酶活性正常,這導(dǎo)致ROS的積累,造成葉片早衰(細胞死亡加快的一種)等類病斑表型 [36] 。

上述研究結(jié)果顯示,植物中的細胞死亡及其調(diào)控網(wǎng)絡(luò)異常復(fù)雜,通過發(fā)掘更多類病斑突變體材料并解析其分子機制是解析相關(guān)網(wǎng)絡(luò)的重要途徑之一。

4 研究展望

綜上可知,類病斑突變體的鑒定及基因克隆將有力推進免疫信號網(wǎng)絡(luò)的研究,加上多數(shù)類病斑突變體均具有較強的抗病表現(xiàn),因此加強類病斑突變體基因的鑒定、克隆具有十分重要的理論價值和實際意義。結(jié)合當(dāng)前研究中存在的問題,我們提出3個圍繞類病斑突變體材料的未來重點研究方向。

4.1 加強類病斑突變體及其抑制基因的克隆和相關(guān)調(diào)控網(wǎng)絡(luò)研究

迄今為止,大約有100個水稻類病斑突變體的遺傳研究被報道,但只有41個基因被克隆,有關(guān)類病斑表型的抑制子基因僅克隆到個別。造成這一狀況的主要原因可能與不少類病斑突變體的表型微弱、易受環(huán)境影響、不易鑒定有關(guān),也可能與從事這一領(lǐng)域的研究人員偏少有關(guān)。細胞凋亡無論在動物還是在植物的生命活動中均是一個極其重要的生命事件,因此解析其中的信號調(diào)控網(wǎng)絡(luò)/機制無疑具有十分重要的理論價值和意義。植物類病斑突變體材料是研究植物細胞凋亡控制機制的重要材料,因此,未來應(yīng)該加強水稻類病斑突變體尤其是微弱表型突變體及類病斑抑制基因的鑒定和克隆工作。對于已克隆的類病斑突變體基因,應(yīng)加強其互作蛋白質(zhì)的篩選、鑒定及在調(diào)控類病斑表型上的生物學(xué)功能解析。

此外,目前報道的類病斑突變體涉及組織特異性、時空特異性、病斑規(guī)則和不規(guī)則等多種類型,分離其中的靶基因固然重要,但對這些靶基因之間的遺傳關(guān)系研究也是一個十分重要的內(nèi)容,目前卻鮮有相關(guān)的研究報道。因此,未來可通過廣泛配制不同類型突變體之間的雜交分析群體,加強相關(guān)突變體基因間的遺傳關(guān)系分析。

4.2 加強病、健組織間的細胞精細調(diào)控機制研究

已報道的類病斑突變體中有些癥狀呈現(xiàn)大小、形狀一致的規(guī)則特征,也有些規(guī)則性不強。但是,無論哪種突變體,其細胞壞死癥狀均不可能無限制地擴大,或者說有一種機制能被快速激活以確保病斑周邊的細胞存活,解析這一精細調(diào)控機制具有極其重要的理論價值和實際意義。在寄主與病原菌互作中,由病原菌效應(yīng)子觸發(fā)的免疫反應(yīng)ETI通常伴隨著PCD,但也不可能無限制地擴展。最近研究發(fā)現(xiàn),SA免疫信號中的關(guān)鍵基因OsNPR1,是ETI中決定病斑與健康組織間細胞死亡或生存的關(guān)鍵調(diào)控因子,這一成果發(fā)表在國際著名期刊《Cell》上 [100] 。值得注意的是,在類病斑突變體中,有些引起細胞壞死的基因似乎并不是免疫信號中的基因,而是參與葉綠體、線粒體等細胞器發(fā)育的關(guān)鍵基因。這暗示在這些突變體中,類病斑周邊健康細胞中有快速替代該基因完成相應(yīng)功能的其他基因;但是,由于類病斑還是有規(guī)則地出現(xiàn),這又說明這一功能替代機制與基于SA和OsNPR1激活的長距離細胞生存調(diào)控機制間存在明顯不同。因此,未來有必要加強類病斑毗鄰的健康細胞存活機制的研究。

