一、選擇題
1.設(shè)集合A={1,2},B={2,4,6},則A∪B=()
(A){2}.(B){1,2}.
(C){2,4,6}.(D){1,2,4,6}.
2.已知a,b∈R,a+3i=(b+i)i(i為虛數(shù)單位),則()
(A)a=1,b=-3.(B)a=-1,b=3.
(C)a=-1,b=-3.(D)a=1,b=3.
3.若實(shí)數(shù)x,y滿足約束條件x-2≥0,2x+y-7≤0,x-y-2≤0,
則z=3x+4y的最大值是()
(A)20.(B)18.(C)13.(D)6.
4.設(shè)x∈R,則“sinx=1”是“cosx=0”的()
(A)充分不必要條件.
(B)必要不充分條件.
(C)充分必要條件.
(D)既不充分也不必要條件.
5.某幾何體的三視圖如圖1所示(單位:cm),則該幾何體的體積(單位:cm3)是()
圖1
(A)22π.(B)8π.(C)223π.(D)163π.
6.為了得到函數(shù)y=2sin3x的圖象,只要把函數(shù)y=2sin3x+π5圖象上所有的點(diǎn)()
(A)向左平移π5個(gè)單位長度.
(B)向右平移π5個(gè)單位長度.
(C)向左平移π15個(gè)單位長度.
(D)向右平移π15個(gè)單位長度.
7.已知2a=5,b=log83,則4a-3b=()
圖2
(A)25.(B)5.
(C)259.(D)53.
8.如圖2,已知正三棱柱ABC|A1B1C1,AC=AA1,E,F(xiàn)分別是棱BC,A1C1上的點(diǎn).記EF與AA1所成的角為α,EF與平面ABC所成的角為β,二面角F|BC|A的平面角為γ,則()
(A)α≤β≤γ.(B)β≤α≤γ.
(C)β≤γ≤α.(D)α≤γ≤β.
9.已知a,b∈R,若對(duì)任意x∈R,a|x-b|+|x-4|-|2x-5|≥0,則()
(A)a≤1,b≥3.(B)a≤1,b≤3.
(C)a≥1,b≥3.(D)a≥1,b≤3.
10.已知數(shù)列{an}滿足a1=1,an+1=an-13a2n(n∈N*),則()
(A)2<100a100<52.
(B)52<100a100<3.
(C)3<100a100<72.
(D)72<100a100<4.
二、填空題
11.我國南宋著名數(shù)學(xué)家秦九韶,發(fā)現(xiàn)了從三角形三邊求面積的公式,他把這種方法稱為“三斜求積”,它填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個(gè)空白.如果把這個(gè)方法寫成公式,就是S=14c2a2-c2+a2-b222,其中a,b,c是三角形的三邊,S是三角形的面積.設(shè)某三角形的三邊a=2,b=3,c=2,則該三角形的面積S=.
12.已知多項(xiàng)式(x+2)(x-1)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a2=,a1+a2+a3+a4+a5=.
13.若3sinα-sinβ=10,α+β=π2,則sinα=,cos2β=.
14.已知函數(shù)f(x)=-x2+2,x≤1,x+1x-1,x>1,則ff12=;若當(dāng)x∈[a,b]時(shí),1≤f(x)≤3,則b-a的最大值是.
15.現(xiàn)有7張卡片,分別寫上數(shù)學(xué)1,2,2,3,4,5,6.從這7張卡片中隨機(jī)抽取3張,記所抽取卡片上數(shù)字的最小值為ξ,則P(ξ=2)=,E(ξ)=.
