王?!埶『鷦潘?/p>
摘要:BBM-KdV方程因能描述大量的物理現(xiàn)象如淺水波和離子波等而占有重要的地位,是弱非線性色散介質(zhì)中長(zhǎng)波單向傳播的重要模型,其數(shù)值研究少有涉及。針對(duì)一類帶有齊次邊界條件的廣義BBM-KdV方程的初邊值問題,提出了一個(gè)具有二階理論精度的兩層非線性有限差分格式,合理模擬了問題本身的兩個(gè)守恒量,并給出差分格式的先驗(yàn)估計(jì),討論其差分解的存在唯一性,并用離散泛函分析方法證明該格式的收斂性和無條件穩(wěn)定性,最后通過數(shù)值模擬驗(yàn)證了該數(shù)值方法的可靠性。
關(guān)鍵詞:廣義BBM-KdV方程;差分格式;守恒;收斂性;穩(wěn)定性
DOI:10.15938/j.jhust.2022.04.019
中圖分類號(hào): O241.82
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2022)04-0147-07
Conservative Finite Difference Method for Solving
Generalized BBM-KdV Equation
WANG Xi,ZHANG Shuang,HU Jin-song
(School of Science, Xihua University, Chengdu 610039,China)
Abstract:The BBM-KdV equation plays an important role because it can describe a large number of physical phenomena, such as shallow water waves and ion waves. It is an important model for long-wave unidirectional propagation in weakly nonlinear dispersive media, but its numerical investigations are rarely made. For the initial-boundary value problem of the generalized BBM-KdV equations with homogeneous boundary conditions, a two-level nonlinear finite difference scheme with the second-order theoretical accuracy is proposed, which reasonably simulates the two conserved quantities of the problem. With a priori estimation, the existence and uniqueness of the difference solutions are dicussed. By the discrete functional analysis method the convergence and unconditional stability of the scheme are also proved. Finally, some numerical experiments verify the robustness of the proposed scheme.
Keywords:generalized BBM-KdV equation; difference scheme; conservation; convergence; stability
0引言
1差分格式及守恒性
2差分解的存在性
3收斂性、穩(wěn)定性及數(shù)值解的唯一性
4數(shù)值實(shí)驗(yàn)
5結(jié)語(yǔ)
本文對(duì)一類帶有齊次邊界條件的廣義BBM-KdV方程的初邊值問題(1)~(3)進(jìn)行了數(shù)值方法研究,提出了一個(gè)兩層非線性數(shù)值差分格式(6)~(8),該格式是無條件穩(wěn)定的。從表1可以看出,該數(shù)值格式明顯具有二階精度;從表2和圖1、2可以看出,數(shù)值式格式對(duì)原問題的物理守恒量(4)和(5)也進(jìn)行了合理有效地模擬。另外,數(shù)值模擬還發(fā)現(xiàn),參數(shù)β和γ的變化對(duì)數(shù)值解的誤差影響也較小,所以本文數(shù)值求解方法是可靠的。
參 考 文 獻(xiàn):
[1]PEREGRINE D.H.. Calculations of the Development of an Undular Bore[J]. J. Fluid Mech, 1966, 25(2):321.
[2]PEREGRINE D.H.. Long Waves On Beach[J]. J. Fluid Mech, 1967,27(4):815.
[3]BENJAMIN T.B., BONA J.L., MAHONY J.J.. Model Equations for Long Waves in Nonlinear Dispersive Systems[J]. Philos.Trans.Roy. Soc.London., Ser. A, 1972, 272: 47.
[4]KORTEWAG D.J., DEVRIES G.. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves[J]. Phil.mag.,1985,39(5): 422.
[5]ACHOURI T., KHIARI N ., OMRANI K.. On the Convergence of Difference Schemes for the Benjamin-bona-mahony (BBM) Equation[J]. Appl Math Comput, 2006,182(2):999.
[6]OMRANI K., AYADI M.. Finite Difference Discretization of the Benjamin-Bona-Mahony-Burgers Equation[J]. Numer Methods Partial Diff Equ, 2008,24(1):239.
[7]ACHOURI T., AYADI M., OMRANI K.. A Fully Galerkin Method for the Damped Generalized Regularized Long-wave (DGRLW) Equation[J]. Numer Methods Partial Diff Equ,2009,25:668.
[8]OMRANI.K.. The Convergence of Fully Discrete Galerkin Approximations for the Benjamin-Bona-Mahony (BBM) Equation[J]. Appl Math Comput, 2006,180(2):614.
[9]KHALIFA A.K., RASLAN K.R., ALZUBAIDI H.M.. A Finite Difference Scheme for the MRLW and Solitary Waves Interactions[J]. J Comput Appl Math 2007,(189):346 .
[10]KADRI T., KHIARI N., ABIDI F., et al. Methods for the numerical solution of the Benjamin-Bona-Mahony-Burgers equation[J]. Numer Methods Partial Differ Equ,2008(24):1501.
[11]ACHOURI T., OMRANI K.. Application of the Homotopy Perturbation Method to the Modified Regularized Long-wave Equation[J]. Numer Methods Partial Differ Equ, 2010,26(2):399.
[12]ABBASBANDY S., SHIRZADI A.. The First Integral Method for Modified Benjamin-Bona-Mahony Equation[J]. Commun Nonlinear Sci Numer Simulat,2010,15:1759.
[13]DEHGHAN M., ABBASZADEH M., MOHEBBI A.. The Numerical Solution of Nonlinear High Dimensional Generalized Benjamin-Bona-Mahony-Burgers Equation Via the Meshless Method of Radial Basis Functions. Comput Math Appl, 2014,68(3):212.
[15]MEI L., CHEN Y.. Numerical Solutions of RLW Equation Using Galerkin Method with Extrapolation Techniques[J]. Comput Phys Commun, 2012,183(8):1609.
[16]MOHAMMADI M., MOKHTARI R.. Solving the Generalized Regularized Long Wwave Equation on the Basis of a Reproducing Kernel Space[J]. J. Comput, 2011, 235(14): 4003.
[17]DUTYKH D., PELINOVSKY E.. Numerical Simulation of a Solitonic Gas in KdV and KdV-BBM Equations[J].Phys. Lett. A, 2014, 378:3102.
[18]ASOKAN R., VINODH D.. Soliton and Exact Solutions for the KdV-BBM Type Equations by Tanh-coth and Transformed Rational Function Methods[J]. Int. J. Appl. Comput. Math,2018,(4):100.
[19]ROUATBI A., OMRANI K.. Two Conservative Difference Schemes for a Model of Nonlinear Dispersive Equations[J]. Chaos Solitons Fractals: 2017(104):516.
[20]何麗,王希,胡勁松.廣義BBM-KdV方程的一個(gè)守恒C-N差分格式[J].理論數(shù)學(xué),2021,11(4):428.HE Li, WANG Xi, HU J. A Conserved C-N Difference Scheme for Generalized BBM-KdV Equations[J]. Theor Math., 2021, 11(4): 428.
[21]ZHOU Y.L. ?Application of Discrete Functional Analysis to the Finite Difference Methods[M].Int. J algebra comput, Pergamon Press, 1991: 260.
[22]BROWDER F.E.. Existence and Uniqueness Theorems for Solutions of Nonlinear Boundary Value Problems[J]. Proc. Symp. Appl Math.,1965(17):24.
(編輯:溫澤宇)