4.3 加快類病斑突變體在抗病耐逆分子設(shè)計育種中的應(yīng)用研究

絕大多數(shù)類病斑突變體均表現(xiàn)出對白葉枯病和/或稻瘟病的較強、較廣譜的抗性。然而,由于持續(xù)激活免疫反應(yīng),多數(shù)類病斑突變體的生長發(fā)育和谷粒產(chǎn)量均存在不同程度的下降。因此,如何合理利用這些類病斑突變體的廣譜抗病機制,開展抗病分子設(shè)計育種研究,值得深入探索。為此,我們初步提出3個研究設(shè)想:一是選擇時空特異表達的類病斑突變體或弱病斑突變體,開展育種應(yīng)用,實現(xiàn)不顯著減少產(chǎn)量損失的同時提高抗病性;二是結(jié)合絕大多數(shù)突變體中的靶基因均為功能喪失型突變的特征,未來可以嘗試采用病原菌特異誘導(dǎo)的RNAi技術(shù),創(chuàng)建一些特異誘導(dǎo)表達的轉(zhuǎn)基因廣譜抗病水稻;三是可以嘗試通過基因編輯技術(shù),創(chuàng)制一些類病斑突變體基因不同等位變異材料,嘗試從中篩選弱突變等位變異,實現(xiàn)產(chǎn)量與抗性的平衡。另外,最近研究結(jié)果顯示,類病斑突變體顯著增強了對非生物逆境的耐性,這明顯拓寬了以往對類病斑突變體抗病性增強的認識,因此,未來可以加強觀測類病斑突變體在各種非生物逆境中的表型,探討在抗逆性育種中的潛在應(yīng)用前景??傮w而言,隨著各種分子技術(shù)及更多類病斑突變體的形成機制被解析,未來應(yīng)該會有更多利用類病斑突變體開展抗病和抗逆分子設(shè)計育種的新思路產(chǎn)生。

參考文獻:

[1] 錢婧雅,劉 芬,屈 成,等.水稻類病斑突變基因的克隆及其機制研究進展[J]. 分子植物育種, 2021, 19(10):1-8.

[2] DIETRICH R A, DELANEY TP, UKNES S J, et al. ?Arabidopsis ?mutants simulating disease resistance response[J]. Cell, 1994,77(4):565-577.

[3] GUO C, WU G, XING J, et al. A mutation in a coproporphyrinogen iii oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in arabidopsis[J]. Plant Cell Reports, 2013, 32(5):687-702.

[4] PERSSON M, RASMUSSEN M, FALK A, et al. Barley mutants with enhanced level of resistance to swedish isolates of bipolaris sorokiniana, causal agent of spot blotch[J]. Plant Breeding, 2008, 127(6):639-643.

[5] LI S T, PEI Z Y, LUO L J , et al. Isolation and characterization of rice lesion mimic mutants from a T-DNA tagged population[J]. Progress in Natural Science, 2005, 15(1):17-23.

[6] WANG L, HAN S, ZHONG S, et al. Characterization and fine mapping of a necrotic leaf mutant in maize ( Zea mays ?L.)[J]. Journal of Genetics and Genomics, 2013, 40(6):307-314.

[7] WANG S H, LIM J H, KIM S S, et al. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice[J]. Journal of Experimental Botany,2015, 66(22):7045-7059.

[8] BADIGANNAVAR A M, KALE D M, EAPEN S, et al. Inheritance of disease lesion mimic leaf trait in groundnut[J]. Journal of Heredity, 2002, 93(1): 50-52.

[9] CHUNG J, STASWICK P E, GRAEF G L, et al. Inheritance of a disease lesion mimic mutant in soybean[J]. Journal of Heredity, 1998, 89(4): 363-365.

[10] ZHU X B, ZE M, CHERN M H, et al. Deciphering rice lesion mimic mutants to understand molecular network governing plant immunity and growth[J]. Rice Science, 2020, 27(4): 278-288.