16.已知雙曲線x2a2-y2b2=1(a>0,b>0)的左焦點(diǎn)為F,過F且斜率為b4a的直線交雙曲線于點(diǎn)A(x1,y1),交雙曲線的漸近線于點(diǎn)B(x2,y2),且x1<0 17.設(shè)點(diǎn)P在單位圓的內(nèi)接正八邊形A1A2…A8的邊A1A2上,則PA12+PA22+…+PA82的取值范圍是. 三、解答題 18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知4a=5c,cosC=35. (1)求sinA的值; (2)若b=11,求△ABC的面積. 19.如圖3,已知ABCD和CDEF都是直角梯形,AB∥DC∥EF,AB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角F|DC|B的平面角為60°.設(shè)M,N分別為AE,BC的中點(diǎn). 圖3 (1)證明:FN⊥AD; (2)求直線BM與平面ADE所成角的正弦值. 20.已知等差數(shù)列{an}的首項(xiàng)a1=-1,公差d>1.記{an}的前n項(xiàng)和為Sn(n∈N*). (1)若S4-2a2a3+6=0,求Sn; (2)若對(duì)于每個(gè)n∈N*,存在實(shí)數(shù)cn,使得an+cn,an+1+4cn,an+2+15cn成等比數(shù)列,求d的取值范圍. 21.如圖4,已知橢圓x212+y2=1.設(shè)A,B是橢圓上異于P(0,1)的兩點(diǎn),且點(diǎn)Q0,12在線段AB上,直線PA,PB分別交直線y=-12x+3于C,D兩點(diǎn). 圖4 (1)求點(diǎn)P到橢圓上點(diǎn)的距離的最大值; (2)求|CD|的最小值. 22.設(shè)函數(shù)f(x)=e2x+lnx(x>0). (1)求f(x)的單調(diào)區(qū)間; (2)已知a,b∈R,曲線y=f(x)上不同的三點(diǎn)(x1,f(x1)),(x2,f(x2)),(x3,f(x3))處的切線都經(jīng)過點(diǎn)(a,b),證明: (i)若a>e,則0 (ii)若0 參考答案 題號(hào)12345678910答案DBBACDCADB題號(hào)11121314答案2348;-231010;453728;3+3題號(hào)151617答案1635;127364[12+22,16] 18.(1)由于cosC=35,sinC>0, 則sinC=45. 由正弦定理知4sinA=5sinC, 則sinA=55. (2)由sinC=45>sinA=55, 則A 故b=acosC+ccosA=35a+255c=115a=11, 所以a=5, △ABC的面積S=12absinC=22. 19.(1)因?yàn)镃D⊥CB,CD⊥CF, 所以∠FCB=60°,CD⊥平面CBF, 于是CD⊥FN. 又CF=3(CD-EF)=23, CB=3(AB-CD)=23, 所以△BCF是等邊三角形, 圖5 即CB⊥FN, 于是FN⊥平面ABCD, 故FN⊥AD. (2)由于FN⊥平面ABCD,故可如圖5建立坐標(biāo)系, 于是B(0,3,0), A(5,3,0),F(xiàn)(0,0,3), E(1,0,3),D(3,-3,0), 則M3,32,32,BM=3,-32,32, DA=(2,23,0),DE=(-2,3,3), 平面ADE的法向量n=(3,-1,3). 設(shè)BM與平面ADE所成角為θ, 則sinθ=|BM·n||BM|·|n|=5714. 20.(1)設(shè)an=(n-1)d-1, 依題意得6d-4-2(d-1)(2d-1)+6=0, 解得d=3, 則an=3n-4,n∈N*, 于是Sn=3(1+2+…+n)-4n =3n(n+1)-8n2 =n(3n-5)2,n∈N*. (2)設(shè)an=(n-1)d-1,則 [cn+(n-1)d-1][15cn+(n+1)d-1] =(4cn++nd-1)2, 15c2n+[(16n-14)d-16]cn+(n2-1)d2-2nd+1 =16c2n+8(nd-1)cn+n2d2-2nd+1, c2n+[(14-8n)d+8]cn+d2=0, 故Δ=[(14-8n)d+8]2-4d2 =[(12-8n)d+8][(16-8n)d+8] ≥0, [(3-2n)d+2][(2-n)d+1]≥0, 對(duì)任意正整數(shù)n成立. n=1時(shí),顯然成立; n=2時(shí),-d+2≥0,則d≤2; n≥3時(shí),[(2n-3)d-2][(n-2)d-1] >(2n-5)(n-3)≥0. 綜上知,1 21.(1)設(shè)Q(23cosθ,sinθ)是橢圓上一點(diǎn), P(0,1), 則|PQ|2=12cos2θ+(1-sinθ)2 =13-11sin2θ-2sinθ =14411-11sinθ+1112 ≤14411, 故|PQ|的最大值是121111. (2)設(shè)直線AB:y=kx+12, 直線與橢圓聯(lián)立,得 k2+112x2+kx-34=0. 