魏朝宇 謝永廣 魏秀英 羅華輝 陳敦學(xué)
摘要:【目的】基于轉(zhuǎn)錄組開發(fā)SSR和SNP分子標(biāo)記用于評(píng)價(jià)棘胸蛙(Quasipaa spinosa)遺傳多樣性,為其種質(zhì)資源的創(chuàng)新利用提供理論支撐。【方法】采用TRIzol試劑盒提取棘胸蛙肝臟、肌肉和腎臟組織總RNA,構(gòu)建cDNA文庫后利用Illumina HiSeq 2500測(cè)序平臺(tái)進(jìn)行高通量測(cè)序,通過MISA對(duì)棘胸蛙轉(zhuǎn)錄組測(cè)序數(shù)據(jù)進(jìn)行SSR檢索,并以SAMtools和VarScan v.2.2.7進(jìn)行SNP查找。【結(jié)果】棘胸蛙轉(zhuǎn)錄組測(cè)序共獲得93887條非冗余基因(Unigenes),序列總長(zhǎng)度達(dá)91352712 bp,且所有轉(zhuǎn)錄組Q30均超過95.00%。在93887條Unigenes中發(fā)現(xiàn)33019個(gè)SSRs,其中21966條Unigenes含有SSR,6688條Unigenes含有超過1個(gè)SSR;以單核苷酸重復(fù)型SSR數(shù)最多,達(dá)25788個(gè),且出現(xiàn)頻率最高(27.47%)。SSR的平均長(zhǎng)度以四核苷酸重復(fù)型最長(zhǎng),達(dá)35.47 bp;棘胸蛙SSR以(A/T)n為絕對(duì)優(yōu)勢(shì)重復(fù)基元,占總SSR的65.51%,然后依次為(C/G)n、(AT/AT)n、(AC/GT)n、(AG/CT)n、(AAT/ATT)n、(AGG/CCT)n,分別占總SSR的12.59%、5.66%、5.55%、3.31%、1.55%和1.30%。在33019個(gè)SSRs中,核苷酸重復(fù)次數(shù)主要集中在5~25次,占總SSR的99.91%,且大部分SSR位于非編碼區(qū),僅有1633個(gè)SSRs位于編碼區(qū);長(zhǎng)度≥12 bp的SSR共計(jì)17244個(gè),占總SSR的58.53%。挑選120對(duì)SSR引物進(jìn)行引物有效性驗(yàn)證,發(fā)現(xiàn)有57對(duì)引物擴(kuò)增出單一條帶,且條帶大小與預(yù)期結(jié)果一致。對(duì)棘胸蛙轉(zhuǎn)錄組序列進(jìn)行SNP檢索,共發(fā)現(xiàn)87634個(gè)SNPs,其中,56300個(gè)SNPs屬于轉(zhuǎn)換位點(diǎn)、31334個(gè)SNPs屬于顛換位點(diǎn),轉(zhuǎn)化/顛換比達(dá)1.80,堿基的轉(zhuǎn)換頻率明顯高于顛換頻率?!窘Y(jié)論】利用高通量轉(zhuǎn)錄組測(cè)序開發(fā)棘胸蛙SSR和SNP分子標(biāo)記是一種切實(shí)可行的方法,能開發(fā)出通用性較高、數(shù)量較多、覆蓋性較廣的分子標(biāo)記。棘胸蛙具有中度偏高的遺傳多樣性,可作為種質(zhì)材料進(jìn)一步開發(fā)利用。
關(guān)鍵詞:棘胸蛙;SSR分子標(biāo)記;SNP分子標(biāo)記;分布特征;轉(zhuǎn)錄組測(cè)序
中圖分類號(hào): S917;S966.39? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)03-0759-09
SSR and SNP molecular marker development based on Quasipaa spinosa transcriptome sequencing
WEI Zhao-yu, XIE Yong-guang, WEI Xiu-ying, LUO Hua-hui, CHEN Dun-xue
(College of Animal Science, Guizhou University/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals/Research Center of Fishery Resources and Environment, Guizhou University,
Guiyang, Guizhou? 550025, China)
Abstract:【Objective】To investigate the characteristics of SSR and SNP locus based on the transcriptome for evalua-ting the genetic diversity of Quasipaa spinosa, so as to provide appropriate molecular markers for the innovative ways of germplasm resource application. 【Method】Total RNA was extracted from liver, muscle and kidney tissues of Q. spinosa to build a TRlzol kit. cDNA library and then the library was high-throughput sequenced by the Illumina HiSeq 2500 sequencing platform. Microsatellite searching software MISA was used to screen and analyze microsatellite (SSR) in the Q. spinosa transcriptome while the software SAMtools and VarScan v.2.2.7 were used for searching SNP loci. 【Result】 93887 non-redundant unigenes with a total sequence length of 91352712 bp were obtained from the transcriptome sequencing of Q. spinosa, and all transcriptome Q30 were over 95.00%. Among the 93887 unigenes, 33019 potential SSR markers were identified and 21966 unigenes contained SSR loci. In additional, a total of 6688 unigenes had more than one SSR locus. The dinucleotide was the highest at 25788 and the frequency of occurrence frequency was the highest at 27.47%. The average length of SSR was 35.47 bp. (A/T)n was the absolutely dominant repeat motif of Q. spinosa SSR, accounting for 65.51% of the total SSRs, followed by (C/G)n, (AT/AT)n, (AC/GT)n, (AG/CT)n, (AAT/ATT)n, and accounting for 12.59%, 5.66%, 5.55%、3.31%, 1.55% and 1.30% of the total SSRs, respectively. Among the 33019 potential SSR markers, the times of repetition was mainly between 5-25 times, accounting for 99.91% of the all SSRs. In additional, only 1633 located in the coding area. 17244 SSR loci whose length≥12 bp accounted for 58.53% of the total SSR loci. 120 pairs of SSR primers were selected to verify the validity of the primers and 57 pairs of primers amplified a single band, and the band size was as expected. 