[11] WU C J, BORDEOS A, MADAMBA M R, et al. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomic, 2008, 279(6): 605-619.

[12] KOSSLAK R M, DIETER J R, RUFF R L, et al. Partial resistance to root-borne infection by phytophthora sojae in three allelic necrotic root mutants in soybean[J]. Journal of Heredity, 1996, 87(6): 415-422.

[13] YAO N, GREENBERG J T. ?Arabidopsis ?ACCELERATED CELL DEATH2 modulates programmed cell death[J]. The Plant Cell, 2006, 18(2): 397-411.

[14] LIN A H, WANG Y Q, TANG J Y, et al. Nitric oxideand protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology, 2012, 158(1): 451-464.

[15] KIYOSAWA S. Inheritance of a particular sensitivity of the rice variety, sekiguchi asahi, to pathogens and chemicals, and linkage relationship with blast resistance genes[J]. Nogyo Gijutsu Kenkyusho Hokoku, 1970, 21(1): 61-72.

[16] WANG N L, LONG T, YAO W, et al. Mutant resources for the functional analysis of the rice genome[J]. Molecular Plant, 2013, 6(3): 596-604.

[17] UENO M, SHIBATA H, KIHARA J, et al. Increased tryptophan decarboxylase and monoamine oxidase activities induce sekiguchi lesion formation in rice infected with magnaporthe grisea[J]. The Plant Journal, 2003,36(2): 215-228.

[18] YOSHIMURA A, IDETA O,? IWATA N, et al. Linkage map of phenotype and RFLP markers in rice[J]. Plant Molecular Biology, 1997,35(1/2): 49-60.

[19] YIN Z, CHEN J, ZENG L, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions, 2000, 13(8): 869-876.

[20] KIM J A, CHO K W, RAKSHA S, et al. Rice OsACDR1 ( Oryza sativa ?accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance[J]. Molecules and Cells, 2009, 28(5): 431-439.

[21] SONG G H, KWON C T, KIM S H, et al. The rice SPOTTED LEAF 4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence[J]. Frontiers in Plant Science, 2018, 9: 1925.

[22] CHEN X F, HAO L , PAN J W , et al. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding, 2012, 30(2): 939-949.

[23] YAMANOUCHI U, YANO M, LIN H X, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11): 7530-7535.

[24] KAORI K, TAKASHI Y, KENSUKE K, et al.Regulatory mechanisms of ROI generation are affected by rice spl mutations[J]. Plant and Cell Physiology, 2006, 47(8): 1035-1044.

[25] ZENG L R, QU S H, BORDEOS A, et al. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. The Plant Cell, 2004, 16(10): 2795-2808.

[26] FAN J B, BAI P F, NING Y S, et al. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice[J]. Cell Host & Microbe, 2018, 23(4): 498-510.

[27] MIGUEL E, VEGA S, ZENG L R, et al. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice[J]. The Plant Cell, 2008, 20(6): 1456-1469.

[28] LIU J L, CHAN H P, HE F, et al. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J].PLoS Pathogens, 2015, 11(2): e1004807.

[29] RITSUKO M, HIDEYUKI H, RYOTA K, et al. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight[J]. Plant Science, 2002, 163(2): 345-353.

[30] SONG C N, QIAN J L, FANG J G, et al. Cloning, subcellular localization and expression analysis of spl9 and spl13 genes from poncirus trifoliata[J]. Scientia Agricultura Sinica, 2010,43(10): 2105-2114.

[31] MASAKI M, CHIKAKO T, KAZUHIKO S, et al. Isolation and molecular characterization of aspotted leaf 18 mutants by modified activation-tagging in rice[J]. Plant Molecular Biology, 2007, 63(6): 847-860.

[32] 宋莉欣, 黃奇娜, 奉保華, 等.水稻類病斑表型葉突變體spl21的鑒定與基因定位[J]. 作物學(xué)報, 2015, 41(10): 1519-1528.

