国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基質(zhì)金屬蛋白酶對(duì)結(jié)核肉芽腫形成及免疫調(diào)控作用的研究進(jìn)展*

2022-07-06 01:59劉莉馬沁梅于嘉霖鄧光存吳曉玲
中國(guó)病理生理雜志 2022年6期
關(guān)鍵詞:肉芽腫蛋白酶基質(zhì)

劉莉, 馬沁梅, 于嘉霖, 鄧光存, 吳曉玲

· 綜述 ·

基質(zhì)金屬蛋白酶對(duì)結(jié)核肉芽腫形成及免疫調(diào)控作用的研究進(jìn)展*

劉莉, 馬沁梅, 于嘉霖, 鄧光存, 吳曉玲△

(西部特色生物資源保護(hù)與利用教育部重點(diǎn)實(shí)驗(yàn)室,寧夏大學(xué)生命科學(xué)學(xué)院,寧夏 銀川 750021)

結(jié)核分枝桿菌;肉芽腫;基質(zhì)金屬蛋白酶

結(jié)核?。╰uberculosis, TB)是由結(jié)核分枝桿菌(, Mtb)感染引起的具有高致病性及死亡率的人畜共患傳染?。?]。作為一種胞內(nèi)致病菌,Mtb通過氣溶膠等途徑感染肺部,隨后被駐留在肺泡中的巨噬細(xì)胞識(shí)別、吞噬并發(fā)生復(fù)雜的相互作用[2]。一方面,當(dāng)Mtb感染巨噬細(xì)胞時(shí),巨噬細(xì)胞會(huì)通過其模式識(shí)別受體(pattern recognition receptors, PRRs)開啟免疫反應(yīng),然后激活細(xì)胞凋亡和自噬等途徑以消滅病原菌。另一方面,在長(zhǎng)期的進(jìn)化過程中,Mtb也進(jìn)化出了一套免疫逃逸機(jī)制,從而逃避機(jī)體的免疫識(shí)別和殺傷。在這個(gè)過程中,機(jī)體引發(fā)的炎癥反應(yīng)會(huì)逐漸導(dǎo)致TB肉芽腫的形成,肉芽腫一般會(huì)在機(jī)體內(nèi)穩(wěn)定并長(zhǎng)期存在,當(dāng)機(jī)體免疫力下降或病原菌感染時(shí),肉芽腫內(nèi)部會(huì)發(fā)生干酪樣壞死,導(dǎo)致Mtb的逸散,感染進(jìn)一步擴(kuò)大[3]。肉芽腫作為一種組織有序的多類型免疫細(xì)胞集合,其形成受到多種因素調(diào)控,而基質(zhì)金屬蛋白酶(matrix metalloproteinases, MMPs)在肉芽腫形成過程中發(fā)揮了重要作用。

MMPs是一類依賴Zn2+的蛋白水解酶,可以特異性地降解細(xì)胞外基質(zhì)(extracelluar matrix, ECM)并參與ECM的重構(gòu)[4]。同時(shí),MMPs在各種生理和病理過程中起著關(guān)鍵作用。當(dāng)機(jī)體免疫力低下時(shí),MMPs會(huì)發(fā)生上調(diào),并引起風(fēng)濕性關(guān)節(jié)炎、牙周炎、惡性腫瘤等多種疾病。另外,MMPs還可能參與Mtb感染后的機(jī)體免疫調(diào)節(jié)。Mtb感染通過激活細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)/絲裂原活化蛋白激酶(motogen-activated protein kinase, MAPK)通路來調(diào)控MMPs的表達(dá),同時(shí)誘導(dǎo)肺組織重塑和肉芽腫形成[5]。由此可見,MMPs的表達(dá)水平可能會(huì)影響Mtb感染后肺部肉芽腫的形成及病理變化,而MMPs可能是治療TB的潛在靶點(diǎn)。

1 肉芽腫的特點(diǎn)及其功能

早在1679年,肉芽腫就作為肺TB的主要特征被提及。這一發(fā)現(xiàn)比確定Mtb是引起TB的主要致病菌早了近200年。肉芽腫的形成過程比較復(fù)雜,當(dāng)Mtb侵入機(jī)體后首先被巨噬細(xì)胞吞噬,然后被感染的巨噬細(xì)胞發(fā)生細(xì)胞壞死導(dǎo)致Mtb逸散出來感染其他的細(xì)胞或組織,造成感染的進(jìn)一步擴(kuò)大。與此同時(shí),機(jī)體為了防止病菌逸散也會(huì)分泌一些炎癥因子去募集免疫細(xì)胞,被招募來的免疫細(xì)胞將被感染的細(xì)胞團(tuán)團(tuán)圍住,逐漸形成一個(gè)致密的結(jié)構(gòu),這種結(jié)構(gòu)便是肉芽腫[6]。肉芽腫主要包括干酪樣壞死型肉芽腫、非壞死型肉芽腫和纖維型肉芽腫三類,其中干酪樣肉芽腫具有干酪樣壞死的中央?yún)^(qū),周圍伴有增生的上皮樣細(xì)胞、多核巨細(xì)胞、淋巴細(xì)胞、成纖維細(xì)胞等免疫細(xì)胞[7]。作為一種有組織、有結(jié)構(gòu)的免疫細(xì)胞的集合,肉芽腫在機(jī)體免疫調(diào)控中發(fā)揮著重要作用。