87634 SNPs were identified (56300 transitions and 31334 transversions) from mapping sequencing reads to assembled unigenes, the transition/transversion ratio was approximately1.80 and the frequency of base transition is higher than that of transversion. 【Conclusion】High-throughput transcriptome sequencing is a feasible method to develop SSR and SNP molecular markers, which can develop molecular markers with universality, large number and wide coverage. Q. spinosa has a moderately high genetic diversity, so it can be used as germplasm materials for further development and utilization.8C9BE7E2-0628-425C-8B6F-560A759F3A42
Key words:Quasipaa spinosa; SSR molecular marker; SNP molecular marker; distribution characteristics; transcriptome sequencing
Foundation items: Guizhou Science and Technology Plan Program (QKHZC〔2019〕2344)
0 引言
【研究意義】分子標(biāo)記開發(fā)是基因組學(xué)與分子生物學(xué)應(yīng)用于生產(chǎn)實(shí)踐的重要手段,篩選出合適的分子標(biāo)記進(jìn)行遺傳多樣性分析或良種選育能有效推動(dòng)種質(zhì)資源開發(fā)與創(chuàng)新利用(Gao et al.,2012),目前使用的分子標(biāo)記主要有微衛(wèi)星(SSR)分子標(biāo)記、表達(dá)序列標(biāo)簽(EST)分子標(biāo)記及單核苷酸多態(tài)性(SNP)分子標(biāo)記等。SSR又稱簡(jiǎn)單重復(fù)序列,主要由高突變的核心序列和保守的側(cè)翼序列組成,具有數(shù)量多、分布廣泛且均勻、雜合率高、重復(fù)性好且數(shù)據(jù)易統(tǒng)計(jì)等優(yōu)點(diǎn)(Wang et al.,2015)。SNP包含轉(zhuǎn)換(C/T和G/A)和顛換(C/G、C/A、T/A和T/G)2種類型,具有高密度、可擴(kuò)展性和全基因組分布的特征(Trick et al.,2009),尤其是編碼區(qū)的SNP位點(diǎn)可能對(duì)蛋白功能和基因表達(dá)產(chǎn)生極大影響,已廣泛應(yīng)用于動(dòng)物遺傳育種(Garrido-Cardenas et al.,2018)。因此,開發(fā)大量分子標(biāo)記對(duì)物種種質(zhì)資源保護(hù)與創(chuàng)新利用起到積極的推動(dòng)作用?!厩叭搜芯窟M(jìn)展】隨著轉(zhuǎn)錄組測(cè)序技術(shù)的逐漸成熟及其成本的不斷降低,利用高通量測(cè)序一次性獲得大量的SSR和SNP位點(diǎn)已成為現(xiàn)實(shí)。在水產(chǎn)動(dòng)物研究中,Gao等(2012)通過轉(zhuǎn)錄組測(cè)序同時(shí)篩選獲得團(tuán)頭魴(Megalobrama amblycephala)的SSR和SNP位點(diǎn);Li等(2015)通過高通量測(cè)序挖掘出大鱗副泥鰍(Paramisgurnus dabryanus)的15106個(gè)潛在SSR位點(diǎn);Zhao等(2019)通過比較野生和人工養(yǎng)殖白鱸(Morone chrysops)轉(zhuǎn)錄組數(shù)據(jù),獲得13872個(gè)潛在SSR位點(diǎn),并最終篩選得到57個(gè)差異位點(diǎn);Yá?ez等(2020)通過基因組開發(fā)出尼羅羅非魚(Oreochromis niloticus)的5000個(gè)高質(zhì)量SNP位點(diǎn),并利用SNP位點(diǎn)對(duì)尼羅羅非魚進(jìn)行群體分類。此外,許多水產(chǎn)動(dòng)物的SSR和SNP位點(diǎn)均通過高通量測(cè)序技術(shù)被批量開發(fā),如蝦夷扇貝(Patinopecten yessoensis)(倪守勝等,2018)、寬體金線蛭(Whitmania pigra Whitman)(熊良偉等,2018)、紅鰭東方鲀(Takifugu rubripes)(Pandey et al.,2018)、翹嘴鱖(Siniperca chuatsi)(孫海林等,2019)、波紋唇魚(Cheilinus undulatus)(劉洪濤等,2020)、中華絨螯蟹(Eriocheir sinensis)(徐杰杰等,2021)及石斑魚(Epinephelus tukula)(Hsu et al.,2021)等。至今,已發(fā)現(xiàn)的兩棲類大概有7200種,具有較高的基因復(fù)雜性(Mable et al.,2011),且兩棲類研究主要集中在熱帶爪蟾(Silurana tropicalis)(Hellsten et al.,2010)和非洲爪蟾(Xenopus laevis)(Borodinsky,2017)。顯然,這2種模式生物無法代表所有兩棲類動(dòng)物,因此迫切需要豐富兩棲類基因組序列,為兩棲類的資源保護(hù)與創(chuàng)新利用提供數(shù)據(jù)支撐(Savage et al.,2014)?!颈狙芯壳腥朦c(diǎn)】棘胸蛙(Quasipaa spinosa)隸屬于脊索動(dòng)物門(Phylum Chordata)兩棲綱(Amphibia)蛙科(Ranidae)蛙屬(Rana),為大型食用蛙類,主要分布在我國貴州及江西等地區(qū)(Hu et al.,2017),以及少量分布在越南,具有高蛋白、低脂肪和高不飽和脂肪酸的特點(diǎn)。從20世紀(jì)80年代起我國開始對(duì)棘胸蛙進(jìn)行人工養(yǎng)殖(Chan et al.,2014),但由于養(yǎng)殖過程中相互引種,導(dǎo)致目前很多養(yǎng)殖場(chǎng)養(yǎng)殖的棘胸蛙并非純種(Ye et al.,2013),因此亟待對(duì)棘胸蛙遺傳背景進(jìn)行摸底研究,為其人工選種和資源多樣性分析提供參考依據(jù)?!緮M解決的關(guān)鍵問題】利用轉(zhuǎn)錄組數(shù)據(jù)篩選SSR和SNP位點(diǎn),分析其核苷酸重復(fù)類型及序列分布特征,并利用所篩選的SSR引物在5個(gè)棘胸蛙養(yǎng)殖群體中進(jìn)行SSR位點(diǎn)驗(yàn)證,開發(fā)相關(guān)分子標(biāo)記用于評(píng)價(jià)棘胸蛙遺傳多樣性,為其種質(zhì)資源的創(chuàng)新利用提供理論支撐。
