尤宏爭 肖蕊 劉肖蓮 郝爽 肖俊 郭忠寶
摘要:【目的】掌握不同生長規(guī)格墨瑞鱈個體間差異表達基因的表達特點,為其功能相關(guān)基因深度挖掘及分子遺傳育種提供科學(xué)依據(jù)?!痉椒ā刻暨x同一養(yǎng)殖條件下極大個體和極小個體的墨瑞鱈,構(gòu)建肌肉組織cDNA文庫后,采用Illumina HiSeqTM 4000測序平臺對存在生長差異的墨瑞鱈肌肉組織進行轉(zhuǎn)錄組測序分析,獲得的Unigenes在Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO等數(shù)據(jù)庫中進行比對;通過FPKM及DEGseq篩選出差異表達基因,以GOseq和KOBAS對差異表達基因分別進行GO功能注釋及KEGG信號通路富集分析,并采用MISA進行SSR鑒定分析?!窘Y(jié)果】從墨瑞鱈肌肉組織中共測序獲得39749條Unigenes,其長度范圍在301~55230 bp,平均長度為1705 bp。注釋到Nt、Nr、Swiss-Prot、Pfam數(shù)據(jù)庫的Unigenes分別有27046、20824、18268和17772條,在7個數(shù)據(jù)庫中均得到注釋的Unigenes共計6742條,占Unigenes總數(shù)的16.96%。根據(jù)差異表達基因篩選條件P<0.05且|log2Fold Change|>1,共篩選出722個差異表達基因,其中上調(diào)基因308個、下調(diào)基因414個。差異表達基因GO功能注釋分析結(jié)果表明,注釋基因數(shù)目較多的GO功能條目包括細胞過程、代謝過程、膜、細胞器及結(jié)合等;KEGG信號通路富集分析發(fā)現(xiàn),差異表達基因被成功富集到234條信號通路上,主要涉及磷脂酰肌醇3激酶/蛋白激酶信號通路、MAPK信號通路、胰島素信號通路及FoxO信號通路等。在39749條Unigenes中鑒定篩選出22120個SSRs,占Unigene總數(shù)的55.65%,SSR的平均間距為3063 bp。【結(jié)論】基于轉(zhuǎn)錄組測序分析獲得的墨瑞鱈肌肉組織差異表達基因以發(fā)揮結(jié)合、細胞過程及代謝過程等功能為主,且主要富集在PI3K-Akt信號通路、核糖體信號通路、FoxO信號通路及細胞凋亡等能量代謝相關(guān)通路上,通過共同協(xié)調(diào)而對墨瑞鱈的生長發(fā)育起調(diào)控作用。
關(guān)鍵詞: 墨瑞鱈;肌肉;生長分化;差異表達基因;微衛(wèi)星(SSR);轉(zhuǎn)錄組測序
中圖分類號: S917;S965.321? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2022)03-0768-08
Analysis of muscle transcriptome of two different growth specifications of Maccullochella peelii
YOU Hong-zheng XIAO Rui LIU Xiao-lian HAO Shuang XIAO Jun GUO Zhong-bao
(1Tianjin Fisheries Research Institute, Tianjin? 300221, China; 2Tianjin Counterpart Support Gansu Front Headquarters, Lanzhou, Gansu? 730030,China; 3Guangxi Academy of Fishery Science, Nanning, Guangxi? 530021, China)
Abstract:【Objective】To identify differentially expressed genes(DEGs) between small and large individuals of Maccullochella peelii, to provide a scientific basis for the deep study of genes related to growth and development, molecular genetics and breeding. 【Method】Significantly large and small M. peelii individuals obtained under the same breeding conditions were selected and their muscle tissue sampled to construct cDNA libraries. Transcriptome sequencing of M. peelii muscle tissues was conducted using the Illumina HiSeqTM 4000 sequencing platform. The obtained unigenes were compared in Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG and GO databases. The differentially expressed genes were screened using FPKM and DEGseq. GOseq and KOBAS were used to perform GO function annotation and KEGG signaling pathway enrichment, then identified by SSR by MISA. 