肉芽腫在TB的發(fā)病過程中起著雙刃劍的作用。首先,肉芽腫的免疫微環(huán)境可將Mtb控制在一定的范圍內(nèi),有效控制和防止Mtb的進(jìn)一步擴(kuò)散和傳播;但從另外一方面來說,這樣的微生態(tài)微環(huán)境也保證了Mtb能繼續(xù)生長(zhǎng)和存活,而不能被機(jī)體完全殺死。在感染部位Mtb的生長(zhǎng)與抑制達(dá)到一種平衡[8]。但是當(dāng)機(jī)體免疫力下降時(shí),這種平衡會(huì)被打破,Mtb會(huì)突破局部防御而逸散出來造成二次感染,加重病癥[9]。由此可見,TB肉芽腫是Mtb與機(jī)體免疫細(xì)胞相互作用最為直接的部位,并在很大程度上決定Mtb的擴(kuò)散和繁殖程度,因此其發(fā)展轉(zhuǎn)歸決定了TB的發(fā)展進(jìn)程及最終結(jié)局。而肉芽腫形成過程中MMPs的參與及其在肉芽腫形成過程中的作用越來越受到人們的關(guān)注,這對(duì)破譯Mtb感染后肉芽腫形成的潛在驅(qū)動(dòng)因素有重要意義。

2 MMPs概述

MMPs是一類含鋅金屬肽酶的總稱,具有激活或降解多種ECM、促進(jìn)細(xì)胞遷移等作用[10-11]。MMPs在1962年首次被報(bào)道,它們主要參與蝌蚪變態(tài)過程中的尾部再吸收。目前已有26種MMPs被發(fā)現(xiàn),其中人體內(nèi)大約有23種,各成員之間結(jié)構(gòu)相對(duì)比較保守,幾乎在所有器官和組織中都有表達(dá),在炎癥細(xì)胞遷移、組織修復(fù)、趨化因子和細(xì)胞因子信號(hào)傳導(dǎo)、基質(zhì)和非基質(zhì)蛋白降解等免疫反應(yīng)中均起著關(guān)鍵作用[12-13]。

根據(jù)特異性,MMPs可分為膠原酶(MMP‐1、MMP‐8和MMP‐13)、明膠酶(MMP‐2和MMP‐9)、金屬酶(MMP‐3、MMP‐10和MMP‐11)和彈性酶(MMP‐7和MMP‐12)四大類。在機(jī)體內(nèi),多數(shù)MMPs都以其前體(proMMPs)的非活性形式存在[14]。proMMPs的激活機(jī)制非常復(fù)雜,目前比較公認(rèn)的是“Zn2+-半胱氨酸學(xué)說”,具體內(nèi)容為:MMPs被激活之前,首先形成proMMPs,此時(shí)機(jī)體內(nèi)的半胱氨酸會(huì)與proMMPs結(jié)構(gòu)上的Zn2+相互結(jié)合,以保持proMMPs一直處于非活性形式;而當(dāng)Mtb侵入機(jī)體,會(huì)促使一些蛋白酶(如絲氨酸蛋白酶、纖溶酶和中性粒細(xì)胞彈性蛋白酶)作用于半胱氨酸和proMMPs之間的化學(xué)鍵,去除半胱氨酸開關(guān),激活proMMPs[15-16]。proMMPs被激活后,其活性受到金屬蛋白酶組織抑制劑(tissue inhibitors of metalloproteinases, TIMPs)的調(diào)節(jié)[17]。TIMPs是一種內(nèi)源蛋白,也是人體內(nèi)主要的MMPs抑制劑[18]。目前已經(jīng)鑒定出4種TIMPs(TIMP1-4),它們具有相似的結(jié)構(gòu),可與MMPs的催化活性區(qū)特異性結(jié)合來調(diào)控其活性[19-20]。

目前已被證實(shí)的是,Mtb感染會(huì)導(dǎo)致MMPs上調(diào),并調(diào)節(jié)機(jī)體免疫應(yīng)答,同時(shí),MMPs的分泌主要受核因子κB(nuclear factor-κB, NF-κB)和MAPK信號(hào)通路的調(diào)控[21]。但是目前關(guān)于MMPs調(diào)控肉芽腫形成及發(fā)展的機(jī)制尚不完全明晰,且后續(xù)針對(duì)MMPs的靶向療法也尚不成熟,有待進(jìn)一步研究。因此,探索MMPs的功能及其在肉芽腫中的作用可以為TB的防治及新藥研發(fā)提供理論基礎(chǔ)。

