国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

堆置處理對蠶絲/滌綸交織物染色性能的影響

2022-05-25 20:51楊廣青宋亞偉房寬峻
絲綢 2022年5期
關鍵詞:滌綸蠶絲

楊廣青 宋亞偉 房寬峻

摘要: 文章針對活性染料/分散染料混合染液對蠶絲/滌綸交織物軋染過程中存在的染色深度的問題,采用堆置法調(diào)節(jié)染料在兩種纖維間的分配率并改善其染色性能。研究了堆置時間對分散染料在蠶絲和滌綸纖維上分配率的影響,探討了蠶絲/滌綸交織物的染色深度和堆置時間的關系,考察了染色前后織物的耐摩擦色牢度和耐皂洗色牢度。結(jié)果表明,通過密封堆置浸軋活性染料/分散染料混合染液的蠶絲/滌綸交織物,提高了分散染料在滌綸纖維上的分配率,促進了活性染料對蠶絲的吸附和滲透,顯著提升了蠶絲/滌綸交織物的染色深度。同時,染色織物具有良好的色牢度。

關鍵詞: 蠶絲;滌綸;交織物;軋染;堆置;活性染料;分散染料

中圖分類號: TS193.5文獻標志碼: A文章編號: 10017003(2022)05000806

引用頁碼: 051102DOI: 10.3969/j.issn.1001-7003.2022.05.002

蠶絲/滌綸交織物兼具蠶絲纖維和滌綸纖維的特點,具有優(yōu)異的吸濕透氣性和抗皺性[1],成為蠶絲制品提升服用性能和降低成本的重要選擇[2]。蠶絲是親水性纖維,通常用水溶性的陰離子染料進行染色,如酸性染料[3]、活性染料[4-5]等。滌綸為疏水性纖維,需使用具有極低水溶性的分散染料進行染色[6-8]。由于蠶絲和滌綸的適用染料和上染過程有明顯區(qū)別,蠶絲/滌綸交織物染色過程中容易出現(xiàn)顏色不深、同色性差、染料固色率低等問題。為了降低蠶絲和滌綸之間的差異對蠶絲/滌綸交織物染色造成的影響,通常采用兩浴法對其進行染色[9-10]。但這種染色方法工藝復雜、流程長、效率低、能耗大,不符合生態(tài)染整的發(fā)展趨勢。因此,開發(fā)適合蠶絲/滌綸交織物的短流程清潔染色工藝具有良好的應用前景。

蠶絲/滌綸交織物染色困難的主要原因在于兩種纖維的結(jié)構(gòu)和親疏水性差異較大,所適用染料的種類和染色機理完全不同。為了解決蠶絲/滌綸交織物的染色問題,近年來一些研究者對親水性纖維/疏水性纖維交織或混紡織物的染色工藝進行了優(yōu)化。唐人成等[11]篩選了對蠶絲沾色低、堿可洗性好的分散染料,并與活性染料一起配制染液,采用浸染法首先在高溫下使分散染料上染滌綸,再降溫加堿使活性染料進一步在蠶絲纖維上發(fā)生固著。在相關領域,王建慶等[12]利用浸染法對滌/棉混紡織物進行一浴兩步法染色,首先用分散染料在130 ℃條件下對滌綸纖維染色60 min,然后使染液的溫度降至60 ℃,加入活性染料對棉纖維進行染色,保溫30 min后加入碳酸鈉使活性染料完成固色。以上方法雖然能夠在一定程度上降低親水性纖維和疏水性纖維染色的差異性,但是均為浸染法染色,對于效率更高、成本更低的軋染法的研究較少。在軋染工藝中,兩種染料在蠶絲/滌綸交織物不同纖維間的分配難以調(diào)控,容易造成染深性差、同色性差等問題。

本文將堆置處理應用于蠶絲/滌綸交織物的軋染過程,研究了堆置處理對分散染料在交織物蠶絲纖維和滌綸纖維間分配情況的影響,分析了分散染料在纖維間的分配率與染色深度的相關性,探究了堆置時間對織物染色效果的影響規(guī)律,實現(xiàn)了分散染料和活性染料對蠶絲/滌綸交織物的一浴法軋染染色,為開發(fā)蠶絲/滌綸交織物短流程清潔染色工藝提供了新思路。