1 材料與方法
1. 1 試驗(yàn)材料
供試棘胸蛙由貴州省遵義市播州區(qū)洪關(guān)苗鄉(xiāng)石蛙養(yǎng)殖專業(yè)合作社提供,共9尾,不存在引種行為,通過形態(tài)鑒定為純種棘胸蛙。經(jīng)MS-222麻醉后進(jìn)行解剖處理,取其肝臟、肌肉和腎臟3個(gè)組織,按3尾一組進(jìn)行隨機(jī)組合和混樣,共計(jì)9個(gè)樣品,液氮保存?zhèn)溆谩?/p>
1. 2 RNA提取與cDNA文庫構(gòu)建
采用TRIzol試劑盒提取組織總RNA,利用NanoDrop 2000進(jìn)行RNA濃度和純度檢測(cè),1.5%瓊脂糖凝膠電泳進(jìn)行完整性檢測(cè),Agilent 2100測(cè)定RIN值。通過帶有Oligo(dT)的磁珠從總RNA中分離出mRNA,加入Fragmentation Buffer將mRNA隨機(jī)斷裂成短片段后,以mRNA為模板利用隨機(jī)引物反轉(zhuǎn)合成cDNA第一鏈,在此基礎(chǔ)上再合成cDNA第二鏈,形成穩(wěn)定的雙鏈結(jié)構(gòu);隨后加ploy(A)尾巴并連接Adaptor,對(duì)連接Adapter的產(chǎn)物進(jìn)行純化和片段分選,進(jìn)行PCR擴(kuò)增,純化得到最終的cDNA文庫。cDNA文庫質(zhì)量檢測(cè)合格后,委托上海美吉生物醫(yī)藥科技有限公司利用Illumina HiSeq 2500測(cè)序平臺(tái)進(jìn)行高通量測(cè)序。8C9BE7E2-0628-425C-8B6F-560A759F3A42
1. 3 數(shù)據(jù)分析
利用MISA(https://webblast.ipk-gatersleben.de/misa/)進(jìn)行SSR檢索,設(shè)SSR的篩選條件為單核苷酸重復(fù)次數(shù)≥10,二核苷酸重復(fù)次數(shù)≥6,三、四、五、六核苷酸重復(fù)次數(shù)≥5。參照Li和Dewey(2011)的方法,利用SAMtools和VarScan v.2.2.7進(jìn)行SNP查找。
2 結(jié)果與分析
2. 1 棘胸蛙轉(zhuǎn)錄組測(cè)序及SSR檢索結(jié)果
通過對(duì)棘胸蛙肝臟、肌肉和腎臟組織進(jìn)行轉(zhuǎn)錄組測(cè)序,并進(jìn)行序列拼接和組裝,共獲得93887條非冗余基因(Unigenes),序列總長(zhǎng)度達(dá)91352712 bp,且所有轉(zhuǎn)錄組Q30均超過95.00%,即獲得較好的測(cè)序結(jié)果。在獲得的93887條Unigenes中最長(zhǎng)序列達(dá)50351 bp,N50為1434 bp,平均長(zhǎng)度為973 bp。在93887條Unigenes中共發(fā)現(xiàn)33019個(gè)SSRs,其中21966條Unigenes含有SSR,6688條Unigenes含有超過1個(gè)SSR,3560條Unigenes含有復(fù)雜的SSR(表1)。
2. 2 棘胸蛙SSR重復(fù)類型分析結(jié)果
將檢索獲得的33019個(gè)SSRs按重復(fù)類型進(jìn)行分類,可分為單核苷酸重復(fù)、二核苷酸重復(fù)、三核苷酸重復(fù)、四核苷酸重復(fù)、五核苷酸重復(fù)和六核苷酸重復(fù)6種類型,其中以單核苷酸重復(fù)型SSR數(shù)最多,達(dá)25788個(gè),且出現(xiàn)頻率最高(27.47%),然后依次是二核苷酸重復(fù)~六核苷酸重復(fù)型SSR,出現(xiàn)頻率分別為5.12%、2.16%、0.40%、0.02%和0.01%(表2)。SSR的平均長(zhǎng)度以四核苷酸重復(fù)型最長(zhǎng),達(dá)35.47 bp,然后依次為六核苷酸重復(fù)型(33.00 bp)、五核苷酸重復(fù)型(25.83 bp)、二核苷酸重復(fù)型(18.57 bp)、三核苷酸重復(fù)型(17.41 bp)和單核苷酸重復(fù)型(12.19 bp)。
在所有的SSR中共發(fā)現(xiàn)60種重復(fù)基元類別,以四核苷酸重復(fù)基元最多,達(dá)28種,然后依次為五核苷酸重復(fù)基元11種、三核苷酸重復(fù)基元10種、六核苷酸重復(fù)基元5種、二核苷酸重復(fù)基元4種、單核苷酸重復(fù)基元2種(圖1)。在四核苷酸重復(fù)的28個(gè)基元類別中,數(shù)量和分布特征差異明顯,SSR的優(yōu)勢(shì)重復(fù)基元為AGAT/ATCT,占四核苷酸重復(fù)基元的27.28%(表2),而AACT/AGTT、AAGT/ACTT、AATC/ATTG、AATT/AATT、ACCG/CGGT、ACCT/AGGT、ACGG/CCGT和AGCT/AGCT等重復(fù)基元僅出現(xiàn)1次;五核苷酸和六核苷酸重復(fù)的基元分布較均勻,單核苷酸重復(fù)中則以A/T為優(yōu)勢(shì)重復(fù)基元,占單核苷酸重復(fù)基元的83.88%;二核苷酸重復(fù)基元中除CG/CG僅重復(fù)出現(xiàn)9次外,其余3種基元分布較均勻[AC/GT(1834次),AG/CT(1094次),AT/AT(1870次)],以AC/GT為優(yōu)勢(shì)重復(fù)基元(38.15%);三核苷酸重復(fù)基元分布相對(duì)不均衡,以AAT/ATT為優(yōu)勢(shì)重復(fù)基元(25.23%),共重復(fù)出現(xiàn)512次,然后依次是AGG/CCT(429次)、ATC/ATG(276次)、AGC/CTG(268次)、AAG/CTT(182次)、ACC/GGT(169次)、AAC/GTT(78次)、CCG/CGG(74次)和ACT/AGT(34次),重復(fù)次數(shù)最少的基元為ACG/CGT,僅出現(xiàn)7次。整體而言,棘胸蛙SSR以(A/T)n為絕對(duì)優(yōu)勢(shì)重復(fù)基元,占總SSR的65.51%,然后依次為(C/G)n、(AT/AT)n、(AC/GT)n、(AG/CT)n、(AAT/ATT)n、(AGG/CCT)n,分別占總SSR的12.59%、5.66%、5.55%、3.31%、1.55%和1.30%。
2. 3 棘胸蛙SSR位點(diǎn)在Unigenes中的分布特征