3 MMPs對(duì)TB肉芽腫形成的調(diào)控作用

3.1TB肉芽腫中MMPs的表達(dá)調(diào)控MMPs的表達(dá)調(diào)控機(jī)制比較復(fù)雜,由圖1可以看出,MMPs可由上皮細(xì)胞、巨噬細(xì)胞及T細(xì)胞等分泌,并且其表達(dá)受到一些細(xì)胞因子的調(diào)控。(1)在TB肉芽腫中,不同細(xì)胞對(duì)MMPs的調(diào)控是多樣的。機(jī)體單核細(xì)胞與單核細(xì)胞、成纖維細(xì)胞和小膠質(zhì)細(xì)胞之間,以及呼吸道上皮細(xì)胞與成纖維細(xì)胞之間相互作用均可上調(diào)MMPs表達(dá)[22-23]。Mtb可通過這些細(xì)胞之間的網(wǎng)絡(luò)連接而增強(qiáng)MMPs活性,且這些細(xì)胞網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)增強(qiáng)免疫細(xì)胞和基質(zhì)細(xì)胞的免疫應(yīng)答。(2)多種細(xì)胞因子被證明在肉芽腫形成過程中參與調(diào)控MMPs的表達(dá)。當(dāng)機(jī)體發(fā)生炎癥反應(yīng)時(shí),干擾素γ、白細(xì)胞介素1β(interleukin-1β, IL-1β)以及單核細(xì)胞來源的腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)均可增加MMPs的表達(dá)[24],進(jìn)而調(diào)控機(jī)體免疫應(yīng)答。另外,干酪樣肉芽腫中心為典型的缺氧微環(huán)境,在這種環(huán)境中,缺氧誘導(dǎo)因子1α(hypoxia-incucible factor-1α, HIF-1α)和血紅素加氧酶1(heme oxygenase-1, HO-1)在其中起了重要的調(diào)節(jié)作用,HIF-1α可增加單核細(xì)胞和中性粒細(xì)胞MMPs的分泌[25-26],而Mtb驅(qū)動(dòng)的HO-1可限制MMP-1的表達(dá)。由于海分枝桿菌感染的斑馬魚體內(nèi)的肉芽腫和人類一樣出現(xiàn)干酪樣壞死,所以該模型現(xiàn)已在肺TB研究中被廣泛應(yīng)用。在斑馬魚肉芽腫模型中,依賴于Mtb毒力因子ESAT-6的MMP-10和IL-17驅(qū)動(dòng)的MMP-3可能通過激活MMP-1上調(diào)其他膠原酶的表達(dá)。總之,這些研究均證明TB肉芽腫中MMPs的表達(dá)調(diào)控具有復(fù)雜性。

Figure 1. Pattern diagram of the expression of matrix metalloproteinases (MMPs) regulated by various cells and cytokines in tuberculous granuloma. TNF-α: tumor necrosis factor-α; HIF-1α: hypoxia-inducible factor-1α; IL-1β: interleukin-1β; IFN-γ: interferon-γ; HO-1: heme oxygenase-1; IL-17: interleukin-17; TIMPs: tissue inhibitors of metalloproteinases.

3.2MMPs有助于肉芽腫形成早期膠原的降解肉芽腫形成的一個(gè)重要條件是成纖維細(xì)胞合成膠原酶,其中肌成纖維細(xì)胞是一種特殊的成纖維細(xì)胞,可產(chǎn)生膠原蛋白酶并參與肉芽腫組織的形成。當(dāng)Mtb感染時(shí),肌成纖維細(xì)胞能通過調(diào)節(jié)纖維化相關(guān)細(xì)胞因子導(dǎo)致膠原酶積累,而后者對(duì)機(jī)體器官具有破壞性,從而可能會(huì)促使一些病變發(fā)展為具有廣泛ECM的肉芽腫;而抑制膠原蛋白酶表達(dá)會(huì)抑制Mtb誘導(dǎo)的肉芽腫形成并減低細(xì)菌負(fù)荷[27]。

膠原降解是肉芽腫形成早期最顯著的特點(diǎn)。在肺TB人體內(nèi)的MMPs(尤其MMP-1和MMP-3)是降解膠原的關(guān)鍵酶,在肺TB發(fā)生發(fā)展進(jìn)程中發(fā)揮著重要作用[28-29]。此外,中性粒細(xì)胞來源的MMP-8現(xiàn)已成為TB肉芽腫形成的第二種主要膠原酶。如圖2所示,Mtb感染后中性粒細(xì)胞分泌MMP-8,導(dǎo)致膠原降解[23]。研究者在肺TB患者的肺泡腔內(nèi)壁和干酪樣壞死區(qū)域中心檢測(cè)出含有MMP-8的中性粒細(xì)胞也證明了以上觀點(diǎn)。由此可以看出,在TB發(fā)展進(jìn)程中,巨噬細(xì)胞來源的MMP-1可能導(dǎo)致最初的基質(zhì)分解,而中性粒細(xì)胞來源的MMP-8增加了肺組織損傷,從而導(dǎo)致Mtb擴(kuò)散到氣道中造成感染的進(jìn)一步擴(kuò)大。以上研究表明多種MMPs聯(lián)合作用可破壞早期肺基質(zhì),加速M(fèi)tb的擴(kuò)散。