1實驗

1.1材料及儀器

材料:蠶絲/滌綸平紋交織物(濱州愉悅家紡有限公司),經(jīng)向為蠶絲(360根/10 cm),緯向為滌綸(150根/10 cm),混紡比為66/34,織物平方米質(zhì)量為88 g/m2;商品活性藍MB(河北邢臺歐陽化工有限公司),商品分散藍2B、商品分散紅3B、商品分散紅玉167、商品分散深藍79(浙江龍盛染料化工有限公司),N,N-二甲基甲酰胺(DMF)、十二烷基苯磺酸鈉(LAS)(國藥集團化學試劑有限公司),十二烷基二甲基甜菜堿(BS12)、脂肪醇聚氧乙烯醚(AEO9)、十二烷基三甲基氯化銨(1231)(山東優(yōu)索化工科技有限公司)。

儀器:HF74320臥式軋車(瑞士Mathis公司),Hwl鼓風干燥箱(天津萊玻特瑞儀器設備有限公司),BHS-4數(shù)顯恒溫水浴鍋(江陰市保利科研器械有限公司),LTE-S120920涂層焙烘機(瑞士Mathis公司),U-3900H分光光度計(日本株式會社日立高新技術(shù)科學那珂事業(yè)所),Datacolor850計算機測色配色儀(美國Datacolor公司),Q238BB耐摩擦色牢度儀(英國Gellowen公司),SW-20B耐水洗色牢度儀(泉州市美邦儀器有限公司)。

1.2染色方法

稱取適量活性染料和分散染料,在磁力攪拌下先后緩慢加入盛有一定量去離子水的燒杯中,攪拌30 min后將混合染液轉(zhuǎn)移至100 mL容量瓶中定容,配置成活性染料/分散染料混合染液。

將蠶絲/滌綸交織物浸軋混合染液,二浸二軋,軋余率為50%。將浸軋好的織物用自封袋密封并在室溫下堆置0~2 h,然后在100 ℃鼓風干燥箱中烘干??椢锖娓珊笤?60~200 ℃條件下進行焙烘,之后置于飽和蒸汽中進行汽蒸處理,最后洗滌、烘干,得到染色織物。

1.3測試

1.3.1染料分配率

將蠶絲/滌綸交織物在分散染料染液中二浸二軋,烘干。將烘干布樣的蠶絲纖維和滌綸纖維拆分并剪碎。定量稱取蠶絲和滌綸,加入一定量的DMF中,于室溫下靜置30 min,得到提取液。測定提取液最大吸收波長對應的吸光度,根據(jù)下式計算出染料分配率。

式中:Ds、Dt分別表示分散染料在蠶絲和滌綸上的分配率;As、At分別為蠶絲和滌綸上染料提取液在最大波長處的吸光度;ms、mt分別為蠶絲纖維和滌綸纖維的質(zhì)量。

1.3.2顏色參數(shù)

染色交織物顏色參數(shù):染色織物用Datacolor850計算機測色配色儀在D65光源/10°視角下測試360~700 nm波長內(nèi)的顏色參數(shù)。

染色交織物纖維顏色參數(shù):將染色織物的紗線拆開,并折疊至光線無法透過,用Datacolor850計算機測色配色儀在D65光源/10°視角下測試360~700 nm波長內(nèi)的顏色參數(shù)。

1.3.3色牢度

耐摩擦色牢度和耐皂洗色牢度分別參考GB/T 3920—2008《紡織品色牢度試驗耐摩擦色牢度》和GB/T 3921—2008《紡織品色牢度試驗耐皂洗色牢度》進行測試。

2結(jié)果與分析

2.1堆置時間對分散染料分配率的影響

將蠶絲/滌綸交織物浸軋分散藍2B染液并立即在100 ℃鼓風干燥箱中放置1 min,使織物烘干,測試染料在滌綸和蠶絲纖維間的分配情況,結(jié)果如圖1所示。由圖1(a)可知,分散藍2B在滌綸纖維上的分配率在20%左右,并且其不因染料質(zhì)量濃度的增加而產(chǎn)生明顯變化。如圖1(b)所示,分散藍2B在蠶絲組分上的分配率占織物上分散藍2B總量的80%。這表明,蠶絲/滌綸交織物浸軋分散藍2B染液后,分散染料主要存在于蠶絲纖維上,并且分配情況不受染料質(zhì)量濃度的影響。蠶絲為親水性纖維,而滌綸為疏水性纖維,織物浸軋染液后,商品分散染料會隨著染液一起移動并大量吸附在蠶絲纖維上,導致分散藍2B大量附著于蠶絲纖維。在蠶絲/滌綸交織物染色過程中,分散染料主要用于滌綸纖維的染色,但是由于分散染料主要存在于蠶絲纖維表面,不利于其上染滌綸纖維,導致滌綸的染色深度較淺。