【Results】A total of 39749 unigenes were generated from muscle tissue of M. peelii, with lengths ranging from 301 to 55230 bp and an average length of 1705 bp. There were 27046, 20824, 18268 and 17772 unigenes annotated to Nt, Nr, Swiss-Prot and Pfam databases, respectively. In total, 6742 unigenes were annotated by seven databases, accounted for 16.96% of the total unigenes. Differentially expressed genes were defined as those displaying an adjusted P<0.05 and |log2Fold Change|>1. A total of 722 DEGs were selected, consisting of 308 up-regulated genes and 414 down-regulated genes. The results of GO function annotation showed that the GO function items with a large number of annotation genes including cellular process, metabolic process, membrane, organelle and binding. KEGG signaling pathway enrichment revealed that DEGs were enriched in 234 signal pathways, mainly involving phosphatidylinositol 3 kinase / protein kinase signal pathway, MAPK signal pathway, insulin signal pathway and the FoxO signal pathway. A total of 22120 SSRs were identified from 39749 unigenes, accounted for 55.65% of the total number of unigenes. The average spacing of SSRs was 3063 bp. 【Conclusion】The obtained DEGs in M. peelii muscle tissue based on transcriptome sequencing mainly play the functions of binding, cellular process and metabolic process, and mainly enriched in PI3K Akt signal pathway, ribosomal signal pathway, FoxO signal pathway, apoptosis and other energy metabolism related pathways, which together regulate the growth and development of M. peelii.014C7B63-A0F3-407B-A447-0D6F456619EF
Key words: Maccullochella peelii; muscle; growth and differentiation; differentially expressed genes; microsatellite (SSR); transcriptome sequencing
Foundation items: National Modern Agriculture Industry Technology System Construction Project(CARS-46); Tianjin Science and Technology Planning Project (21YDTPJC00070); Guangxi Characteristic Freshwater Fish Industry Innovation Team Project of National Modern Agriculture Industry Technology System Construction Project (nycytxgxcxtd-2021-08-03)
0 引言
【研究意義】墨瑞鱈(Maccullochella peelii)又名蟲紋鱈鱸、澳洲龍紋斑、河鱈、東洋鱈和澳洲淡水鱈鱸等,隸屬于鱸形目(Perciforme)鮨鱸科(Percichthyidae)鱈鱸屬(Maccullochella)。墨瑞鱈原產(chǎn)于澳大利亞東南部墨累—達令盆地,因其肉質(zhì)細嫩、味道鮮美,且富含EPA(二十碳五烯酸)和DHA(二十二碳六烯酸),在澳大利亞素有“國寶魚”之稱(羅欽等,2020)。目前,在我國天津、江浙及山東等地已引進養(yǎng)殖,是一個具有良好發(fā)展前景的淡水養(yǎng)殖優(yōu)質(zhì)品種(饒秋華等,2020);但在養(yǎng)殖過程中,常出現(xiàn)相同養(yǎng)殖環(huán)境中規(guī)格不一的情況,嚴重制約著養(yǎng)殖效益的進一步提高。關(guān)于墨瑞鱈生長緩慢、規(guī)格不一的原因至今尚未明確,因此,亟待對存在生長差異的墨瑞鱈肌肉組織進行轉(zhuǎn)錄組測序分析,為解決其生長緩慢的問題提供思路,進而保障墨瑞鱈養(yǎng)殖業(yè)持續(xù)高質(zhì)量發(fā)展?!