[33] CHEN Z, HEN T, SATHE A P, et al. Identification of a novel semi-dominant spotted-leaf mutant with enhanced resistance to ?Xanthomonas oryzae ?pv. ?oryzae ?in rice[J]. International journal of molecular sciences, 2018, 19(12): 3766.

[34] CHEN T, CHEN Z, ATUL P S, et al. Characterization of a novel gain-of-function spotted-leaf mutant with enhanced disease resistance in rice[J]. Rice Science, 2019, 26(6): 372-383.

[35] QIAO Y L, JIANG W Z, LEE J H, et al. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice ( Oryza sativa )[J]. New phytologist, 2010, 185(1): 258-274.

[36] WANG Z H, WANG Y, HONG X, et al. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice[J]. Journal of Experimental Botany, 2015, 66(3): 973-987.

[37] HUANG Q N, SHI Y F, YANG Y, et al. Characterization and genetic analysis of a light- and temperature-sensitive spotted-leaf mutant in rice[J]. Journal of Integrative Plant Biology, 2011, 53(8): 671-681.

[38] 代高猛, 朱小燕, 李云峰, 等.水稻類病斑突變體spl31的遺傳分析與基因定位[J]. 作物學(xué)報, 2013, 39(7):1223-1230.

[39] SUN L T, WANG Y H, LIU L L, et al. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice[J]. Scientific Reports, 2017, 7(1): 41846.

[40] WANG S, LEI C L, WANG J L, et al. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice[J]. Journal of Experimental Botany, 2017, 68(5): 899-913.

[41] 劉寶玉,劉軍化,杜 丹,等.水稻類病斑突變體spl34的鑒定與基因精細定位[J].作物學(xué)報, 2018, 44(3):332-342.

[42] MA J, WANG Y F, MA X D, et al. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice[J]. Plant Biotechnology Journal, 2019, 17(8): 1679-1693.

[43] SUN H M, MAO J J, LAN B, et al. Characterization and mapping of a spotted-leaf genotype, spl y181 ?that confers blast susceptibility in rice[J]. European Journal of Plant Pathology, 2014, 140(3): 407-417.

[44] BABU R, JIANG C J, XU X, et al. Isolation, fine mapping and expression profiling of a lesion mimic genotype, spl nf4050-8 ?that confers blast resistance in rice[J]. 2011, 122(4): 831-854.

[45] 奉保華. 水稻類病斑表型葉突變體HM47的基因克隆與功能分析[D], 北京:中國農(nóng)業(yè)科學(xué)院, 2015.

[46] ENDO A, NELSON K M, THOMS K, et al. Functional characterization of xanthoxin dehydrogenase in rice[J]. Journal of Plant Physiology, 2014, 171(14): 1231-1240.

[47] CAMPBELL M A,RONALD P C. Characterization of four rice mutants with alterations in the defense response pathway[J]. Molecular Plant Pathology, 2005, 6(1): 11-21.

[48] AKIRA T, TSUTOMU K, KENJI H, et al. Lesion mimic mutants of rice with alterations in early signaling events of defense[J]. The Plant Journal, 1999, 17(5): 535-545.

[49] FENG B H, YANG Y, SHI Y F, et al. Genetic analysis and gene mapping of light brown spotted leaf mutant in rice[J]. Rice Science, 2013, 20(1):13-18.

[50] LI Z, ZHANG Y X, LIU L, et al. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice ( Oryza sativa )[J]. Plant Physiology and Biochemistry, 2014, 80: 300-307.

[51] FEKIH R, TAMIRU M, KANZAKI H, et al. The rice( Oryza sativa ?L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response[J].? Molecular Genetics and Genomics, 2015, 290(2):611-622.

[52] MA J Y, CHEN S L, ZHANG J H, et al. Identification and genetic mapping of a lesion mimic mutant in rice[J]. Rice Science, 2012, 19(1): 1-7.

[53] HU B, ZHU C, LI F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115.