為提高分散藍2B在滌綸纖維上的分配量,將蠶絲/滌綸交織物浸軋分散藍2B染液并密封堆置,測得的分散藍2B在交織物上的分配情況如圖2所示。由圖2(a)可知,經(jīng)過堆置后,交織物滌綸纖維上的分散藍2B的分配率明顯增大。在堆置時間達到1.5 h后,分散藍2B在交織物滌綸組分上的分配率從22%提升到了30%。而分散藍2B在蠶絲纖維上的分配率隨堆置時間的延長從78%降低至70%,如圖2(b)所示。因此,適當延長堆置時間可以提高分散藍2B在滌綸纖維上的分配率。這是因為蠶絲纖維和滌綸纖維上的染料質(zhì)量濃度不同,在堆置過程中,分散藍2B由于質(zhì)量濃度梯度的作用,部分移向質(zhì)量濃度較低的滌綸表面。

圖3(a)為堆置處理對不同類型分散染料在滌綸纖維上分配率的影響,可以看出,對于不同類型的分散染料,經(jīng)過堆置處理后,染料在滌綸組分上的分配率均得到明顯提高。圖3(b)為蠶絲/滌綸交織物以不同軋余率浸軋分散藍2B染液,測得堆置前后的染料分配率。當織物的軋余率小于50%時,堆置處理對染料分配率的影響不大;當軋余率達到50%及以上時,織物經(jīng)過堆置處理后,分散染料在滌綸上的分配率明顯增加。圖3(c)為不同表面活性劑對堆置前后分散藍2B分配率的影響,可以看出,在表面活性劑存在時,堆置處理對分散染料在滌綸上分配率的提升作用依然十分明顯,并且該現(xiàn)象不會因表面活性劑種類的變化而發(fā)生改變。由于蠶絲和滌綸的親疏水性差異較大,織物浸軋染液后,絕大部分活性染料和分散染料會隨著水分子吸附到蠶絲纖維表面。在堆置過程中,分散染料和蠶絲的相互作用較小,因此其會在質(zhì)量濃度梯度的作用下向滌綸表面遷移,并通過疏水作用力與滌綸結(jié)合。提高軋余率,蠶絲和滌綸表面分散染料的質(zhì)量濃度梯度逐漸增大,因此堆置處理后分散染料在滌綸表面的分配率逐漸增加。除此之外,向染液中添加表面活性劑能夠提升染液對織物的潤濕性,但是兩種纖維的親疏水性的差異不會有明顯變化,分散染料依然會首先集中在蠶絲纖維表面,然后向滌綸纖維遷移。

2.2堆置時間與分散染料染色效果的關系

為探究堆置時間對分散藍2B染色結(jié)果的影響,本文將蠶絲/滌綸交織物浸軋分散藍2B染液,堆置、固色、洗滌,拆去交織物中的蠶絲纖維,并測試染色滌綸纖維的顏色參數(shù),結(jié)果如表1所示。由表1可知,隨著堆置時間的適當延長,染色滌綸纖維的各顏色參數(shù)均發(fā)生了改變,染色后的滌綸纖維的L*值(明度值)減小,K/S值增大,表明滌綸纖維顏色加深;a*值(紅-綠色光)增加,表明滌綸纖維的紅色光提升;b*值(黃-藍色光)減小,表明滌綸纖維的藍色光提升;此外,染色滌綸纖維的c*值(飽和度)增大,表明其顏色更加鮮艷。由此可見,適當延長堆置時間能夠提高分散藍2B對滌綸纖維的染色深度。堆置過程中,分散染料在滌綸上的分配率提高,有利于滌綸獲得更高的染色深度。