將33019個(gè)SSRs在93887條Unigenes中進(jìn)行搜索及比對(duì)分析,結(jié)果(圖2)發(fā)現(xiàn)大部分SSR均位于不確定區(qū)域(19075個(gè)),其次位于3'端(6719個(gè))和5'端(2032個(gè)),在編碼區(qū)僅發(fā)現(xiàn)1633個(gè)SSRs。在1633個(gè)SSRs中,以單核苷酸基重復(fù)和三核苷酸重復(fù)為主,分別為679和630個(gè);在編碼區(qū)還出現(xiàn)部分復(fù)合型SSR(135個(gè))。
2. 4 棘胸蛙SSR重復(fù)次數(shù)分布情況
SSR重復(fù)次數(shù)與重復(fù)片段長(zhǎng)度也存在一定的分布特征,經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)棘胸蛙SSR的核苷酸重復(fù)次數(shù)分布范圍主要在5~75次,跨度較大,其中重復(fù)次數(shù)集中在5~25次的SSR占總SSR的99.91%,其重復(fù)次數(shù)的具體分布情況見表3。
2. 5 棘胸蛙SSR長(zhǎng)度分布情況
棘胸蛙轉(zhuǎn)錄組中SSR長(zhǎng)度統(tǒng)計(jì)結(jié)果顯示,所有SSR總長(zhǎng)度為569846 bp,占轉(zhuǎn)錄組序列全長(zhǎng)的0.62%。棘胸蛙SSR長(zhǎng)度存在明顯差異,長(zhǎng)度最短的為10 bp,最長(zhǎng)的≥100 bp。整體來看,SSR長(zhǎng)度主要集中在10~14 bp(占68.07%),且SSR的數(shù)量隨著序列長(zhǎng)度的增加急劇下降,分布在15~19 bp、20~29 bp、30~49 bp、10~100 bp、>100 bp的SSR分別為4723個(gè)(占16.03%)、1950個(gè)(占6.62%)、1226個(gè)(占4.16%)和1287個(gè)(占4.37%),只有2.28%的SSR長(zhǎng)度超過100 bp(圖3)。棘胸蛙SSR長(zhǎng)度在20 bp以上的僅有5133個(gè),占總SSR的17.42%;而長(zhǎng)度介于12~20 bp的SSR為12111個(gè),占總SSR的41.11%;長(zhǎng)度≥20 bp的位點(diǎn)共計(jì)17244個(gè),占總SSR的58.53%,說明棘胸蛙具有中度偏高的片段長(zhǎng)度多態(tài)性。8C9BE7E2-0628-425C-8B6F-560A759F3A42
2. 6 棘胸蛙SSR的初步驗(yàn)證結(jié)果
按去除單核苷酸重復(fù)和復(fù)雜重復(fù)類型的原則,選擇SSR兩端序列長(zhǎng)度≥50 bp的序列進(jìn)行引物設(shè)計(jì),隨機(jī)挑選序列并設(shè)計(jì)500對(duì)SSR引物,挑選其中的120對(duì)SSR引物進(jìn)行引物有效性驗(yàn)證。以5個(gè)棘胸蛙養(yǎng)殖群體的基因組DNA為模板進(jìn)行PCR擴(kuò)增和引物篩選,發(fā)現(xiàn)120對(duì)SSR引物中共有57對(duì)引物擴(kuò)增出單一條帶,且條帶大小與預(yù)期結(jié)果一致。表4為部分SSR引物在棘胸蛙個(gè)體中的擴(kuò)增多態(tài)性。
2. 7 棘胸蛙轉(zhuǎn)錄組中SNP的特征分析結(jié)果
對(duì)棘胸蛙轉(zhuǎn)錄組序列進(jìn)行SNP檢索,共發(fā)現(xiàn)87634個(gè)SNPs(圖4),發(fā)生頻率為1042 bp序列會(huì)出現(xiàn)1個(gè)SNP。在搜索獲得的87634個(gè)SNPs中,有56300個(gè)SNPs屬于轉(zhuǎn)換位點(diǎn)、31334個(gè)SNPs屬于顛換位點(diǎn),轉(zhuǎn)換/顛換比達(dá)1.80。以A/G轉(zhuǎn)換的發(fā)生頻率最高,占SNP總數(shù)的32.26%,其次是C/T轉(zhuǎn)換,占SNP總數(shù)的31.98%,其余4種顛換類型(A/T、A/C、T/G和C/G)分別占SNP總數(shù)的8.1%、8.84%、8.40%和10.39%。2種高變異類型(A/G和C/T)均屬于轉(zhuǎn)換類型,而剩下的4種顛換類型所占比例均低于15.00%,即堿基的轉(zhuǎn)換頻率明顯高于顛換頻率。
3 討論
3. 1 測(cè)序深度與篩選方法對(duì)SSR特征分析的影響
隨著測(cè)序技術(shù)的成熟及其成本的降低,越來越多研究通過高通量測(cè)序獲得水產(chǎn)動(dòng)物的SSR位點(diǎn)(Zhang et al.,2014;Li et al.,2015;Pandey et al.,2018),但測(cè)序深度對(duì)SSR的開發(fā)具有重要影響。Pandey等(2018)通過紅鰭東方鲀的全基因組序列開發(fā)出139057個(gè)潛在SSRs,但孫賽紅(2014)通過EST序列查找僅發(fā)現(xiàn)27914個(gè)SSRs;梁霞等(2021)通過鯉魚(Cyprinus carpio)全基因組測(cè)序共獲得837004個(gè)完整SSRs,而岳華梅等(2016)通過轉(zhuǎn)錄組測(cè)序僅獲得13652個(gè)SSRs;遲天舒(2020)對(duì)東北林蛙的基因組測(cè)序發(fā)現(xiàn)792550個(gè)潛在SSRs,而在轉(zhuǎn)錄組序列中僅發(fā)現(xiàn)30830個(gè)潛在SSRs,在同屬于兩棲類的四川湍蛙和棘腹蛙研究上也存在類似現(xiàn)象(Xia et al.,2018)。可見,SSR的開發(fā)與測(cè)序深度密切相關(guān)。本研究通過對(duì)棘胸蛙肌肉、肝臟和腎臟3個(gè)組織的9個(gè)樣品進(jìn)行轉(zhuǎn)錄組測(cè)序,所得序列總長(zhǎng)度達(dá)91352712 bp,且所有轉(zhuǎn)錄組Q30均超過95.00%,篩選獲得33019個(gè)SSRs,具有較好的測(cè)序深度,說明基于轉(zhuǎn)錄組測(cè)序開發(fā)獲得的SSR具有較好的覆蓋性和可信度。此外,SSR分析設(shè)置重復(fù)參數(shù)不一樣,也會(huì)影響到SSR的開發(fā)。熊良偉等(2018)進(jìn)行寬體金線蛭SSR位點(diǎn)開發(fā)時(shí)設(shè)置為單核苷酸重復(fù)≥13,二核苷酸重復(fù)≥6;孫海林等(2019)進(jìn)行翹嘴鱖SSR開發(fā)時(shí)設(shè)單核苷酸重復(fù)≥13次,二核苷酸重復(fù)≥7次;而李超等(2015)在開發(fā)牙鲆(Paralichthys olivaceus)SSR位點(diǎn)、倪守勝等(2018)開發(fā)蝦夷扇貝SSR位點(diǎn)時(shí)并未統(tǒng)計(jì)單核苷酸重復(fù)。不同的統(tǒng)計(jì)方法必然導(dǎo)致最終統(tǒng)計(jì)的SSR數(shù)量有所差異。本研究則按照默認(rèn)設(shè)為單核苷酸重復(fù)≥次數(shù)10,二核苷酸重復(fù)次數(shù)≥6。
3. 2 棘胸蛙SSR的重復(fù)類型與分布特征