設(shè)A(x1,y1),B(x2,y2), 故x1+x2=-kk2+112,x1x2=-34k2+112, PA:y=y1-1x1x+1與y=-12x+3交于點(diǎn)C, 則xC=4x1x1+2y1-2=4x1(2k+1)x1-1. 同理xD=4x2x2+2y2-2=4x2(2k+1)x2-1, 則|CD|=1+14·|xC-xD| =524x1(2k+1)x1-1-4x2(2k+1)x2-1 =25x1-x2[(2k+1)x1-1][(2k+1)x2-1] =25x1-x2(2k+1)2x1x2-(2k+1)(x1+x2)+1 =25kk2+1122+3k2+112-(2k+1)234k2+112+(2k+1)kk2+112+1 =352·16k2+13k+1 =655·16k2+1·916+13k+1 ≥655, 當(dāng)且僅當(dāng)k=316時(shí)取等號(hào). 22.(1)f′(x)=1x-e2x2=2x-e2x2, 故f(x)在0,e2上單調(diào)遞減,在e2,+∞上單調(diào)遞增.圖6 (2)(i)不妨設(shè) x1 則x1,x2,x3滿足 y=f′(xi)(x-xi)+f(xi), 所以x1,x2,x3是f′(x)(x-a)-f(x)+b=0的三個(gè)正實(shí)數(shù)根, 即1x-2ex2(x-a)-e2x-lnx+b=0. 記g(x)=1x-2ex2(x-a)-e2x-lnx+b =0,a>e, g′(x) =1x-e2x2+-1x2+ex3(x-a)+e2x2-1x =-1x3(x-e)(x-a), 則g(x)在(0,e)上單調(diào)遞減,(e,a)上單調(diào)遞增,(a,+∞)上單調(diào)遞減, 由于x1,x2,x3是f′(x)(x-a)-f(x)+b=0的三個(gè)正實(shí)數(shù)根, 則0 又由于x→0時(shí), g(x)→-lnx→+∞,g(x)=b-a2e-1, g(a)=-e2a-lna+b; x→+∞時(shí),g(x)→-lnx→-∞, 于是g(e)=b-a2e-1<0, g(a)=-e2a-lna+b=b-f(a)>0, 由于b 要證b 只需證a2e+1 即e2a+lna>32, 由(1)知a>e時(shí),f(a)>f(e)=32. 綜上知,0 (ii)由于 g′(x)=-1x3(x-e)(x-a),0 則g(x)在(0,a)上單調(diào)遞減,(a,e)上單調(diào)遞增,(e,+∞)上單調(diào)遞減, 圖7 則0 a 又由于x→0時(shí), g(x)→-lnx→+∞, g(e)=b-a2e-1, g(a)=-e2a-lna+b, x→+∞時(shí),g(x)→-lnx→-∞, 于是g(e)=b-a2e-1>0, g(a)=-e2a-lna+b<0, 故a2e+1 由于 g(x)=1x-e2x2(x-a)-e2x-lnx+b =1-a+ex+ea2x2-lnx+b. 記x=et,ae=m∈(0,1), 則-a+eet+a2et2+lnt+b =lnt+m2t2-(m+1)t+b=0, 要證2e+e-a6e2<1x1+1x3<2a-e-a6e2. 記t1=ex1,t3=ex3, k=t1t3=x3x1>ea=1m>1, 只需證13-m6=2+e-a6e <2ea-e-a6e=2m-1-m6, 即證t1+t3-13-m6t1+t3-2m+1-m6 <0, 即t1+t3-2-2m<(m-13)(m2-m+12)36m(t1+t3), 由lnt1+m2t23-(m+1)t1 =lnt3+m2t23-(m+1)t3,t1>t3, 故lnt1-lnt3+m2(t21-t23)-(m+1)(t1-t3)=0, 得t1+t3-2-2m=-2m·lnt1-lnt3t1-t3, 只需證-2m·lnt1-lnt3t1-t3 <(m-13)(m2-m+12)36m(t1+t3), 即證t1+t3t1-t3lnt1t3+(m-13)(m2-m+12)72(t1+t3)>0, 由于t1=kt3, 即證 (k+1)lnkk-1+(m-13)(m2-m+12)72>0. 記φ(x)=(x+1)lnxx-1(x>1), φ′(x)=1(x-1)2x-1x-2lnx>0, 則φ(x)在(1,+∞)上單調(diào)遞增, 于是(k+1)lnkk-1+(m-13)(m2-m+12)72 >m+1m-1lnm+(m-13)(m2-m+12)72. 記 w(x)=lnx+(x-1)(x-13)(x2-x+12)72(x+1) (0 只需證w(x)>0, 由w′(x)=(x-1)272x(x+1)2(3x3-20x2-49x+72) >(x-1)272x(x+1)2(3x3+3)>0, 知w(x)在(0,1)上單調(diào)遞減, 故w(x)>w(1)=0,得證.