厩叭搜芯窟M展】轉(zhuǎn)錄組測序是通過高通量測序技術(shù)對特定條件下機體某組織的所有轉(zhuǎn)錄本數(shù)據(jù)進行比對分析及功能注釋,旨在挖掘與性狀相關(guān)的功能基因和信號通路(白獻曉等,2017;崔凱等,2019)。隨著高通量測序技術(shù)的快速發(fā)展及測序成本的不斷降低,轉(zhuǎn)錄組測序技術(shù)在水產(chǎn)研究領(lǐng)域中已得到廣泛應(yīng)用(張毓霞等,2018;趙彥花等,2019;黃新芯等,2021)。嚴璐琪等(2016)采用Illumina高通量測序?qū)跉づc金殼葡萄牙牡蠣進行轉(zhuǎn)錄組分析,通過功能注釋與比對分析鑒定出14個與殼色表達有關(guān)的貝殼基質(zhì)蛋白基因,其中5個下調(diào)基因可能與金殼基因表達相關(guān)。劉思嘉等(2018)采用轉(zhuǎn)錄組測序技術(shù)檢測低溫耐受與低溫敏感鯉品種在低溫脅迫下的差異表達基因,發(fā)現(xiàn)編碼糖酵解/糖質(zhì)新生途徑中的多個關(guān)鍵酶基因可能與其低溫適應(yīng)過程有關(guān)。孟瑋等(2021)基于高通量測序技術(shù)對不同鹽度條件下的日本黃姑魚幼魚肌肉組織進行轉(zhuǎn)錄組測序,結(jié)果表明日本黃姑魚對急性鹽度脅迫的適應(yīng)可能是一個涉及多組織和多基因的復(fù)雜過程,鹽度變化會影響肌肉組織的離子通道、離子轉(zhuǎn)運體及蛋白降解和免疫系統(tǒng)功能。關(guān)于魚類生長優(yōu)勢分子機制的研究成果也取得長足進展,林明德(2019)基于高通量測序獲得的雜交石斑魚和褐點石斑魚腦組織、肝臟和肌肉轉(zhuǎn)錄組數(shù)據(jù),篩選出一批生長相關(guān)的差異表達基因;羅志嘉等(2019)以生長存在顯著差異的快長組和慢長組角鱉肝臟為材料,通過RNA-Seq測序分析探索了角鱉生長發(fā)育的分子機制;王登東等(2019)通過轉(zhuǎn)錄組測序在云龍石斑魚腦組織、垂體、肝臟和肌肉樣本中發(fā)現(xiàn)成纖維生長因子、表皮生長因子、血管生成因子等相關(guān)基因表達差異顯著,并預(yù)測了云龍石斑魚生長優(yōu)勢的重要貢獻因素;馮培哲(2020)通過對金錢魚垂體和肝臟組織的轉(zhuǎn)錄組分析,為進一步研究金錢魚的生長調(diào)控機制和分子特征提供了理論依據(jù);李雅慧等(2021)通過轉(zhuǎn)錄組測序?qū)Ρ?種不同規(guī)格羅氏沼蝦基因表達量的差異,探究其生長差異的分子機理;王紅明等(2021)通過轉(zhuǎn)錄組數(shù)據(jù)分析了飼料添加劑對龍膽石斑魚的生長性能等影響。可見,在水產(chǎn)動物中,高通量測序已廣泛應(yīng)用于生長、發(fā)育等相關(guān)生命活動的分子機制研究?!颈狙芯壳腥朦c】目前,關(guān)于墨瑞鱈的研究主要集中在遺傳多樣性檢測(Loughnan et al.,2010)、資源恢復(fù)(Forbes et al.,2016)及飼料營養(yǎng)(Francis et al.,2019)等方面。此外,Downing和Litvak(2001)研究表明光照強度能增加黑線鱈幼魚的攝食量,進而影響其生長;狄正凱(2020)通過探究光照因子對墨瑞鱈生長性能、肌肉營養(yǎng)成分及應(yīng)激反應(yīng)影響的變化規(guī)律,證實合理選擇光照條件對促進墨瑞鱈生具有重要意義;但尚無針對墨瑞鱈生長差異產(chǎn)生機理闡釋及轉(zhuǎn)錄組學(xué)分析的研究報道?!緮M解決的關(guān)鍵問題】挑選同一養(yǎng)殖條件下極大個體和極小個體的墨瑞鱈,通過高通量測序?qū)ζ浼∪饨M織進行轉(zhuǎn)錄組分析,篩選出差異表達基因,并利用GO功能注釋及KEGG信號通路富集進行差異性分析,旨在掌握不同規(guī)格個體間差異表達基因的表達特點,為墨瑞鱈功能相關(guān)基因深度挖掘及分子遺傳育種提供科學(xué)依據(jù)。
1 材料與方法
1. 1 試驗材料
供試墨瑞鱈為天津盛億養(yǎng)殖有限公司飼養(yǎng)的5月齡苗種,在同一養(yǎng)殖池中隨機選取極大個體和極小個體各3尾,對應(yīng)的體長分別為13.37±0.29和7.75±0.06 cm,體質(zhì)量分別為41.23±3.10和9.57±0.21 g。采集墨瑞鱈肌肉組織,經(jīng)液氮速凍后-80 ℃保存?zhèn)溆谩?/p>
1. 2 cDNA文庫構(gòu)建及高通量測序
使用TRIzol Reagent試劑盒(Invitrogen)對提取肌肉組織總RNA,分別采用瓊脂糖凝膠電泳檢測RNA是否降解,NanoDrop檢測OD260/280比值,Qubit檢測RNA濃度,Agilent 2100 Bioanalyzer檢測RIN值(RNA integrity number,分子完整數(shù))。根據(jù)TruSeq DNA Library Prep Kit (Illumina)說明,進行cDNA合成、末端修復(fù)、連接接頭及擴增純化,最終獲得墨瑞鱈肌肉組織cDNA文庫。構(gòu)建好的cDNA文庫委托天津諾禾致源生物信息科技有限公司使用Illumina HiSeqTM 4000測序平臺完成測序。014C7B63-A0F3-407B-A447-0D6F456619EF
1. 3 序列拼接及功能注釋
將測序所得原始序列(Raw reads)中帶接頭且低質(zhì)量的序列刪除,即得到有效序列(Clean reads)。應(yīng)用Trinity對Cleans reads進行拼接,選擇最長的轉(zhuǎn)錄本作為Unigenes。將所得的Unigenes在Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO等數(shù)據(jù)庫中進行比對,以獲得Unigenes的功能注釋信息。
1. 4 差異基因表達分析