3.3MMPs調(diào)控TB肉芽腫的發(fā)展進(jìn)程前期許多研究已經(jīng)證實(shí),MMPs在Mtb感染后肺組織肉芽腫形成中具有重要作用,而MMPs表達(dá)量及種類不同其作用也有差異。如圖2所示,Mtb感染后會(huì)誘導(dǎo)MMP-9和MMP‐10高表達(dá),且MMP-9的上調(diào)與肉芽腫形成所必需的單核細(xì)胞和巨噬細(xì)胞的募集有關(guān)[30]。使用MMPs抑制劑抑制MMP-9和MMP-10的表達(dá),可分別從細(xì)胞募集和膠原酶活性兩個(gè)方面抑制肉芽腫的形成[31]。此外,MMP-12在機(jī)體免疫和肉芽腫形成過程中也發(fā)揮著至關(guān)重要的作用。結(jié)節(jié)病患者的肺組織中MMP-12表達(dá)上調(diào)。在多壁碳納米管灌注的小鼠肉芽腫性炎癥模型中,敲減-會(huì)導(dǎo)致肉芽腫消退,而上調(diào)MMP-12的表達(dá)會(huì)導(dǎo)致肉芽腫持續(xù)[32]。這些研究說明MMPs影響了肉芽腫的形成及其發(fā)展進(jìn)程。

Figure 2. Regulation of the expression of matrix metalloproteinases (MMPs) in lung granuloma. PPAR-γ: peroxisome proliferator-activated receptor-γ; IFN-γ: interferon-γ.

4 MMPs在TB肉芽腫中的免疫調(diào)控作用

4.1MMPs促進(jìn)了肉芽腫中Mtb的增殖和傳播目前,Mtb感染后MMPs的上調(diào)被認(rèn)為可能是Mtb在宿主肺組織中增殖和傳播的策略之一。這主要是由于Mtb可利用自身分泌的毒力因子誘導(dǎo)肉芽腫的形成,從而促進(jìn)其復(fù)制和傳播[33]。這也就是說,肉芽腫可能為Mtb的復(fù)制提供了有利的微環(huán)境。而在這個(gè)過程中,MMPs對(duì)于早期肉芽腫形成和促進(jìn)Mtb在局部微環(huán)境中的繁殖是必需的。其中,MMP-9已被證明直接參與感染部位巨噬細(xì)胞的招募,Mtb分泌的毒力因子ESAT-6可誘導(dǎo)上皮細(xì)胞中MMP-9的表達(dá),從而增強(qiáng)巨噬細(xì)胞的募集,促進(jìn)新生肉芽腫的成熟和細(xì)菌的生長(zhǎng),而敲除MMP-9會(huì)減弱肉芽腫的形成和細(xì)菌的生長(zhǎng)[27]。因此,在肉芽腫組織模型中,抑制MMP-9活性可通過抑制單核細(xì)胞和巨噬細(xì)胞募集以及肉芽腫的成熟來抑制細(xì)菌的傳播[25, 28]。另外,MMP-1被認(rèn)為是降解ECM的主要蛋白酶,其可促進(jìn)Mtb在機(jī)體內(nèi)的擴(kuò)散。研究表明過表達(dá)MMP-1導(dǎo)致肺肉芽腫的肺泡破壞和更大的膠原蛋白破壞[34]。目前大多數(shù)相關(guān)研究都認(rèn)為MMPs是治療TB的有效靶點(diǎn),未來將在TB的治療中發(fā)揮重要作用。

4.2MMPs參與調(diào)控TB肉芽腫中的炎癥反應(yīng)在TB肉芽腫中,MMPs作為機(jī)體炎癥反應(yīng)的主要調(diào)節(jié)因子,其可通過調(diào)控趨化因子、生長(zhǎng)因子、蛋白酶、蛋白酶抑制劑等的表達(dá)而促進(jìn)炎癥反應(yīng)改變。一般來說,早期肉芽腫以促炎環(huán)境為主,而晚期肉芽腫以抗炎環(huán)境為主。在這些復(fù)雜的過程中,MMP-1和MMP-9在炎性免疫反應(yīng)中發(fā)揮重要作用。MMP-1是肺組織破壞的主要膠原酶,Mtb感染通過上調(diào)機(jī)體內(nèi)MMP-1的分泌,進(jìn)而導(dǎo)致單核細(xì)胞聚集和膠原酶活性的增加,造成機(jī)體炎性損傷[35]。MMP-9也在調(diào)節(jié)炎癥反應(yīng)方面有關(guān)鍵作用,Mtb感染THP-1細(xì)胞后會(huì)促進(jìn)細(xì)胞因子的分泌,進(jìn)而上調(diào)MMP-9的表達(dá),而抑制MMP-9的表達(dá)會(huì)抑制細(xì)胞因子分泌[36],進(jìn)一步降低機(jī)體炎癥反應(yīng)。MMP-1、-2、-3、-8和-13的循環(huán)水平在TB康復(fù)者體內(nèi)顯著降低[37],表明MMPs可能促進(jìn)Mtb感染后的組織損傷。因此,監(jiān)測(cè)這些特殊MMPs與炎癥因子下調(diào)之間的相關(guān)性,將有助于抗TB新藥的研發(fā)。此外,MMPs可以通過激活細(xì)胞內(nèi)信號(hào)通路的生物活性來暫時(shí)調(diào)節(jié)機(jī)體炎癥反應(yīng)和免疫過程。