不同物種的SSR在分布和豐度上存在明顯差異(黃杰等,2012)。本研究中,棘胸蛙以單核苷酸重復(fù)為主,達(dá)25788個(gè),出現(xiàn)頻率為27.47%,且以A/T為主(83.88%),但由于單核苷酸重復(fù)存在一些poly(A)或假基因,而導(dǎo)致統(tǒng)計(jì)結(jié)果出現(xiàn)偏差,故在討論中暫不考慮單核苷酸重復(fù)。已有研究證實(shí),SSR數(shù)量隨著重復(fù)長(zhǎng)度的增加而減少(李清瑩等,2019),進(jìn)化較高的物種通常存在較多的低級(jí)重復(fù)單元(Harr and Schl?tterer,2000;劉洪濤等,2020)。在棘胸蛙中(不考慮單核苷酸)以二核苷酸重復(fù)為主(4807個(gè)),占除去單核苷酸重復(fù)后所有SSR的66.48%。其次為三核苷酸重復(fù),四核苷酸重復(fù)、五核苷酸重復(fù)和六核苷酸重復(fù)出現(xiàn)的次數(shù)較少。在中國大鯢(Andrias davidianus)的研究中也是以單核苷酸重復(fù)為主,然后依次為二核苷酸重復(fù)和三核苷酸重復(fù)(Huang et al.,2017),且出現(xiàn)隨SSR長(zhǎng)度增加其數(shù)量減少的現(xiàn)象,可能與序列的穩(wěn)定性和進(jìn)化壓力有關(guān)(Jo et al.,2021)。在大鱗副泥鰍(Li et al.,2015)、銀鯧(Pampus argenteus)(劉磊等,2016)、興國紅鯉(C. carpio var)(岳華梅等,2016)及波紋唇魚(劉洪濤等,2020)等魚類中也發(fā)現(xiàn)類似的現(xiàn)象,但存在種屬差異性(馬秋月等,2013),在同為兩棲類的中國小鯢(Hynobius chinensis)中則以三核苷酸重復(fù)出現(xiàn)頻率最高(Che et al.,2014),且水產(chǎn)動(dòng)物中廣泛存在類似現(xiàn)象(Zhang et al.,2008;Bai et al.,2009;倪守勝等,2018)。
進(jìn)一步分析棘胸蛙SSR的優(yōu)勢(shì)重復(fù)基元,發(fā)現(xiàn)二核苷酸重復(fù)中以AC/GT為優(yōu)勢(shì)重復(fù)基元,而GC/CG重復(fù)的SSR較少,僅重復(fù)出現(xiàn)9次。中國大鯢的SSR研究發(fā)現(xiàn),也是以GT/AC重復(fù)基元為主(Huang et al.,2017),類似結(jié)果在其他水生動(dòng)物中也有發(fā)現(xiàn),包括牙鲆(李超等,2015)、銀鯧(劉磊等,2016)及中華絨螯蟹(徐杰杰等,2021)等,但在中國大鯢(Huang et al.,2017)、波紋唇魚(劉洪濤等,2020)和日本沼蝦(Macrobrachium nipponense)(趙燕等,2020)中未發(fā)現(xiàn)GC/CG重復(fù)基元。究其原因可能是C≡G間氫鍵較穩(wěn)固,在DNA復(fù)制過程中不易產(chǎn)生滑移,因此SSR位點(diǎn)較少(Zhao et al.,2011)。此外,SSR在基因序列中的分布特征存在不均一性,分布在基因編碼區(qū)的較少(Rhode and Roodt-Wilding,2011),而開發(fā)位于編碼區(qū)的SSR位點(diǎn)對(duì)開展SSR跨種通用性研究具有重要意義(Wang et al.,2007)。在本研究中,在編碼區(qū)僅發(fā)現(xiàn)1633個(gè)SSRs(占4.95%),且主要以單核苷酸重復(fù)和三核苷酸重復(fù)為主,位于編碼區(qū)的三核苷酸重復(fù)SSR對(duì)基因轉(zhuǎn)錄翻譯的影響較小,不僅保證其遺傳的穩(wěn)定性,還能增加變異和進(jìn)化效率。類似結(jié)果在其他魚類中也有發(fā)現(xiàn),波紋唇魚中僅有1773個(gè)SSRs位于編碼區(qū),占7.9%(劉洪濤等,2020);在黑鯛(Acanthopagrus schlegelii)和真鯛(Pagrus major)中SSR在編碼區(qū)的發(fā)生頻率也較較低,僅為8.5%和7.8%(曹廣勇等,2019)。8C9BE7E2-0628-425C-8B6F-560A759F3A42
3. 3 棘胸蛙的遺傳多態(tài)性
SSR和SNP均是檢驗(yàn)物種多態(tài)性的重要分子標(biāo)記,而影響SSR多態(tài)性的重要因素為核苷酸重復(fù)序列長(zhǎng)度,多態(tài)性較高的SSR長(zhǎng)度一般≥20 bp,多態(tài)性中等的SSR長(zhǎng)度一般在12~20 bp(楊芩等,2021)。棘胸蛙的SSR長(zhǎng)度主要集中在12~14 bp,其中SSR長(zhǎng)度大于12 bp的序列有17244 bp,占總SSR的58.53%,即棘胸蛙具有中度偏高的多態(tài)性,與Zheng等(2009)通過線粒體序列(12S和16S)進(jìn)行棘胸蛙多態(tài)性分析的結(jié)果存在差異;Yu等(2016)通過10個(gè)SSR位點(diǎn)和線粒體CYTB序列也證明棘胸蛙具有較高的遺傳多樣性。這可能是由于本研究選用的棘胸蛙養(yǎng)殖群體經(jīng)過多年自繁自養(yǎng)后,近親繁殖較嚴(yán)重,其資源退化、遺傳多樣性有所降低所致。
基于SNP進(jìn)行多態(tài)性分析,發(fā)現(xiàn)棘胸蛙轉(zhuǎn)錄組中的轉(zhuǎn)化/顛換比達(dá)1.80,類似結(jié)果在不少魚類中也有發(fā)現(xiàn)。波紋唇魚中的轉(zhuǎn)化/顛換比為1.95(劉洪濤等,2020),石斑魚中的轉(zhuǎn)化/顛換比達(dá)2.52(Hsu et al.,2021),可能與不同物種生物在進(jìn)化過程中承受的選擇壓力不同有關(guān)(Zhang et al.,2018)。此外,棘胸蛙轉(zhuǎn)錄組中SNP的出現(xiàn)頻率遠(yuǎn)高于SSR,說明單核苷酸變異可能更易發(fā)生(劉洪濤等,2020)。2種高變異類型(A/G和C/T)均屬于轉(zhuǎn)換類型,C/T含量高可能是由于胞嘧啶(C)易發(fā)生脫氨基作用轉(zhuǎn)變成胸腺嘧啶(T),引起C/T變異發(fā)生頻率高,而A/G含量高與快速生長(zhǎng)相關(guān)(Tsai et al.,2015;Hsu et al.,2021)。
4 結(jié)論
利用高通量轉(zhuǎn)錄組測(cè)序開發(fā)棘胸蛙SSR和SNP分子標(biāo)記是一種切實(shí)可行的方法,能開發(fā)出通用性較高、數(shù)量較多、覆蓋性較廣的分子標(biāo)記。棘胸蛙具有中度偏高的遺傳多樣性,可作為種質(zhì)材料進(jìn)一步開發(fā)利用。
參考文獻(xiàn):
曹廣勇,張志勇,張志偉,陳淑吟,祝斐,賈超峰,陳自強(qiáng),曾海峰,湯曉建. 2019. 黑鯛、真鯛及其雜交子代基因編碼區(qū)微衛(wèi)星序列及密碼子偏好性分析[J]. 海洋與湖沼,50(5):1108-1115. [Cao G Y,Zhang Z Y,Zhang Z W,Chen S Y,Zhu F,Jia C F,Chen Z Q,Zeng H F,Tang X J. 2019. Analysis of the microsatellite sequences and codon bias of the coding sequence in Acanthopagrus schlegelii,Pagrus major and their hybrid progenies[J]. Oceanologia et Limnologia Sinica,50(5):1108-1115.] doi:10.11693/hyhz20190200038.