[54] 王建軍,張禮霞,王林友,等.水稻類病變(lesion resembling disease)突變體對光照和溫度的誘導(dǎo)反應(yīng)[J].中國農(nóng)業(yè)科學(xué), 2010, 43(10): 2039-2044.

[55] TONG X H, QI J F, ZHU X D, et al. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J]. The Plant Journal, 2012, 71(5): 763-775.

[56] UNDAN J R, TAMIRU M, ABE A et al. Mutation in oslms, a gene encoding a protein with two double-stranded rna binding motifs, causes lesion mimic phenotype and early senescence in rice ( Oryza sativa ?L.) [J]. Genes & Genetic Systems, 2012, 87(3): 169-179.

[57] WANG L J, PEI Z Y, TIAN Y C, et al. Oslsd1, a rice zinc finger protein, regulates programmed cell death and callus differentiation[J]. Molecular Plant-Microbe Interactions, 2005, 18(5): 375-384.

[58] CHERN M, FITZGERALD H A, CANLAS P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light[J].? Molecular Plant-Microbe Interactions, 2005, 18(6): 511-520.

[59] YUAN Y, ZHONG S, LI Q, et al. Functional analysis of rice NPR1-like genes reveals that OsNPR1 /NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility[J]. Plant Biotechnology Journal, 2007, 5(2): 313-324.

[60] MATSUI H, TAKAHASHI A, HIROCHIKA H et al. Rice immune regulator, OsPti1a, is specifically phosphorylated at the plasma membrane[J]. Plant Signaling & Behavior, 2015, 10(3): e991569.

[61] KIM J A, CHO K W, RAKSHA S, et al. Rice OsACDR1 ( Oryza sativa ?accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance[J]. Molecules and Cells, 2009, 28(5): 431-439.

[62] JIAO B B, WANG J J, ZHU X D, et al. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice[J]. Molecular Plant, 2012, 5(1): 205-217.

[63] JIANG C J, MASAKI S, MAEDA S, et al. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice[J]. Molecular Plant-microbe Interactions, 2009, 22(7): 820-829.

[64] YAMAGUCHI T, KURODA M, YAMAKAWA H, et al. Suppression of a phospholipase d gene, ospldβ1, activates defense responses and increases disease resistance in rice[J]. Plant Physiology, 2009, 150(1): 308-319.

[65] SUN C H, LIU L C, TANG J Y, et al. RLIN1, encoding a putative coproporphyrinogen Ⅲ oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics, 2011, 38(1): 29-37 .

[66] UJIWARA T, MAISONNEUVE S, ISSHIKI M, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice[J]. Journal of Biological Chemistry, 2010, 285(15): 11308-11313.

[67] YOU Q Y, ZHAI K R, YANG D L, et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance[J]. Cell Host & Microbe, 2016, 20(6): 758-769.

[68] WANG Y Q, LIN A H, GARY J L, et al. H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species[J]. Journal of Integrative Plant Biology, 2013, 55(3): 202-208.

[69] CHERN M, XU Q, BART R S, et al. Correction: a genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity[J].? PLoS Genetics, 2016,12(7): e1006182.

[70] SAKURABA Y, RAHMAN M L, CHO S H, et al. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions[J]. The Plant Journal, 2013, 74(1): 122-133.

[71] HE Y, ZHANG X B, SHI Y F, et al. Premature senescence leaf 50 promotes heat stress tolerance in rice ( Oryza sativa ?L.)[J]. Rice, 2021, 14(1): 53.

[72] CHEN G, WU C, HE L, et al. Knocking out the gene rls1 induces hypersensitivity to oxidative stress and premature leaf senescence in rice[J]. International Journal of Molecular Sciences, 2018, 19(10): 2853.

[73] CHERN M S, FITZGERALD H A, CANLAS P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18: 511-520.

[74] TANG J Y, ZHU X D, WANG Y Q, et al. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal,? 2011, 66(6): 996-1007.

[75] HU G, RICHTER T E, HULBERT S H, et al. Disease lesion mimicry caused by mutations in the rust resistance gene rp1[J]. The Plant Cell, 1996,8(8): 1367-1376.