2.3堆置時間與活性染料染色效果的關系

為探究堆置時間對活性藍MB染色效果的影響,本文將蠶絲/滌綸交織物浸軋活性藍MB染液,堆置、固色、洗滌并烘干,最后拆下交織物中的蠶絲組分,測試其顏色參數(shù),結(jié)果如表2所示。由表2可以看出,隨著堆置時間延長至1.5 h,蠶絲的L*值由60.8降至56.6,而K/S值有所提升,表明染色后蠶絲顏色加深。另外,染色后蠶絲的a*值增大,b*值減小,分別表明其綠色光降低、藍色光提升;染色后蠶絲的c*值隨堆置時間的延長而增大,表明堆置處理使染色蠶絲的色彩飽和度提高,色光變得更加鮮艷。綜上所述,適當延長堆置時間能有效提升活性藍MB對蠶絲的染色深度,且堆置處理使活性染料分子對蠶絲的吸附滲透更加充分,導致蠶絲的染色深度提高。

2.4堆置處理對蠶絲/滌綸交織物染色效果的影響

本文研究了堆置時間對活性藍MB/分散藍2B混合染液染色蠶絲/滌綸交織物顏色參數(shù)的影響,測試結(jié)果如表3所示。由表3可以看出,隨著堆置時間的延長,染色交織物的顏色參數(shù)發(fā)生了明顯的變化,染色交織物的L*值減小,K/S值增大,表明其顏色加深;染色交織物的a*值增大,b*值減小,c*值增大,表明織物的紅光和藍光增加,色彩飽和度提高,顏色更加鮮艷。因此,利用活性藍MB/分散藍2B混合染液對蠶絲/滌綸交織物進行染色時,適當延長堆置時間能夠使織物的染色深度顯著提升。堆置處理改善了蠶絲纖維和滌綸纖維的染色效果,進而提升了染色織物的顏色深度。

染色后蠶絲/滌綸交織物的耐摩擦色牢度和耐皂洗色牢度如表4所示。由表4可以看出,活性染料/分散染料混合染色的蠶絲/滌綸織物的耐摩擦色牢度和耐皂洗沾色牢度均在4~5級,耐皂洗變色牢度在3~4級,說明染色織物具有較高的耐摩擦色牢度和良好的耐皂洗色牢度。

3結(jié)論

本文使用活性染料和分散染料,通過“浸軋-堆置-固色-洗滌”工藝對蠶絲/滌綸交織物染色,測定了染料分配率和染色織物的顏色參數(shù),探討了堆置處理對蠶絲/滌綸交織物染色效果的影響。結(jié)果表明,堆置處理對織物的染色效果具有提升作用。

1) 蠶絲/滌綸交織物浸軋染液并烘干以后,染料主要分布于蠶絲纖維上。對浸軋染液后的蠶絲/滌綸交織物作堆置處理能夠提高分散染料在滌綸纖維上的分配率,且其效果不因染料類型不同和表面活性劑存在與否而改變。

2) 織物的軋余率對堆置處理的作用影響較大,當軋余率達到50%及以上時,適當延長堆置時間能夠促進活性染料/分散染料混合染液對蠶絲/滌綸交織物的染色。

3) 堆置處理能夠提高蠶絲/滌綸交織物的染色深度,且染色織物具有良好的耐摩擦色牢度和耐皂洗色牢度。

《絲綢》官網(wǎng)下載中國知網(wǎng)下載

參考文獻:

[1]胥鑫萌, 劉偉, 童天嬌, 等. 天然蠶絲在紡織中的應用[J]. 蠶桑茶葉通訊, 2021(3): 9-12.XU Xinmeng, LIU Wei, TONG Tianjiao, et al. Application of natural silk in textile industry[J]. Sericulture and Tea Newsletter, 2021(3): 9-12.

[2]程嵐, 李彩彩, 蔡夢瑤, 等. 蠶絲混紡紗線的研發(fā)現(xiàn)狀[J]. 蠶學通訊, 2021, 41(3): 17-24.CHENG Lan, LI Caicai, CAI Mengyao, et al. Research and development of silk blended yarn[J]. Sericulture Newsletter, 2021, 41(3): 17-24.

[3]項偉, 蔡再生. 桑蠶絲織物酸性染料清潔染色工藝[J]. 紡織學報, 2010, 31(11): 77-82.XIANG Wei, CAI Zaisheng. Clean dyeing of silk fabric with acid dyes[J]. Journal of Textile Research, 2010, 31(11): 77-82.