利用Bowtie將每個樣品的Clean reads比對到組裝出來的轉(zhuǎn)錄本上,使用RSEM統(tǒng)計每個樣品比對到每個基因上的Read count數(shù)目,根據(jù)FPKM估算基因的表達水平。采用DESeq篩選差異表達基因,差異表達基因篩選條件:P<0.05且|log2 Fold Change|>1。采用GOseq和KOBAS進行差異表達基因的GO功能注釋分析及KEGG信號通路富集分析。
1. 5 SSR鑒定分析
采用MISA對獲得的Unigenes進行微衛(wèi)星位點(SSR)查找,其篩選參數(shù)設(shè)為:單核苷酸重復(fù)、二核苷酸重復(fù)、三核苷酸重復(fù)、四核苷酸重復(fù)、五核苷酸重復(fù)、六核苷酸重復(fù)的最少重復(fù)次數(shù)分別為10、6、5、5、5和5。
2 結(jié)果與分析
2. 1 轉(zhuǎn)錄組測序與組裝結(jié)果
采用Illumina HiSeqTM 4000測序平臺對極大個體和極小個體(各3尾)進行轉(zhuǎn)錄組測序,測序產(chǎn)出數(shù)據(jù)的質(zhì)量評估情況詳見表1。6個樣品共測序獲得322989232條Raw reads,去除低質(zhì)量序列后獲得317073060條Clean reads。各樣品的Q30均在93.00%以上,GC含量在50.00%以上,表明轉(zhuǎn)錄組測序產(chǎn)出量豐富且質(zhì)量良好。通過數(shù)據(jù)組裝共得到39749條Unigenes,其長度范圍在301~55230 bp,平均長度為1705 bp。
2. 2 Unigenes注釋結(jié)果
拼接獲得的39749條Unigenes在Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG及GO等數(shù)據(jù)庫中進行比對,結(jié)果如表2所示,注釋到Nt、Nr、Swiss-Prot和Pfam數(shù)據(jù)庫的Unigenes分別有27046、20824、18268和17772條,其中注釋到Nr數(shù)據(jù)庫的Unigenes占Unigenes總數(shù)的52.38%(表2)。在7個數(shù)據(jù)庫中均得到注釋的Unigenes共計6742條,占Unigenes總數(shù)的16.96%;至少在1個數(shù)據(jù)庫中得到注釋的Unigenes共計29069條,占Unigenes總數(shù)的73.13%,剩下未注釋的Unigenes可能是未知基因。
2. 3 差異表達基因篩選結(jié)果
根據(jù)差異表達基因篩選條件P<0.05且|log2 Fold Change|>1,采用DESeq進行篩選差異表達基因,結(jié)果篩選得到722個差異表達基因,其中上調(diào)基因308個、下調(diào)基因414個(圖1)。
2. 4 差異表達基因GO功能注釋分析結(jié)果
對722個差異表達基因進行GO功能注釋分析,結(jié)果表明差異表達基因分別注釋到生物學(xué)過程(Biological process)、細胞組分(Cellular component)及分子功能(Molecular function)三大功能分類(圖2)。在生物學(xué)過程中,差異表達基因主要注釋到細胞過程(Cellular process)、代謝過程(Metabolic process)、單有機體過程(Single organism process)、有機物代謝過程(Metabolic process of organic matter)及初級代謝過程(Primary metabolic process)等方面;在細胞組成中,差異表達基因主要注釋到膜(Membrane)、細胞器(Organelle)及高分子復(fù)合物(Polymer complex)等方面;在分子功能中,差異表達基因主要注釋到結(jié)合(Combination)、催化活性(Catalytic activity)、水解酶活性(Hydrolase activity)及GTPase活性(GTPase activity)等方面。
2. 5 差異表達基因KEGG信號通路富集分析結(jié)果
差異表達基因KEGG信號通路富集分析結(jié)果(圖3)顯示,722個差異表達基因被成功富集到234條KEGG信號通路上,且主要富集在磷脂酰肌醇3激酶/蛋白激酶信號通路(PI3K-Akt signaling pathway)、MAPK信號通路(MAPK signaling pathway)、半胱氨酸和蛋氨酸代謝(Cysteine and methionine metabolism)、PPAR信號通路(PPAR signaling pathway)、B細胞受體信號通路(B cell receptor signaling pathway)等信號通路上。
2. 6 SSR鑒定分析結(jié)果
在39749條Unigenes中鑒定篩選出22120個SSRs,占Unigenes總數(shù)的55.65%,SSR的平均間距為3063 bp。其中,復(fù)合型SSR有2163個,單核苷酸重復(fù)SSR有9483個,二核苷酸重復(fù)SSR有6742個,三核苷酸重復(fù)SSR有3326個,四核苷酸重復(fù)SSR有356個,五核苷酸重復(fù)SSR有36個,六核苷酸重復(fù)SSR有14個。在單核苷酸重復(fù)類型中,數(shù)量最多的重復(fù)基元為A/T(8535個),二核苷酸重復(fù)中出現(xiàn)次數(shù)最多的為AC/GT(2569個)。
3 討論