遲天舒. 2020. 基于高通量測(cè)序東北林蛙微衛(wèi)星標(biāo)記開發(fā)與應(yīng)用[D]. 沈陽:沈陽師范大學(xué). [Chi T S. 2020. Deve-lopment and application of microsatellite markers based on next-generation sequencing for Rana dybowskii[D]. Shenyang:Shenyang Nomal University.] doi:10.27328/d.cnki.gshsc.2020.000539.
黃杰,杜聯(lián)明,李玉芝,李午佼,張修月,岳碧松. 2012. 紅原雞全基因組中微衛(wèi)星分布規(guī)律研究[J]. 四川動(dòng)物,31(3):358-363. [Huang J,Du L M,Li Y Z,Li W J,Zhang X Y,Yue B S. 2012. Distribution regularities of microsatellites in the Gallus gallus genome[J]. Sichuan Journal of Zoology,31(3):358-363.] doi:10.3969/j.issn.1000-7083. 2012.03.005.
李超,侯吉倫,王桂興,張曉彥,劉永富,童愛萍,劉海金. 2015. 基于牙鲆RNA-seq數(shù)據(jù)中SSR標(biāo)記的信息分析[J]. 海洋漁業(yè),37(2):122-127. [Li C,Hou J L,Wang G X,Zhang X Y,Liu Y F,Tong A P,Liu H J. 2015. Bioinformatic analysis of SSR markers in transcriptomic sequenceing Paralichthys olivaceus[J]. Marine Fisheries,37(2):122-127.] doi:10.13233/j.cnki.mar.fish.2015. 02.004.
李清瑩,仲崇祿,姜清彬,張勇,陳羽,魏永成,陳珍. 2019. 珍貴樹種火力楠轉(zhuǎn)錄組SSR特征分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),38(4):1674-1682. [Li Q Y,Zhong C L,Jiang Q B,Zhang Y,Chen Y,Wei Y C,Chen Z. 2019. Characteri-stic analysis of microsatellites in the transcriptome of Michelia macclurei of rare tree species[J]. Genomics and Applied Biology,38(4):1674-1682.] doi:10.13417/j.gab. 038.001674.
梁霞,王慧琪,馬宇璇,宋磊,吳超,李亮徽,張國松. 2021. 鯉魚(Cyprinus carpio)全基因組微衛(wèi)星分布特征研究[J]. 南京師大學(xué)報(bào)(自然科學(xué)版),44(3):103-111. [Liang X,Wang H Q,Ma Y X,Song L,Wu C,Li L H,Zhang G S. 2021. Distribution characteristics of microsatellites in the whole genome of Cyprinus carpio,Linnaeus[J]. Journal of Nanjing Normal University (Natural Science Edition),44(3):103-111.] doi:10.3969/j.issn.1001-4616.2021.03. 016.8C9BE7E2-0628-425C-8B6F-560A759F3A42
劉洪濤,劉金葉,楊明秋,何玉貴,王永波. 2020. 基于轉(zhuǎn)錄組測(cè)序的波紋唇魚SSR和SNP多態(tài)特征分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),39(6):2451-2461. [Liu H T,Liu J Y,Yang M Q,He Y G,Wang Y B. 2020. SSR and SNP polymorphic feature analysis based on Cheilinus undulatus transcriptome[J]. Genomics and Applied Biology,39(6):2451-2461.] doi:10.13417/j.gab.039.002451.
劉磊,彭士明,高權(quán)新,張晨捷,施兆鴻. 2016. 基于銀鯧RNA-seq數(shù)據(jù)中SSR標(biāo)記的信息分析[J]. 安徽農(nóng)業(yè)科學(xué),44(28):102-105. [Liu L,Peng S M,Gao Q X,Zhang C J,Shi Z H. 2016. Bioinformatic analysis of SSR markers based on RNA-seq of Pampus argenteus[J]. Journal of Anhui Agricultural Sciences,44(28):102-105.] doi:10. 13989/j.cnki.0517-6611. 2016.28.033.
馬秋月,戴曉港,陳贏男,張得芳,廖卓毅,李淑嫻. 2013. 棗基因組的微衛(wèi)星特征[J]. 林業(yè)科學(xué),49(12):81-87. [Ma Q Y,Dai X G,Chen Y N,Zhang D F,Liao Z Y,Li S X. 2013. Characterization of microsatellites in the genome of Ziziphus jujuba[J]. Scientia Silvae Sinicae,49(12):81-87.] doi:10.11707 /j.1001-7488.20131212.
倪守勝,楊鈺,柳淑芳,莊志猛. 2018. 基于高通量測(cè)序的蝦夷扇貝基因組微衛(wèi)星特征分析[J]. 漁業(yè)科學(xué)進(jìn)展,39(1):107-113. [Ni S S,Yang Y,Liu S F,Zhuang Z M. 2018. Microsatellite analysis of Patinopecten yessoensis using next-generation sequencing method[J]. Progress in Fi-shery Sciences,39(1):107-113.] doi:10.11758/yykxjz. 20161209001.
孫海林,孫成飛,董浚鍵,田園園,胡婕,葉星. 2019. 翹嘴鱖轉(zhuǎn)錄組測(cè)序及SSR新標(biāo)記的開發(fā)與應(yīng)用[J]. 基因組學(xué)與應(yīng)用生物學(xué),38(10):4413-4421. [Sun H L,Sun C F,Dong J J,Tian Y Y,Hu J,Ye X. 2019. Transcriptome sequen-cing and development and application of novel SSR markers for Siniperca chuatsi[J]. Genomics and Applied Biology,38(10):4413-4421.] doi:10.13417/j.gab.038. 004413.