[4]周家偉, 姚平, 許磊. 蠶絲織物活性染料冷軋堆染色工藝的優(yōu)化[J]. 紡織學報, 2011, 32(4): 79-84.ZHOU Jiawei, YAO Ping, XU Lei. Optimizing cold pad-batch dyeing of silk fabric with reactive dyes[J]. Journal of Textile Research, 2011, 32(4): 79-84.[5]WANGATIA L M, CAI Z S, CHEN Y M, et al. Dyeing of male silk fibers with reactive dyes[J]. Journal of the Textile Institute, 2012, 103(1): 64-69.

[6]王小艷, 杜金梅, 彭鈴淇, 等. 滌綸針織物堿減量和染色一浴一步法工藝[J]. 紡織學報, 2020, 41(1): 80-87.WANG Xiaoyan, DU Jinmei, PENG Lingqi, et al. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric[J]. Journal of Textile Research, 2020, 41(1): 80-87.

[7]曹機良, 孟春麗, 陳云博. 滌綸堿減量和染色一浴處理工藝研究[J]. 絲綢, 2016, 53(2): 19-25.CAO Jiliang, MENG Chunli, CHEN Yunbo. One bath dyeing and alkali deweighting process of polyester fabric[J]. Journal of Silk, 2016, 53(2): 19-25.

[8]YOUSSEF Y A, AHMED N S E, MOUSA A A, et al. Alkaline dyeing of polyester and polyester/cotton blend fabrics using sodium edetate[J]. Journal of Applied Polymer Science, 2008, 108(1): 342-350.

[9]梅士英, 唐人成. 新型多組分纖維紡織品染整(十二)[J]. 印染, 2010, 36(2): 45-48.MEI Shiying, TANG Rencheng. Dyeing and finishing of novel multi-component fiber textiles (12)[J]. China Dyeing and Finishing, 2010, 36(2): 45-48.

[10]瞿永. 蠶絲復合織物染色技術(shù)的研究進展[J]. 紡織學報, 2007(10): 124-126.QU Yong. Progress in the research for dyeing of silk composite fabrics[J]. Journal of Textile Research, 2007(10): 124-126.

[11]唐人成, 夏永林, 趙建平, 等. 蠶絲/滌綸微纖維交織物活性/分散染料一浴法染色[J]. 絲綢, 2002(4): 10-13.TANG Rencheng, XIA Yonglin, ZHAO Jianping, et al. One bath dyeing of silk/polyster microfiber mixtures with reactive/disperse dyes[J]. Journal of Silk, 2002(4): 10-13.

[12]王建慶, 吳嬋娟, 劉海林. 滌/棉織物分散/活性染料染色的免還原凈洗技術(shù)[J]. 紡織學報, 2013, 34(4): 70-74.WANG Jianqing, WU Chanjuan, LIU Hailin. Reduction clearing-free dyeing of polyester/cotton fabrics with disperse/reactive dyes[J]. Journal of Textile Research, 2013, 34(4): 70-74.

The influence of batching treatment on dyeing performance of silk/polyester interwoven fabricsYANG Guangqing, SONG Yawei, FANG Kuanjun(a.College of Textiles & Clothing; b.State Key Laboratory for Biofibers and Eco-Textiles; c.Collaborative Innovation Center for

Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China)

Abstract: Silk, which is one of the earliest natural protein fibers used by human beings, has a long history of more than 6 000 years in China. Silk fabrics possess fine gloss, soft feel and excellent skin-friendly properties, which are incomparable to any other textile fiber products. Silk fabrics also have gorgeous appearance, are of high prices, and have become an important choice for high-grade textiles, so silk is known as the "queen" of fiber. Generally, for the purpose of improving the wrinkle resistance of silk fabrics, silk can be combined with polyester fibers, forming a kind of two-component interwoven fabrics. Silk/polyester interwoven fabrics not only show outstanding skin-friendly and hydrophilic properties, but also provide satisfactory wrinkle resistance, exhibiting excellent performance and unique style. In recent years, silk/polyester interwoven fabrics are widely used in the field of clothing and home textiles after dyeing. At present, silk/polyester interwoven fabrics are usually dyed by two-bath method, but the process of this method is complicated, long, inefficient, and high-energy consumed. Therefore, it is in great demand to develop a short-process cleaner dyeing method for the coloration of silk/polyester interwoven fabrics.