生長分化是魚類生長過程中的普遍現(xiàn)象,同一群體中的個體由于受到遺傳、環(huán)境及營養(yǎng)等因素的協(xié)同影響,通常會出現(xiàn)生長分化現(xiàn)象(石軍等,2013)。為揭示墨瑞鱈的生長分化機理,本研究針對同一群體中不同生長規(guī)格的墨瑞鱈肌肉組織進行轉(zhuǎn)錄組測序,結(jié)果共獲得39749條Unigenes,其長度為301~55230 bp,平均長度為1705 bp,數(shù)據(jù)產(chǎn)出與質(zhì)量均滿足轉(zhuǎn)錄組分析及差異表達基因挖掘的基本需求。通過與Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO等數(shù)據(jù)庫中的序列進行比對及功能注釋,結(jié)果表明,有29069條Unigenes與其他物種的已知基因具有不同程度的同源性,占Unigenes總數(shù)的73.13%;其中在GO和KEGG數(shù)據(jù)庫中注釋富集到722條編碼氨基酸次生代謝途徑關(guān)鍵酶基因。014C7B63-A0F3-407B-A447-0D6F456619EF
高通量轉(zhuǎn)錄組測序技術(shù)在豐富物種基因資源的同時,也為分子標記的開發(fā)提供了有利條件(賈昌路等,2015;宋尚橋等,2020;彭金英和伊成器,2021)。與傳統(tǒng)的磁珠富集法相比,利用轉(zhuǎn)錄組測序進行分子標記開發(fā)具有更周期短、費用低廉、標記量大、標記與功能基因連鎖等優(yōu)勢(黃思婕,2020),目前已在水產(chǎn)研究領(lǐng)域得到廣泛應(yīng)用(龔詩琦等,2016;趙彥花等,2019;Francis et al.,2019;方軍等,2020;李喜蓮等,2020)。本研究在39749條Unigenes中篩選出22120個SSRs,其發(fā)生率為55.65%,遠高于龔詩琦等(2016)在黃姑魚(39.30%)、方軍等(2020)在青蛤(10.76%)、李喜蓮等(2020)在紅螯螯蝦(33.74%)中的篩選效果,說明本研究轉(zhuǎn)錄組數(shù)據(jù)中墨瑞鱈的SSR分子標記含量更豐富,可為下一步開展群體遺傳結(jié)構(gòu)分析、親緣關(guān)系鑒定、種質(zhì)資源保護及良種選育提供技術(shù)支撐。
本研究的差異表達基因GO功能注釋分析結(jié)果表明,注釋基因數(shù)目較多的GO功能條目包括細胞過程、代謝過程、膜、細胞器及結(jié)合等;同時部分差異表達基因富集在肌鈣蛋白復(fù)合物(Troponin complex)、橫紋肌細絲(Striated muscle filament)、肌原纖維(Myofibril)、肌節(jié)(Sarcomere)、肌絲(Myofilament)、收縮纖維(Shrinkage fiber)、收縮纖維部分(Shrin-kage fiber part)、蛋白質(zhì)分解代謝過程調(diào)節(jié)(Regulation of protein catabolism)、組織再生(Tissue regene-ration)、發(fā)育生長(Development and growth)、肌動蛋白結(jié)合(Actin binding)、生長因子活性(Growth factor activity)、胰島素樣生長因子結(jié)合(Insulin like growth factor binding)、生長因子結(jié)合(Growth factor binding)、細胞生長調(diào)節(jié)(Cell growth regulation)及細胞生長(Cell growth)等GO功能條目,這些基因可能參與墨瑞鱈的生長調(diào)控過程,可進一步進行基因功能與表達模式研究。KEGG信號通路富集分析結(jié)果顯示,差異表達基因被成功富集到234條信號通路上,富集度最高的是磷脂酰肌醇3激酶/蛋白激酶信號通路。此外,本研究篩選出部分與生長過程密切相關(guān)的KEGG信號通路,包括胰島素信號通路(Insulin signaling pathway)、MAPK信號通路、細胞凋亡(Apoptosis)、FoxO信號通路(FoxO signaling pathway)、TGF-β信號通路(TGF-beta signaling pathway)等,與Zhang等(2020)的研究結(jié)果一致。磷脂酰肌醇3激酶/蛋白激酶信號通路可被多種生長因子和信號傳導(dǎo)復(fù)合物,包括成纖維細胞生長因子(FGF)、血管內(nèi)皮生長因子(VEGF)、人生長因子(HGF)、血管位蛋白 I(Ang1)和胰島素等激活,活化的Akt通過磷酸化作用調(diào)控一系列下游因子以實現(xiàn)對細胞增殖、分化、凋亡和葡萄糖轉(zhuǎn)運等功能的調(diào)控(狄正凱,2020)。該結(jié)論為進一步闡釋墨瑞鱈的生長發(fā)育機理和調(diào)控網(wǎng)絡(luò)提供了基礎(chǔ)數(shù)據(jù)支持。
4 討論
基于轉(zhuǎn)錄組測序分析獲得的墨瑞鱈肌肉組織差異表達基因以發(fā)揮結(jié)合、細胞過程及代謝過程等功能為主,且主要富集在PI3K-Akt信號通路、核糖體信號通路、FoxO信號通路及細胞凋亡等能量代謝相關(guān)通路上,通過共同協(xié)調(diào)而對墨瑞鱈的生長發(fā)育起調(diào)控作用。
參考文獻:
白獻曉,張子敬,王璟,徐照學(xué). 2017. 轉(zhuǎn)錄組測序技術(shù)在家畜遺傳育種中的應(yīng)用研究進展[J]. 河南農(nóng)業(yè)科學(xué),46(4):6-9. [Bai X X,Zhang Z J,Wang J,Xu Z X. 2017. Application of transcriptome sequencing technology in genetic breeding of livestock[J]. Journal of Henan Agricultural Sciences,46(4):6-9.] doi:10.15933/j.cnki.1004-3268. 2017.04.002.