孫賽紅. 2014. 紅鰭東方鲀4個(gè)免疫基因的原核表達(dá)及群體EST-SSRs分析[D]. 大連:大連海洋大學(xué). [Sun S H. 2014. Prokaryotic expression analysis of four immune genes and analysis of group EST-SSRs in Takifugu rubri pes[D]. Dalian:Dalian Ocean University.] doi:10.7666/d.D495822.
熊良偉,王帥兵,岳麗佳,王建國,陶桂慶,徐亮,王權(quán). 2018. 寬體金線蛭基因組SSR序列特征分析及其分子標(biāo)記開發(fā)[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(11):2298-2303. [Xiong L W,Wang S B,Yue L J,Wang J G,Tao G Q,Xu L,Wang Q. 2018. SSR sequence characters for genome of Whitmania pigra Whitman and development of molecular markers[J]. Journal of Southern Agriculture,49(11):2298-2303.] doi:10.3969/j.issn.2095-1191.2018.11.26.
徐杰杰,畢宜慧,程景顥,邢秀梅,暨杰,王濤,尹紹武,張凱. 2021. 中華絨螯蟹(Eriocheir sinensis)全基因組微衛(wèi)星分布特征研究[J]. 基因組學(xué)與應(yīng)用生物,40(7-8):2422-2429. [Xu J J,Bi Y H,Cheng J H,Xing X M,Ji J,Wang T,Yin S W,Zhang K. 2021. Study on distribution characteristics of whole genome microsatellite of Eriocheir sinensis[J]. Genomics and Applied Biology,40(7-8):2422-2429.] doi:10.13417/j.gab.040.002422.
楊芩,付燕,劉雅蘭,張婷渟,彭舒,鄧潔. 2021. 藍(lán)莓花粉轉(zhuǎn)錄組SSR位點(diǎn)信息分析[J]. 分子植物育種,19(10):3383-3391. [Yang Q,F(xiàn)u Y,Liu Y L,Zhang T T,Peng S,Deng J. 2021. Analysis of SSR information in Bluebery pollen transcriptome[J]. Molecular Plant Breeding,19(10):3383-3391.]. doi:10.13271/j.mpb.019.003383.8C9BE7E2-0628-425C-8B6F-560A759F3A42
岳華梅,翟晴,宋明月,葉歡,楊曉鴿,李創(chuàng)舉. 2016. 基于轉(zhuǎn)錄組測(cè)序的興國紅鯉微衛(wèi)星標(biāo)記篩選[J]. 淡水漁業(yè),46(1):24-28. [Yue H M,Zhai Q,Song M Y,Ye H,Yang X G,Li C J. 2016. Development of microsatellite mar-kers in Cyprinus carpio var. singuonensis using next-ge-neration sequencing[J]. Freshwater Fisheries,46(1):24-28.] doi:10.13721/j.cnki.dsyy.2016.01.004.
趙燕,陳紅菊,孔維祎,季相山,王慧. 2020. 日本沼蝦多態(tài)性標(biāo)記篩選及群體遺傳結(jié)構(gòu)分析[J]. 水產(chǎn)科學(xué),39(5):639-648. [Zhao Y,Chen H J,Kong W Y,Ji X S,Wang H. 2020. Screening of polymorphic markers and analysis of population genetic structure of oriental river prawn Macrobrachium nipponense[J]. Fisheries Science,39(5):639-648.] doi:10.16378/j.cnki.1003-1111.2020.05.001.
Bai Z Y,Yin Y X,Hu S N,Wang G L,Zhang X W,Li J L. 2009. Identification of genes involved in immune response,microsatellite,and SNP markers from expressed sequence tags generated from hemocytes of freshwater pearl mussel(Hyriopsis cumingii)[J]. Marune Biotechnology,11(4):520. doi:10.1007/s10126-008-9163-0.
Borodinsky L N. 2017. Xenopus laevis as a model organism for the study of spinal cord formation,development,function and regeneration[J]. Frontiers in Neural Circuits,11:90. doi:10.3389/fncir.2017.00090.
Chan H K,Shoemaker K T,Karraker N E. 2014. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure[J]. Biological Conservation,170:3-9. doi:10.1016/j.biocon.2013.12.014.
Che R B,Sun Y N,Wang R X,Xu T J. 2014. Transcriptomic analysis of endangered Chinese salamander:Identification of immune,sex and reproduction-related genes and genetic markers[J]. PLoS One,9(1):e87940. doi:10.1371/journal.pone.0087940.
Gao Z X,Luo W,Liu H,Zeng C,Liu X L,Yi S K,Wang W M. 2012. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream(Megalobrama amblycephala)[J]. PLoS One,7(8):e42637. doi:10.1371/journal.pone.0042637.
Garrido-Cardenas J A,Mesa-Valle C,Manzano-Agugliaro F. 2018. Trends in plant research using molecular marker[J]. Planta,247(3):543-557. doi:10.1007/s00425-017-2829-y.
Harr B,Schl?tterer C. 2000. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times,which cause their genome-wide underrepresentation[J]. Genetics,155(3):1213-1220. doi:10.1093/genetics/155.3.1213.
Hellsten U,Harland R M,Gilchrist M J,Hendrix D,Jurka J,Kapitonov V,Ovcharenko I,Putnam N H,Shu S,Taher L,Blitz I L,Blumberg B,Dichmann D S,Dubchak I,Amaya E,Detter J C,F(xiàn)letcher R,Gerhard D S,Goodstein D,Graves T,Grigoriev I V,Grimwood J,Kawashima T,Lindquist E,Lucas S M,Mead P E,Mitros T,Ogino H,Ohta Y,Poliakov A V,Pollet N,Robert J,Salamov A,Sater A K,Schmutz J,Terry A,Vize P D,Warren W C,Wells D,Wills A,Wilson R K,Zimmerman L B,Zorn A M,Grainger R,Grammer T,Khokha M K,Richardson P M,Rokhsar D S. 2010. The genome of the Western clawed frog Xenopus tropicalis[J]. Science,328(5978):633-636. doi:10.1126/science.1183670.8C9BE7E2-0628-425C-8B6F-560A759F3A42
Hsu T H,Chiu Y T,Lee H T,Gong H Y,Huang C W. 2021. Development of EST-molecular markers from RNA sequencing for genetic management and identification of growth traits in potato grouper(Epinephelus tukula)[J]. Biology (Basel),10(1):36. doi:10.3390/biology10010 036.
Hu W F,Dong B J,Kong S S,Mao Y Y,Zheng R Q. 2017. Pathogen resistance and gene frequency stability of major histocompatibility complex class IIB alleles in the giant spiny frog Quasipaa spinosa[J]. Aquaculture,468:410-416. doi:10.1016/j.aquaculture.2016.11.001.