In order to develop a clean dyeing method for silk/polyester interwoven fabrics, a one-bath two-step pad dyeing process based on reactive dyes/disperse dyes mixed dyeing solution was studied. The amount of dyes on the surface of silk fibers and polyester fibers was measured after the extraction using N, N-dimethylformamide. The effects of batching treatment on dye distribution between silk and polyester, as well as the dyeing performance of silk/polyester interwoven fabrics were explored. The effects of batching time, dye structure, dye pick-up and surfactant on the distribution of disperse dyes on silk fibers and polyester fibers were studied. The effect of batching treatment on the migration of dyes between silk fibers and polyester fibers was analyzed. Due to the large difference in hydrophilicity and hydrophobicity between silk fibers and polyester fibers, reactive dyes and disperse dyes mainly adsorb to the surface of silk fibers with water molecules when the fabrics are in contact with the dyeing solution. Consequently, there is a large concentration gradient of disperse dyes between silk fibers and polyester fibers. The concentration of disperse dyes on silk fibers is much greater than that on polyester fibers. The disperse dyes migrate to polyester fibers under the action of the concentration gradient and are attatched to the polyester surface through hydrophobic force. The concentration gradient of disperse dyes on the surface of silk fibers and polyester fibers increases gradually when the pick-up is increased, which causes an increase in the distribution of disperse dyes on the surface of polyester. In addition, adding surfactant to the dyeing solution can improve the wetting ability of dyeing solution to fabrics, but the difference in the hydrophilicity and hydrophobicity of the silk fibers and polyester fibers has no change. So, the disperse dyes still mainly concentrate on the silk surface after padding, and then migrate to polyester fibers in the process of batching treatment. The relationship between batching time and color strength of silk/polyester interwoven fabrics was investigated, and the rubbing fastness and washing fastness of the silk/polyester interwoven fabrics dyed by traditional baking-steaming dyeing process and batching-baking-steaming dyeing method were finally studied. In pad-dyeing process of silk/polyester interwoven fabrics, the homogeneity of dyes distribution on the surface of silk fibers and polyester fibers can be effectively improved after batching treatment, which is beneficial to improve the color performance and utilization efficiency of dyes. The results show that the batching treatment for the silk/polyester interwoven fabrics after padding the reactive dye/disperse dye mixed dyeing solution improves the distribution rate of the disperse dyes on the surface of polyester fibers. Moreover, it promotes the adsorption and penetration of reactive dyes on silk fibers, which significantly improves the color strength of silk/polyester interwoven fabrics. The dyed fabrics exhibit excellent rubbing fastness and washing fastness.

Exploring the relationship between batching treatment and dyeing performance of silk/polyester interwoven fabrics is beneficial to improve the uneven distribution of dyes on the surfaces of the two kinds of fibers during the dyeing process, and can provide a unique solution and theoretical guidance for realizing continuous pad dyeing of silk/polyester interwoven fabrics. It is helpful to develop a short-process clean dyeing method for silk/polyester interwoven fabrics, which has promising application prospects.

Key words: silk; polyester; interwoven fabrics; pad dyeing; batching; reactive dyes; disperse dyes

猜你喜歡
滌綸蠶絲
Nissenken開展塑料瓶再生纖維判別試驗
舒適首選,青島新維紡織迭代滌綸受追捧
春蠶絲盡便會死嗎
我的新發(fā)現(xiàn)
化工:看好滌綸長絲盈利提升
格柵對錐型量熱儀最大熱釋放速率測試影響研究
石英砂固體分散劑制樣的裂解氣相色譜法測定滌/毛纖維混紡比列
察隅县| 当涂县| 舟曲县| 平泉县| 留坝县| 长沙县| 五台县| 新野县| 枣强县| 古蔺县| 和田市| 平山县| 枝江市| 万宁市| 阿瓦提县| 肇东市| 泗洪县| 赤峰市| 黄山市| 东至县| 鞍山市| 平遥县| 宜兰县| 九龙县| 寿宁县| 介休市| 涪陵区| 喀喇沁旗| 宣威市| 永康市| 安顺市| 晋州市| 新密市| 卓尼县| 大兴区| 邹平县| 盐边县| 比如县| 林芝县| 鹿邑县| 武夷山市|