4.3多條信號(hào)通路參與調(diào)控TB肉芽腫中MMPs的分泌當(dāng)Mtb侵入機(jī)體后,機(jī)體內(nèi)多個(gè)細(xì)胞通路被激活,共同調(diào)控MMPs分泌。如圖3所示,MAPKs作為一種磷酸化依賴的信號(hào)轉(zhuǎn)導(dǎo)酶,是多種細(xì)胞途徑中調(diào)控MMPs分泌的關(guān)鍵通路。已知ERK/MAPKs信號(hào)通路主要參與細(xì)胞分裂,而p38 MAPK則與過度炎癥反應(yīng)相關(guān),且p38和ERK均可調(diào)控TB肉芽腫中MMPs的分泌。p38磷酸化會(huì)驅(qū)動(dòng)肺TB患者體內(nèi)干酪樣肉芽腫周圍的上皮樣巨噬細(xì)胞表達(dá)MMP-1[38]。在p38的上游,Mtb通過Toll樣受體2(Toll-like receptor 2, TLR2)磷酸化p38;在下游,磷酸化的p38會(huì)通過驅(qū)動(dòng)環(huán)加氧酶(cyclooxygenase, COX)-Ⅱ/前列腺素(prostaglandin, PG)E2通路的表達(dá),進(jìn)而調(diào)節(jié)MMP-1的分泌[39-40]。其中,PG通路是p38活性的關(guān)鍵下游效應(yīng)因子,在調(diào)節(jié)MMPs的表達(dá)中起著重要作用。此外,Mtb本身產(chǎn)生的環(huán)磷酸腺苷也參與調(diào)控MMPs的表達(dá)[41]。

如圖3所示,磷脂酰肌醇二甘露糖苷(phosphatidyl-myo-inositol dimannosides, PIM2)作為Mtb胞膜的重要組成部分,其可以通過TLR2-MyD88依賴的方式激活磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)和Notch1信號(hào),進(jìn)一步上調(diào)巨噬細(xì)胞中COX-Ⅱ和MMP-9的表達(dá)[42, 44]。這表明,PIM2可能以Notch-PI3K-MAPK依賴的方式調(diào)控著MMPs的表達(dá)。另外,Notch1還可強(qiáng)烈激活NF-κB表達(dá),從而調(diào)控炎癥反應(yīng)[45]?;|(zhì)細(xì)胞如氣道上皮細(xì)胞在Mtb侵入機(jī)體形成肉芽腫的過程中也發(fā)揮重要作用。PI3K作為一種關(guān)鍵的信號(hào)分子,也被認(rèn)為在調(diào)控氣道上皮細(xì)胞MMPs表達(dá)中發(fā)揮重要作用。PI3K/AKT/P70S6K信號(hào)通路在支氣管上皮細(xì)胞源性MMP-1、MMP-3和MMP-9表達(dá)中起重要調(diào)控作用[46],證明了以上觀點(diǎn)。這些MMPs是TB病理性ECM降解的關(guān)鍵。

Figure 3. Multiple signaling pathways regulate the expression and secretion of matrix metalloproteinases (MMPs) in tuberculous granuloma (modified from reference [4, 45]). PIM2: phosphatidyl-myo-inositol dimannosides; PI3K: phosphatidylinositol 3-kinase; GPCRs: G-protein-coupled receptors; ERK: extracellular signal-regulated kinase; NF-κB: nuclear factor-κB; TLR2: Toll-like receptor 2; MAPK: mitogen-activated protein kinase; COX-II: cyclooxygenase-2; PGE2: prostaglandin E2; cAMP: cyclic adenosine monophosphate; IL-17: interleukin-17; TNF-α: tumor necrosis factor-α; TIMPs: tissue inhibitors of metalloproteinases.

Mtb免疫反應(yīng)中還涉及許多細(xì)胞因子,其中IL-17和TNF-α均可調(diào)節(jié)肺TB病人體內(nèi)MMPs的活性,這對(duì)調(diào)控肉芽腫的發(fā)生發(fā)展具有重要意義。在肉芽腫中,p38 MAPK信號(hào)通路不僅參與了Mtb感染中IL-17驅(qū)動(dòng)的MMP-3上調(diào)[47-48],還可通過TNF-α協(xié)同G蛋白偶聯(lián)受體信號(hào)通路上調(diào)MMP-1的表達(dá)水平,TB患者中激活的p38定位于分泌MMP-1的氣道上皮細(xì)胞[39]證明了以上觀點(diǎn)。總之,MMPs的調(diào)控涉及多種途徑,其中MAPKs是調(diào)控MMPs分泌和表達(dá)最關(guān)鍵的途徑。