Huang Y,Xiong J L,Gao X C,Sun X H. 2017. Transcriptome analysis of the Chinese giant salamander (Andrias davidianus ) using RNA-sequencing[J]. Genomics Data,14:126-133. doi:10.1016/j.gdata.2017.10.005.
Jo E,Lee S J,Choi E,Kim J,Lee S G,Lee J H,Kim J H,Park H. 2021. Whole genome survey and microsatellite motif identification of Artemia franciscana[J]. Bioscie-nce Reports,41(3):BSR20203868. doi:10.1042/BSR20 203868.
Li B,Dewey C N. 2011. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,12:323. doi:10.1186/1471-2105-12-323.
Li C J,Ling Q F,Ge C,Ye Z Q,Han X F. 2015. Transcriptome characterization and SSR discovery in large-scale loach Paramisgurnus dabryanus(Cobitidae,Cypriniformes)[J]. Gene,557(2):201-208. doi:10.1016/j.gene. 2014.12.034.
Mable B K,Alexandrou M A,Taylor M I. 2011. Genome duplication in amphibians and fish:An extended synthesis[J]. Journal of Zoology,284(3):151-182. doi:10.1111/j. 1469-7998.2011.00829.x.
Pandey M,Kumar R,Srivastava P,Agarwal S,Srivastava S,Nagpure N S,Jena J K,Kushwaha B. 2018. WGSSAT:A high-throughput computational pipeline for mining and annotation of SSR markers from whole genomes[J]. Journal of Heredity,109(3):339-343. doi:10.1093/jhered/esx075.
Rhode C,Roodt-Wilding R. 2011. Bioinformatic survey of Haliotis midae microsatellites reveals a non-random distribution of repeat motifs[J]. Biological Bulletin,221(2):147-154. doi:10.1086/BBLv221n2p147.
Savage A E,Kiemnec-Tyburczy K M,Ellison A R,F(xiàn)leischer R C,Zamudio K R. 2014. Conservation and divergence in the frog immunome:Pyrosequencing and de novo assembly of immune tissue transcriptomes[J]. Gene,542(2):98-108. doi:10.1016/j.gene.2014.03.051.
Trick M,Long Y,Meng J L,Bancroft I. 2009. Single nucleotide polymorphism (SNP) discovery in the polyploidy Brassica napus using solexa transcriptome sequencing[J]. Plant Biotechnol Journal,7(4):334-346. doi:10.1111/j.1467-7652. 2008.00396.x.8C9BE7E2-0628-425C-8B6F-560A759F3A42
Tsai H Y,Hamilton A,Guy D R,Tinch A E,Bishop S C,Houston R D. 2015.Verification of SNPs associated with growth traits in two populations of farmed Atlantic salmon[J]. International Journal of Molecular Sciences,17(1):5. doi:10.3390/ijms17010005.
Wang D,Liao X L,Cheng L,Yu X M,Tong J G. 2007. Deve-lopment of novel EST-SSR markers in common carp by data mining from public EST sequences[J]. Aquaculture,271(1-4):558-574. doi:10.1016/j.aquaculture.2007.06. 001.
Wang Y,Yang L D,Wu B,Song Z B,He S P. 2015. Transcriptome analysis of the plateau fish (Triplophysa dalaica):Implications for adaptation to hypoxia in fishes[J]. Gene,565(2):211-220. doi:10.1016/j.gene.2015.04.023.
Xia Y,Luo W,Yuan S Q,Zheng Y C,Zeng X M. 2018. Microsatellite development from genome skimming and transcriptome sequencing:Comparison of strategies and lessons from frog species[J]. BMC Genomics,19(1):886. doi:10.1186/s12864-018-5329-y.
Yá?ez J M,Yoshida G,Barria A,Palma-Véjares R,Travisany D,Díaz D,Cáceres G,Cádiz M I,López M E,Lhorente J P,Jedlicki A,Soto J,Salas D,Maass A. 2020. High-throughput single nucleotide polymorphism(SNP) disco-very and validation through whole-genome resequencing in Nile tilapia(Oreochromis niloticus)[J]. Marine Biotechnology(NY),22(1):109-117. doi:10.1007/s10126-019-09935-5.
Ye S P,Huang H,Zheng R Q,Zhang J Y,Yang G,Xu S X. 2013. Phylogeographic analyses strongly suggest cryptic speciation in the giant spiny frog(Dicroglossidae:Paa spinosa) and interspecies hybridization in Paa[J]. PLoS One,8:e70403. doi:10.1371/journal.pone.0070403.
Yu D D,Zheng R Q,Lu Q F,Yang G,F(xiàn)u Y,Zhang Y. 2016. Genetic diversity and population structure for the conservation of giant spiny frog (Quasipaa spinosa) using microsatellite loci and mitochondrial DNA[J]. Asian Herpetological Research,7(2):75-86. doi:10.16373/j.cnki.ahr. 150040.
Zhang J,Ma W G,Song X M,Lin Q H,Gui J F,Mei J. 2014. Characterization and development of EST-SSR markers derived from transcriptome of yellow catfish[J]. Molecules,19(10):16402-16415. doi:10.3390/molecules1910 16402.
Zhang L L,Bao Z M,Wang S,Hu X L,Hu J J. 2008. FISH mapping and identification of Zhikong scallop(Chlamys farreri) chromosomes[J]. Marine Biotechnology(NY),10(2):151-157. doi:10.1007/s10126-007-9045-x.
Zhang S Y,Li J,Qin Q,Liu W,Bian C,Yi Y H,Wang M H,Zhong L Q,You X X,Tang S K,Liu Y S,Huang Y,Gu R B,Xu J M,Bian W J,Shi Q,Chen X H. 2018. Whole-genome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes[J]. Toxins (Basel),10(12):488. doi:10.3390/toxins10120488.
Zhao H,F(xiàn)uller A,Thongda W,Mohammed H,Abernathy J,Beck B,Peatman E. 2019. SNP panel development for genetic management of wild and domesticated white bass (Morone chrysops)[J]. Animal Genetics,50(1):92-96. doi:10.1111/age.12747.
Zhao X Y,Tan Z Y,F(xiàn)eng H P,Yang R H,Li M F,Jiang J H,Shen G L,Yu R Q. 2011. Microsatellites in different Potyvirus genomes:Survey and analysis[J]. Gene,488(1-2):52-56. doi:10.1016/j.gene.2011.08.016.
Zheng R Q,Ye R H,Yu YY,Yang G. 2009. Fifteen polymorphic microsatellite markers for the giant spiny frog,Paa spinosa[J]. Molecular Ecology Resources,9(1):336-368. doi:10.1111/j.1755-0998.2008.02420.x.
(責(zé)任編輯 蘭宗寶)8C9BE7E2-0628-425C-8B6F-560A759F3A42