崔凱,吳偉偉,刁其玉. 2019. 轉(zhuǎn)錄組測序技術(shù)的研究和應(yīng)用進展[J]. 生物技術(shù)通報,35(7):1-9. [Cui K,Wu W W,Diao Q Y. 2019. Application and research progress on transcriptomics[J]. Biotechnology Bulletin,35(7):1-9.] doi:10.13560/j.cnki.biotech.bull.1985.2019-0374.
狄正凱. 2020. 光照對循環(huán)水系統(tǒng)中墨瑞鱈生長、肌肉營養(yǎng)成分及應(yīng)激反應(yīng)的影響[D]. 上海:上海海洋大學(xué). [Di Z K. 2020. Effects of light factor on the growth,muscle nutrition and stress response of Murray cod in recirculating aquaculture[D]. Shanghai:Shanghai Ocean University.] doi:10.27314/d.cnki.gsscu.2020.000469.
方軍,沈彥鵬,張雷雷,李騰騰,邵艷卿. 2020. 基于轉(zhuǎn)錄組數(shù)據(jù)的青蛤微衛(wèi)星標記開發(fā)與驗證[J]. 應(yīng)用海洋學(xué)學(xué)報,39(2):214-220. [Fang J,Shen Y P,Zhang L L,Li T T,Shao Y Q. 2020. Development and validation of SSR mar-kers in Cyclina sinensis[J]. Journal of Applied Oceanography,39(2):214-220.] doi:10.3969/J.ISSN.2095-4972. 2020.02.008.014C7B63-A0F3-407B-A447-0D6F456619EF
馮培哲. 2020. 金錢魚生長抑素(Somatostatin)在生長調(diào)控中的功能研究[D]. 湛江:廣東海洋大學(xué). [Feng P Z. 2020. Functions of somatostatin(SST) in growth regulation of Scatophagus argus[D]. Zhanjiang:Guangdong Ocean University.] doi:10.27788/d.cnki.ggdhy.2020.000145.
龔詩琦,王志勇,肖世俊,林愛強,謝仰杰. 2016. 黃姑魚轉(zhuǎn)錄組SSR的開發(fā)與驗證[J]. 集美大學(xué)學(xué)報(自然科學(xué)版),21(4):241-246. [Gong S Q,Wang Z Y,Xiao S J,Lin A Q,Xie Y J. 2016. Development and validation of SSR based on transcriptome of Yellow Drum,Nibea albiflora[J]. Journal of Jimei University(Natural Science),21(4):241-246.] doi:10.3969/j.issn.1007-7405.2016.04.001.
黃思婕. 2020. 持續(xù)性高溫對雌雄羅非魚肌肉生長的影響機制研究及可變剪接分析[D]. 上海:上海海洋大學(xué). [Huang S J. 2020. Study on the growth mechanism of muscle after persistent high temperature to male and female Nile tilapia and alternative splicing analysis[D]. Shanghai:Shanghai Ocean University.] doi:10.27314/d.cnki.gsscu.2020. 000392.
黃新芯,蔣艷琳,蔣小姿,楊天燕. 2021. 基于高通量轉(zhuǎn)錄組測序技術(shù)的龍頭魚微衛(wèi)星信息分析[J]. 浙江海洋大學(xué)學(xué)報(自然科學(xué)版),40(3):189-197. [Huang X X,Jiang Y L,Jiang X Z,Yang T Y. 2021. Analysis of microsatellite markers in harpadon nehereus based on transcriptome sequencing Illumina HiseqTM 2500[J]. Journal of Zhejiang Ocean University(Natural Science),40(3):189-197.] doi:10.3969/j.issn.1008-830X.2021.03.001.
賈昌路,張瑤,朱玲,張銳. 2015. 轉(zhuǎn)錄組測序技術(shù)在生物測序中的應(yīng)用研究進展[J]. 分子植物育種,13(10):2388-2394. [Jia C L,Zhang Y,Zhu L,Zhang R. 2015. Application progress of transcriptome sequencing technology in biological sequencing[J]. Molecular plant Breeding,13(10):2388-2394.] doi:10.13271/j.mpb.013.002388.
李喜蓮,郭建林,李倩,施偉達,黃振遠,顧志敏. 2020. 紅螯螯蝦轉(zhuǎn)錄組中的SSR位點信息分析[J]. 湖北農(nóng)業(yè)科學(xué),59(7):207-211. [Li X L,Guo J L,Li Q,Shi W D,Huang Z Y,Gu Z M. 2020. The information analysis of SSR loci in the red claw crayfish(Cherax quadricarinatus) transcriptome[J]. Hubei Agricultural Sciences,59(7):207-211.] doi:10.14088/j.cnki.issn0439-8114.2020.07.043.