5 結(jié)語和展望

肺TB是由Mtb感染引起的慢性傳染病,隨著病情發(fā)展,肺組織內(nèi)會(huì)形成肉芽腫。其中,由MMPs分解ECM引起的組織破壞可能在TB肉芽腫的發(fā)生發(fā)展中起重要作用。完整的肉芽腫可以控制病原體并防止其傳播,這對(duì)宿主是有益的。但在肉芽腫形成期間隨著MMPs分泌量的增加又會(huì)導(dǎo)致肺基質(zhì)降解,這對(duì)機(jī)體又是有害的。當(dāng)機(jī)體感染Mtb后,MMP-1、-3、-8和-9均明顯上調(diào),從而降解ECM,促進(jìn)Mtb擴(kuò)散。此外,這些MMPs還可促進(jìn)TB肉芽腫結(jié)構(gòu)的破壞,而不完整的肉芽腫結(jié)構(gòu)有利于Mtb增殖,大量巨噬細(xì)胞等進(jìn)一步聚集,從而導(dǎo)致MMPs分泌量進(jìn)一步增多,形成一種惡性循環(huán)。因此,患者血清中MMP-1、-3、-8和-9的表達(dá)水平可作為肺TB的輔助診斷指標(biāo),以及病情監(jiān)測(cè)和治療效果的參考指標(biāo)。

目前,關(guān)于Mtb感染不同階段特定MMPs的調(diào)節(jié)及作用仍不甚清晰。而研究者使用多種TB動(dòng)物模型研究后提出,MMPs可作為未來治療TB的有效靶點(diǎn)之一。通過使用MMP抑制劑和一線TB藥物對(duì)TB進(jìn)行輔助治療后發(fā)現(xiàn),MMP抑制劑可防止肉芽腫的形成,顯著降低了Mtb在肺中的存活率。但是也面臨新的挑戰(zhàn),例如,目前TB治療方案需要多種藥物配合,MMP抑制劑與這些藥物配伍的效果仍需要進(jìn)一步研究,尤其對(duì)多重耐藥菌的抑制效果還不明確。

[1] Hong D, Ding J, Ouyang L, et al. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection[J]. Stem Cell Res Ther, 2018, 9(1):2-14.

[2] Bosedasgupta S, Pieters J. Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens[J]. PLoS Pathogens, 2014, 10(1):e1003879.

[3] Al-Mayouf SM, Albuhairan I, Muzaffer M, et al. Familial aggregation of Crohn’s disease and necrotizing sarcoid-like granulomatous disease[J]. Eur J Rheumatol, 2015, 2(3):122-124.

[4] Zhang P, Wu C, Huang XH, et al. Aspirin suppresses TNF-α-induced MMP-9 expression via NF-κB and MAPK signaling pathways in RAW264.7 cells[J]. Exp Ther Med, 2017, 14(6):5597-5604.

[5] O'Kane CM, Elkington PT, Jones MD,et al. STAT3, p38 MAPK, and NF-κB drive unopposed monocyte-dependent fibroblast MMP-1 secretion in tuberculosis[J]. Am J Respir Cell Mol Biol, 2010, 43(4):465-474.

[6] Andersson AM, Larsson M, Stendahl O, et al. Efferocytosis of apoptotic neutrophils enhances control ofin HIV-coinfected macrophages in a myeloperoxidase-dependent manner[J]. J Innate Immun, 2020, 12(3):235-247.

[7] Evans S, Butler JR, Mattila JT, et al. Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation[J]. PLoS Comput Biol, 2020, 16(12):e1008520.

[8] Carow B, Hauling T, Qian X, et al. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma[J]. Nat Commun, 2019, 10(1):1823.

[9] Ramakrishnan L. Looking within the zebrafish to understand the tuberculous granuloma[J]. Adv Exp Med Biol, 2013, 783:251-266.

[10] Kim OH, An HS, Choi TY. Generation ofzebrafish mutant to investigate liver diseases[J]. Dev Reprod, 2019, 23(4):385-390.

[11] Liu H, Zeng Z, Wang S, et al. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9[J]. Cancer Biol Ther, 2017, 18(12):990-999.

[12] Miyamoto N, Pham LD, Maki T, et al. A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion[J]. Neurosci Lett, 2014, 573:40-45.

[13] DeLeon-Pennell KY, Meschiari CA, Jung M, et al. Matrix metalloproteinases in myocardial infarction and heart failure[J]. Prog Mol Biol Transl Sci, 2017, 147:75-100.

[14] Callaghan OJ, Crosbie DE, Cassidy PS, et al. Therapeutic potential of AAV-mediated MMP-3 secretion from corneal endothelium in treating glaucoma[J]. Hum Mol Genet, 2017, 26(7):1230-1246.

[15] Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade[J]. Crit Rev Biochem Mol Biol, 2013, 48(3):222-272.

[16] 歐陽譚亮,武志娟,鐘金城. MMP-2和MMP-9在骨骼肌組織中的研究進(jìn)展[J]. 生命科學(xué), 2021, 33(10):1286-1295.

Ouyang TL,Wu ZJ,Zhong JC.Research pngress of MMP-2 and MMP-9 in skeletal muscle tissue[J]. Chin Bull Life Sci, 2021, 33(10):1286-1295.

[17] Fu L, Sun G, Fiorentino M, et al. Characterization of xenopus tissue inhibitor of metalloproteinases-2: a role in regulating matrix metalloproteinase activity during development[J]. PLoS One, 2012, 7(5):e36707.

[18] Nakai K, Tanaka H, Yamanaka K, et al. Effects of C-reactive protein on the expression of matrix metalloproteinases and their inhibitors via fcgamma receptors on 3T3-L1 adipocytes[J]. Int J Med Sci, 2017, 14(5):484-493.

