王梓萱 崔云安 王靜
摘要:Riesz角度μ2(x)是Banach格空間中一個(gè)重要的幾何常數(shù),其與空間的不動(dòng)點(diǎn)性質(zhì)密切相關(guān)。研究了賦Luxemburg范數(shù)的Orlicz序列空間的M-常數(shù)和賦Luxemburg范數(shù)的Orlicz函數(shù)空間的M-常數(shù),并在此基礎(chǔ)上還給出了EΦ具有弱不動(dòng)點(diǎn)性質(zhì)的判別準(zhǔn)則。
關(guān)鍵詞:M-常數(shù);Orlicz空間;Luexmburg范數(shù);Riesz角度
DOI:10.15938/j.jhust.2022.04.018
中圖分類(lèi)號(hào): O177.2
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2022)04-0142-05
M-constants in Orlicz Spaces Equipped
with the Luxemburg Norm
WANG Zi-xuan,CUI Yun-an,WANG Jing
(School of Science, Harbin University of Science and Technology, Harbin 150080,China)
Abstract:Riesz angle μ2(x) is an important geometric constant in Banach lattice spaces, which is closely related to the fixed point properties of spaces.?In this paper, the M-constants of Orlicz function spaces and Orlicz sequence spaces equipped with Luxemburg norm are obtained.?On this basis, a criteria for EΦhas weak fixed point property was also given.
Keywords:M-constants; Orlicz spaces; Luxemburg norm; Riesz angles
0引言
1預(yù)備知識(shí)
2Orlicz序列空間的M-常數(shù)
3Orlicz函數(shù)空間的M-常數(shù)
參 考 文 獻(xiàn):
[1]SIMS B. Orthogonality and Fixed Points of Nonexpansive Maps[J]. Proc. Cent. Anal. Nat. Univ, 1988, 20: 178.
[2]CUI YA, FORALEWSKI P, HUDZIK H. M-constants in Orlicz-Lorentz Function Spaces[J]. Mathematische Nachrichten, 2019, 292(12): 2556.
[3]CUI YA, FORALEWSKI, PAWEL, et al. M-constants in Orlicz-Lorntz Sequence Spaces with Applications to Fixed Point Theory[J]. Fixed Point Theory An International Journal, 2018, 19(1): 141.
[4]HE X, CUI YA, HUDZIK H. The Fixed Point Property of Orlicz Sequence Spaces Equipped with the P-Amemiya Norm[J]. Fixed Point Theory and Applications, 2013(1):1.
[5]CUI YA, HUDZIK H, WISIA M. M-Constants, Dominguez-Benavides Coefficient, and Weak Fixed Point Property in Orlicz Sequence Spaces Equipped with the P-Amemiya Norm[J]. Fixed Point Theory and Applications, 2016, 89: 1.
[6]ABRAMOVICH Y. A., LOZANOVSKI G. Y. Certain Numerical Characteristics of KN-lineals[J]. Mathematical Notes, 1973, 14(5): 973.
[7]LIFSHITS E. A. On the Theory of Partially Ordered Banach Spaces[J]. Functional Analysis and Its Applications, 1969, 4(1): 75.
[8]LUXEMBURG W. Banach Function Spaces[J]. Van Gorcum, 1955, 129: 1.
[9]KRASNOSEL′SKI, M. A, RUTICKI, JA. B. Convex Functions and Orlicz Spaces[J]. P. Noordhoff, 1961.
[10]KRASNOSELSKI. M. A. Convex Functions and Orlicz Spaces[J]. US Atomic Energy Commission, 1960: 80.
[11]YAN Y. Riesz Angles of Orlicz Sequence Spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 2002, 43(1): 938.
[12]孟院花. Banach格的直和性質(zhì)[D]. 成都:西南交通大學(xué), 2016:1.
[13]崔云安,郭晶晶.與不動(dòng)點(diǎn)性質(zhì)相關(guān)的新常數(shù)[J].哈爾濱理工大學(xué)學(xué)報(bào), 2016, 21(2): 122.CUI Yunan, GUO Jingjing. A New Constant Associated with the Fixed Point Property[J]. Journal of Harbin University of Science and Technology , 2016, 21(2): 122.
[14]王稀. Banach空間中與不動(dòng)點(diǎn)性質(zhì)有關(guān)的幾何性質(zhì)[D].哈爾濱:哈爾濱工業(yè)大學(xué),2017.
(編輯:溫澤宇)