李雅慧,劉志偉,戴習(xí)林. 2021. 生長滯緩與正常羅氏沼蝦轉(zhuǎn)錄組差異分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),40(1):89-100. [Li Y H,Liu Z W,Dai X L. 2021. Transcriptome analysis of growth retardation and normal Macrobrachium rosenbergii[J]. Genomics and Applied Biology,40(1):89-100.] doi:10.13417/j.gab.040.000089.
林明德. 2019. 基于轉(zhuǎn)錄組測序?qū)﹄s交石斑魚及其母本褐點石斑魚的比較分析[D]. 湛江:廣東海洋大學(xué). [Lin M D. 2019. Comparative analysis of hybrid grouper (Epinephelus fuscoguttatus ♀×E. Polyphekadion ♂) and its female parent tiger grouper(E. Fuscoguttatus) based on transcriptome sequencing[D]. Zhanjiang: Guangdong Ocean University.] doi:10.27788/d.cnki.ggdhy.2019.000082.
劉思嘉,田菲,張存芳,喬志剛,趙凱. 2018. 鯉在低溫脅迫下肝胰腺轉(zhuǎn)錄組測序分析[J]. 生物技術(shù)通報,34(11):168-178. [Liu S J,Tian F,Zhang C F,Qiao Z G,Zhao K. 2018. Transcriptome sequencing and analysis of hepatopancreas from carps under cold stress[J]. Biotechnology Bulletin,34(11):168-178.] doi:10.13560/j.cnki.biotech.bull.1985.2018-0503.014C7B63-A0F3-407B-A447-0D6F456619EF
羅欽,李冬梅,黃敏敏,饒秋華,劉洋,翁伯琦,潘葳,羅土炎. 2020. 不同生長階段墨瑞鱈脂肪酸組成及主成分分析[J]. 核農(nóng)學(xué)報,34(4):788-795. [Luo Q,Li D M,Huang M M,Rao Q H,Liu Y,Weng B Q,Pan W,Luo T Y. 2020. Fatty acid compositions and principal component analysis in muscle of Murray cod at different growth stages[J]. Journal of Nuclear Agricultural Sciences,34(4):788-795.] doi:10.11869/j.issn.100-8551.2020.04.0788.
羅志嘉,李瀟,曾丹,王佩,彭娜,王曉清. 2019. 角鱉RNA-seq轉(zhuǎn)錄組分析及生長相關(guān)基因篩選[J]. 基因組學(xué)與應(yīng)用生物學(xué),38(4):1480-1487. [Luo Z J,Li X,Zeng D,Wang P,Peng N,Wang X Q. 2019. RNA-seq transcriptome analysis and growth related gene screening of Apalone spinifera[J]. Genomics and Applied Biology,38(4):1480-1487.] doi:10.13417/j.gab.038.001480.
孟瑋,徐開達,李振華,史會來,周永東. 2021. 急性鹽度脅迫對日本黃姑魚肌肉組織轉(zhuǎn)錄組的影響[J]. 水產(chǎn)學(xué)報,45(5):649-660. [Meng W,Xu K D,Li Z H,Shi H L,Zhou Y D. 2021. Transcriptome analysis of Nibea japonica under acute salinity stress[J]. Journal of Fisheries of China,45(5):649-660.] doi:10.11964/jfc.20200612317.
彭金英,伊成器. 2021. 蓬勃發(fā)展的表觀轉(zhuǎn)錄組學(xué)[J]. 中國生物化學(xué)與分子生物學(xué)報,37(4):407-418. [Peng J Y,Yi C Q. 2021. Flourishing epitranscriptomics research[J]. Chinese Journal of Biochemistry and Molecular Biology,37(4):407-418.] doi:10.13865/j.cnki.cjbmb.2021.03.1076.
饒秋華,劉洋,張志燈,羅欽,羅土炎. 2020. 加快墨瑞鱈新興水產(chǎn)養(yǎng)殖業(yè)發(fā)展的對策[J]. 科技導(dǎo)報,38(15):52-58. [Rao Q H,Liu Y,Zhang Z D,Luo Q,Luo T Y. 2020. Countermeasures for speeding up the emerging Murray cod (Maccullochella peelii) industry development[J]. Science & Technology Review,38(15):52-58.] doi:10.3981/j.issn.1000-7857.2020.15.006.
石軍,褚武英,張建社. 2013. 魚類肌肉生長分化與基因表達調(diào)控[J]. 水生生物學(xué)報,37(6):1145-1152. [Shi J,Chu W Y,Zhang J S. 2013. Muscle growth,differentiation and gene expression regulation in fish[J]. Acta Hydrobiologica Sinica,37(6):1145-1152.] doi:10.7541/2013.155.
宋尚橋,馬圍圍,張超龍,曾素先,孫翠翠,李鑫,嚴瑾,黎宗強. 2020. 基于轉(zhuǎn)錄組測序生物信息學(xué)分析的研究進展[J]. 中國畜牧獸醫(yī),47(2):392-398. [Song S Q,Ma W W,Zhang C L,Zeng S X,Sun C C,Li X,Yan J,Li Z Q. 2020. Advances in bioinformatics analysis based on transcriptome sequencing[J]. China Animal Husbandry & Veterinary Medicine,47(2):392-398.] doi:10.16431/j.cnki. 1671-7236.2020.02.009.