[19] Liu Y, Liu K. Effects of spironolactone and losartan on the early neovascularization of acute myocardial infarction[J]. Exp Ther Med, 2014, 8(3):978-982.

[20] Jeong HC, Kim HY, Kim HY, et al. Changes in gene expression of cervical collagens, metalloproteinases, and tissue inhibitors of metalloproteinases after partial cervical excision-induced preterm labor in mice[J]. PLoS One, 2021, 16(4):e0250108.

[21] Wu Y, Zhu L, Liu L, et al. Interleukin-17A stimulates migration of periodontal ligament fibroblasts via p38 MAPK/NF-κB-dependent MMP-1 expression[J]. J Cell Physiol, 2014, 229(3):292-299.

[22] 謝建民,王好問,陸才生. TNF-α上調(diào)單核巨噬細(xì)胞MMP-9的活性與類風(fēng)濕關(guān)節(jié)炎關(guān)節(jié)破壞的關(guān)系[J]. 中國(guó)病理生理雜志, 2009, 25(6):1181-1185.

Xie JM, Wang HW, Lu CS. Association of TNF-α upregulation of MMP-9 activation in monocyte-derived macrophages with progression of joint damage in patients with rheumatoid arthritis[J]. Chin J Pathophysiol, 2009, 25(6):1181-1185.

[23] Ong CWM, Elkington PT, Brilha S, et al. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis[J]. PLoS Pathogens, 2015, 11(5):e1004917.

[24] Perez-Jeldres T, Tyler CJ, Boyer JD, et al. Targeting cytokine signaling and lymphocyte traffic via small molecules in inflammatory bowel disease: JAK inhibitors and S1PR agonists[J]. Front Pharmacol, 2019, 10:212.

[25] Jayaraman P, Sada-Ovalle I, Nishimura T, et al. IL-1β promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation[J]. J Immunol, 2013, 190(8):4196-4204.

[26] Belton M, Brilha S, Manavaki R, et al. Hypoxia and tissue destruction in pulmonary TB[J]. Thorax, 2016, 71(12):1145-1153.

[27] Parasa VR, Muvva JR, Rose JF, et al. Inhibition of tissue matrix metalloproteinases interferes with-induced granuloma formation and reduces bacterial load in a human lung tissue model[J]. Front Microbiol, 2017, 8:e02370.

[28]王勇,楊永濱,馬玉琛. MMP1、MMP2和TIMP2在雄附方干預(yù)大鼠肺間質(zhì)纖維化中的作用[J]. 解放軍醫(yī)學(xué)院學(xué)報(bào), 2013, 34(4):376-378+381.

Wang Y, Yang YB, Ma YC. Role of MMP1, MMP2 and TIMP2 in treatinent of pulmonary interstiltel fubrosis in rats with Xiongfufang[J]. Acad J Chin PLA Med School, 2013, 34(4):376-378+371.

[29] AlShammari B, Shiomi T, Tezera L, et al. The extracellular matrix regulates granuloma necrosis in tuberculosis[J]. J Infect Dis, 2015, 212(3):463-473.

[30] Malur A, Barna BP, Patel J, et al. Exposure to a mycobacterial antigen, ESAT-6, exacerbates granulomatous and fibrotic changes in a multiwall carbon nanotube model of chronic pulmonary disease[J]. J Nanomed Nanotechnol, 2015, 6(6):340.

[31] Poh XY, Loh FK, Friedland JS, et al. Neutrophil-mediated immunopathology and matrix metalloproteinases in central nervous system - tuberculosis[J]. Front Immunol, 2022, 12:788976.

[32] Mohan A, Neequaye N, Malur A, et al. Matrix metalloproteinase-12 is required for granuloma progression[J]. Front Immunol, 2020, 11:e553949.

[33] 張唯. 結(jié)核分枝桿菌()毒力因子Rv3033促進(jìn)Mtb在巨噬細(xì)胞中存活的機(jī)制研究[D]. 蘇州:蘇州大學(xué), 2016.

Zhang W. The mechanism ofvirulent factor Rv3033 on promoting the survival ofin macrophages[D]. Suzhou: Soochow University, 2016.

[34] Brilha S, Chong DLW, Khawaja AA, et al. Integrin α2β1 expression regulates matrix metalloproteinase-1-dependent bronchial epithelial repair in pulmonary tuberculosis[J]. Front Immunol, 2018, 9:e01348.

[35] Dorhoi A, Kaufmann SHE. Pathology and immune reactivity:understanding multidimensionality in pulmonary tuberculosis[J]. Semin Immunopathol, 2016, 38(2): 153-166.

[36] Fu X, Zeng L, Liu Z, et al. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in mycobacterium tuberculosis-infected THP-1 human macrophages[J]. Biochem Biophys Res Commun, 2016, 477(2):167-173.

[37] Walker NF, Wilkinson KA, Meintjes G, et al. Matrix degradation in human immunodeficiency virus type 1-associated tuberculosis and tuberculosis immune reconstitution inflammatory syndrome: a prospective observational study[J]. Clin Infect Dis, 2017, 65(1):121-132.