[76] TANG X, XIE M, KIM Y J, et al. Overexpression of ?Pto ?activates defense responses and confers broad resistance[J]. The Plant cell, 1999, 11(1): 15-29.

[77] QUESADA V, SARMIENTO M R, GONZLEZ B R, et al. Porphobilinogen deaminase deficiency alters vegetative and reproductive development and causes lesions in ?Arabidopsis [J]. PLoS One, 2013,8(1): e53378.

[78] MANOSALVA P M, BRUCE MYRON, JAN L E. Rice 14-3-3 protein (gf14e) negatively affects cell death and disease resistance[J]. Plant Journal, 2011,68(5): 777-787.

[79] COLL N S, EPPLE P, DANGL J L. Programmed cell death in the plant immune system[J]. Cell Death and Differentiation, 2011, 18(8): 1247-1256.

[80] 黃奇娜,楊 楊,施勇烽,等. 水稻類病斑表型葉變異研究進展[J]. 中國水稻科學(xué), 2010, 24(2):108-115.

[81] MACH J M, CASTILLO A R, HOOGSTRATEN R, et al. The ?Arabidopsis -accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 771-776.

[82] RATE D N, CUENCA J V, BOWMAN G R , et al. The gain-of-function arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth[J]. Plant Cell, 1999, 11(9):1695-1708.

[83] 邱結(jié)華,馬 寧,蔣漢偉,等.水稻類病斑突變體lmm4的鑒定及其基因定位[J]. 中國水稻科學(xué), 2014, 28(4):367-376.

[84] JAMBUNATHAN N, SIANI J M, MCNELLIS T W. A humidity-sensitive ?Arabidopsis ?copine mutant exhibits precocious cell death and increased disease resistance[J]. The Plant Cell, 2001, 13(10) :2225-2240.

[85] LIU Q, NING Y, ZHANG Y, et al. OsCUL3a Negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. Plant Cell, 2017, 292:345-359.

[86] CUI Y J, PENG Y L, ZHANG Q, et al. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice[J]. The Plant Journal, 2021, 105(4):942-956.

[87] AKIRA A, WONG H L, MASAYUKI F, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4): 465-476.

[88] LI Z, DING B, ZHOU X E, et al. The rice dynamin-related protein OsDRP1E negatively regulates programmed cell death by controlling the release of cytochrome c from mitochondria[J]. PLoS Pathogen, 2017,13(1): e1006157.

[89] LIAO Y, BAI Q, XU P, et al. Mutation in rice abscisic Acid2 results in cell death enhanced disease-resistance, altered seed dormancy and development[J]. Frontiers in Plant Science, 2018,9: 405.

[90] TU B, HU L, CHEN W, et al. Disruption of OsEXO70A1 causes irregular vascular bundles and perturbs mineral nutrient assimilation in rice[J]. Scientific Reports, 2015,5:18609.

[91] KE S, LIU S, LUAN X, et al. Mutation in a putative glycosyltransferase-like gene causes programmed cell death and early leaf senescence in rice[J]. Rice, 2019,12(1): 7.

[92] LEE D, LEE G, KIM B, et al. Identification of a spotted leaf sheath gene involved in early senescence and defense response in rice[J].Front Plant Sci, 2018,9: 1274.

[93] ZHAO J, LIU P, LI C, et al. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice[J].Journal of Genetics and Genomics, 2017,44(2): 107-118.

[94] ZHAO X S, QIU T C, FENG H J, et al. A novel glycine-rich domain protein, OsGRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice[J]. Journal of Experimental Botany, 2021, 72(2):608-622.

[95] BRUGGEMAN Q, RAYNAUD C, BENHAMED M, et al. To die or not to die? Lessons from lesion mimic mutants [J]. Frontiers in Plant Science,2015,6: 24.

[96] DU D, ZHANG C W, XING Y D, et al The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19[J]. Plant Biotechnology Journal, 2021, 9(5):1052-1064.