王登東,楊玉鵬,鄭樂云,孫愷輝,何家瑞,王崇偉,鄧賢銘,李水生,張勇,林浩然. 2019. 云龍石斑魚生長優(yōu)勢的轉(zhuǎn)錄組研究[J]. 海南熱帶海洋學(xué)院學(xué)報,26(2):1-8. [Wang D D,Yang Y P,Zheng L Y,Sun K H,He J R,Wang C W,Deng X M,Li S S,Zhang Y,Lin H R. 2019. Transcriptomic studies of a novel hybrid“Yunlong grouper”on the growth superiorities[J]. Journal of Qiongzhou University,26(2):1-8.] doi:10.13307/j.issn.2096-3122.2019.02.01.
王紅明,丁雪婧,陳儉,宋守鋼,譚北平,章雙. 2021. 飼料中添加甘露寡糖對珍珠龍膽石斑魚生長性能、血清免疫指標、轉(zhuǎn)錄組及腸道菌群的影響[J]. 動物營養(yǎng)學(xué)報,33(12):6982-6998. [Wang H M,Ding X J,Chen J,Song S G,Tan B P,Zhang S. 2021. Effects of dietary mannan-oligosaccharides on growth performance,serum immune indices,transcriptome and intestinal microflora of Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂[J]. Chinese Journal of Animal Nutrition,33(12):6982-6998.] doi:10.3969/j.issn.1006-267x.2021.12.039.014C7B63-A0F3-407B-A447-0D6F456619EF
嚴璐琪,郭香,巫旗生,祁劍飛,寧岳,王曉清,曾志南. 2016. 葡萄牙牡蠣外套膜轉(zhuǎn)錄組測序及殼色基因挖掘[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),42(4):409-414. [Yan L Q,Guo X,Wu Q S,Qi J F,Ning Y,Wang X Q,Zeng Z N. 2016. Transcriptome analysis and shell gene mining on Crassostrea angulata[J]. Journal of Hunan Agricultural University(Natural Sciences),42(4):409-414.] doi:10. 13331/j.cnki.jhau.2016.04.012.
張毓霞,石戈,王日昕,宮延斌,范美華,廖智. 2018. 大彈涂魚皮膚轉(zhuǎn)錄組測序及抗菌肽基因分析[J]. 生命科學(xué)研究,22(1):26-35. [Zhang Y X,Shi G,Wang R X,Gong Y B,F(xiàn)an M H,Liao Z. 2018. Transcriptome of Boleophthalmus pectinirostris skin and analysis of antimicrobial peptide related unigenes[J]. Life Science Research,22(1):26-35.] doi:10.16605/j.cnki.1007-7847.2018.01.005.
趙彥花,區(qū)又君,溫久福,李加兒,周慧. 2019. 基于轉(zhuǎn)錄組測序技術(shù)的黃唇魚SSR分子標記篩選[J]. 南方農(nóng)業(yè)學(xué)報,50(9):2078-2087. [Zhao Y H,Ou Y J,Wen J F,Li J E,Zhou H. 2019. Development of SSR markers in Bahaba flavolabiata by transcriptome sequencing[J]. Journal of Southern Agriculture,50(9):2078-2087.] doi:10.3969/j.issn.2095-1191.2019.09.26.
Dowming G,Litvak M. 2001. The effect of light intensity and spectrum on the incidence of first feeding by larval haddock[J]. Journal of Fish Biology,59(6):1566-78. doi:10.1111/j.1095-8649.2001.tb00221.x.
Forbes J,Watts R J,Robinson W A,Baumgartner L J,McGuffie P,Cameron L M,Crook D A. 2016. Assessment of stocking effectiveness for Murray cod (Maccullochella peelii) and golden perch (Macquaria ambigua) in ri-vers and impoundments of south-eastern Australia[J]. Marine and Freshwater Research,67(10):1410-1419. doi:10.1071/MF15230.
Francis D S,Cleveland B J,Jones P L,Turchini G M,Conlan J A. 2019. Effects of PUFA-enriched Artemia on the early growth and fatty acid composition of Murray cod larvae[J]. Aquaculture,513:734362. doi:10.1016/j.aquaculture.2019.734362.
Loughnan S R,Baranski M D,Robinson N A,Jones P L P,Burridge C P. 2010. Microsatellite loci for studies of wild and hatchery Australian Murray cod Maccullochella peelii peelii(Percichthyidae)[J]. Molecular Ecology Notes,4(3):382-384. doi:10.1111/j.1471-8286.2004.00660.x.
Zhang J H,Shen Y B,Xu X Y,Dai Y F,Li J L. 2020. Transcriptome analysis of the liver and muscle tissues of black carp (Mylopharyngodon piceus) of different growth rates[J]. Marine Biotechnology,22:706-716. doi:10.1007/ s10126-020-09994-z.
(責(zé)任編輯 蘭宗寶)014C7B63-A0F3-407B-A447-0D6F456619EF