[38] Brace PT, Tezera LB, Bielecka MK, et al.subverts negative regulatory pathways in human macrophages to drive immunopathology[J]. PLoS Pathog, 2017, 13(6):e1006367.

[39] Choi YJ, Lee WS, Lee EG, et al. Sulforaphane inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of MMPs, COX-2, and PGE2[J]. Inflammation, 2014, 37(5):1496-1503.

[40] Yoon HY, Lee EG, Lee H, et al. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs[J]. Int J Mol Med, 2013, 32(4):971-977.

[41] Lavalett L, Rodriguez H, Ortega H, et al. Alveolar macrophages from tuberculosis patients display an altered inflammatory gene expression profile[J]. Tuberculosis (Edinb), 2017, 107:156-167.

[42] Kapoor N, Bansal K, Puzo G, et al. PIM2 induced MMP-9 expression in macrophages requires PI3K and Notch1 signaling[J]. PLoS One, 2012, 4(3):e4911.

[43] 黃超,楊今實(shí),葉晶,等. Notch1信號(hào)通過TRAF6參與TLR4介導(dǎo)的NF-κB激活[J]. 免疫學(xué)雜志, 2017, 33(08):673-677.

Huang C, Yang JS, Ye J, et al. Notch1 signaling enhances TILR4-mediated NF-κB activation through regulating TRAF6[J]. Immunol J, 2017, 33(8):673-677.

[44] Narayana Y, Balaji KN. NOTCH1 up-regulation and signaling involved in mycobacterium bovis BCG-induced SOCS3 expression in macrophages[J]. J Biol Chem,2008, 283(18):12501-12511.

[45] Gao F, Zhou C, Qiu W, et al. Total flavonoids from semen cuscutae target MMP9 and promote invasion of EVT cells via Notch/AKT/MAPK signaling pathways[J]. Sci Rep, 2018, 8(1):e17342.

[46] Singh S, Saraiva L, Elkington P T, et al. Regulation of matrix metalloproteinase-1, -3, and -9 in-dependent respiratory networks by the rapamycin-sensitive PI3K/p70S6Kcascade[J]. FASEB J, 2014, 28(1):85-93.

[47] Freches D, Korf H, Denis O, et al. Mice genetically inactivated in interleukin-17A receptor are defective in long-term control ofinfection[J]. Immunology, 2013, 140(2):20-31.

[48] Singh S, Maniakis-Grivas G, Singh UK, et al. Interleukin-17 regulates matrix metalloproteinase activity in human pulmonary tuberculosis[J]. J Pathol, 2018, 244(3):311-322.

[49] Moores RC , Brilha S, Schutgens F, et al. Epigenetic regulation of matrix metalloproteinase-1 and -3 expression ininfection[J]. Front Immunol, 2017, 8:602.

Progress in effects of matrix metalloproteinases on formation and immune regulation of tuberculous granuloma

LIU Li, MA Qin-mei, YU Jia-lin, DENG Guang-cun, WU Xiao-ling△

(,,,750021,)

Tuberculosis (TB) is a zoonotic disease caused by(Mtb) infection. The interaction between Mtb and the host immune system induces varieties of pathological changes in the lung. Granuloma is one of the main pathological features of TB with considerably complicated formation process. Matrix metalloproteinases (MMPs), a kind of secreted endopeptidases, are involved in the formation and immune regulation of pulmonary granulomas. Of note, MMPs participate in the immune regulation after Mtb infection, and the expression of MMPs is usually regulated by mitogen-activated protein kinases. MMPs modulate the inflammatory response in TB granuloma, and their expression affects the pathological changes of pulmonary granulomas after infection with Mtb. Inhibition of MMPs significantly reduces the granuloma formation. Inhibitors of MMPs used in the treatment of TB still need further exploration. Herein, this paper aims to provide theoretical basis for MMPs in the treatment of TB.

; Granuloma; Matrix metalloproteinases

R473.52; R363.2+1

A

10.3969/j.issn.1000-4718.2022.06.019

1000-4718(2022)06-1113-07

2022-01-07

2022-03-31

國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 32060160);寧夏重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No. 2018BFH03017)

Tel: 0951-2062129; E-mail: wuxiaol@nxu.edu.cn

(責(zé)任編輯:李淑媛,羅森)

猜你喜歡
肉芽腫蛋白酶基質(zhì)
不同蛋白酶酶解制備雞肉小肽的工藝條件研究
4種不同配比基質(zhì)對(duì)戈壁日光溫室西瓜生長(zhǎng)及產(chǎn)量的影響
機(jī)插秧育苗專用肥——機(jī)插水稻育苗基質(zhì)
金銀花扦插育苗基質(zhì)復(fù)配及驗(yàn)證
多層螺旋CT診斷在以多發(fā)結(jié)節(jié)、腫塊為特征的腮腺嗜酸性淋巴肉芽腫中的意義
酶法水解杏鮑菇谷蛋白制備抗氧化肽
關(guān)于麥芽中蛋白酶的分解研究
不同栽培基質(zhì)對(duì)一品紅扦插苗的影響
思鄉(xiāng)與蛋白酶
肉芽腫性小葉乳腺炎臨床病理分析