[97] SHIRSEKAR G S, VEGA S, MIGUEL E, et al. Identification and characterization of suppressor mutants of spl11- mediated cell death in rice[J]. Molecular Plant-microbe Interactions, 2014, 27(6) :528-536.

[98] RAO Y C, JIAO R, WANG S, et al. SPL36 Encodes a receptor-like protein kinase that regulates programmed cell death and defense responses in rice[J]. Rice, 2021, 14(1): 34.

[99] QIU T C, ZHAO X S, FENG H J, et al. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses[J].Plant Biotechnology Journal, 2021, 19(11): 2277-2290

[100]ZAVALIEV R,? MOHAN R, CHEN T Y, et al. Formation of NPR1 condensates promotes cell survival during the plant immune response[J]. Cell, 2020, 182(5) :1093-1108.

[101]WU J H, ZHU C F, PANG J H, et al. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in ?Oryza sativa [J]. The Plant Journal, 2014, 80(6): 1118-1130.

[102]HOANG T V, VO K T X, RAHMAN M M, et al. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice[J]. Plant Science, 2019,289 :110273.

[103]MA H G , LI J , MA L, et al. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance[J]. Molecular Plant, 2021, 14(4): 620-632.

[104]LIU X Q, LI F, TANG J Y, et al. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice[J]. PLoS One, 2012, 7(11): e50089.

[105]THAO N P, CHEN L T, NAKASHIMA A, et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J]. The Plant Cell, 2007, 19(12): 4035-4045.

[106]HU H T, REN D Y, HU J, et al. White and lesion-mimic leaf1, encoding a lumazine synthase, affects ROS balance and chloroplast development in rice[J]. The Plant Journal, 2021, 108(6):1690-1703.

[107]郭明欣,劉佳佳,侯琳琳,等. 植物體內(nèi)活性氧的產(chǎn)生及清除機制研究進展[J]. 科技視界,2021,4(8):104-106.

[108]黃家華,呂曼芳,李元強,等. 活性氧在植物體中的有益作用[J]. 現(xiàn)代園藝,2019(3):173-174.

[109]GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.

[110]PEI Z M, MURATA? Y, BENNING G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406(6797):731-734.

[111]YAMADA M, HAN X W, BENFEY P N. RGF1 controls root meristem size through ROS signalling[J]. Nature, 2020,577(7788): 85-88.

[112]LIANG X X, DING P T, LIAN K H, et al. ?Arabidopsis ?heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor[J]. eLife,2016,5: e13568.

[113]ZHANG S, HEYES D J, FENG L, et al. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis[J]. Nature, 2019, 574(7780):722-725.

[114]唐民科,張均田. 半胱氨酸-天冬氨酸蛋白酶( Caspase )及其在細胞凋亡中的作用[J]. 醫(yī)學(xué)研究通訊,2000(11): 9-13.

(責(zé)任編輯:陳海霞)

收稿日期:2021-11-23

基金項目:國家自然科學(xué)基金項目(31872858);江蘇省重點研發(fā)計劃項目(BE2019339);江蘇省作物基因組學(xué)和分子育種重點實驗室開放課題(PL201905)

作者簡介:沈旺鑫(1994-),男,江蘇揚州人,碩士研究生,主要從事水稻抗病遺傳分子育種。(E-mail) shen_wangxin@163.com

通訊作者:左示敏, (E-mail) smzuo@yzue.edu.cn

猜你喜歡
分子機制表型基因克隆
基于衰老相關(guān)分泌表型理論探討老年慢性阻塞性肺疾病患者衰弱發(fā)生機制
探訪“人類表型組”
表型組研究:中國后發(fā)先至
作物表型組學(xué)和高通量表型技術(shù)最新進展(2020.2.2 Plant Biotechnology Journal)
自噬調(diào)控腎臟衰老的分子機制及中藥的干預(yù)作用
三個小麥防御素基因的克隆及序列分析
縮泉丸補腎縮尿的分子機制探討
長鏈非編碼RNA在消化道腫瘤中的研究進展