何銳 盛建祥 張子航 倪慶清 傅雅琴
摘要: 為了進一步提高碳纖維及其復合材料的電熱性能,文章采用空心錠子紡絲法制備一系列蠶絲包覆碳纖維復合絲,并采用真空模塑方法制備蠶絲包覆碳纖維復合絲/環(huán)氧樹脂復合材料。通過場發(fā)射掃描電子顯微鏡(SEM)觀察蠶絲包覆碳纖維復合絲的形貌,通過直流穩(wěn)壓電源和紅外熱成像儀探討碳纖維束和包覆紗及其復合材料的電熱性能。結果表明:蠶絲包覆碳纖維復合絲的電阻隨蠶絲包纏度的增加而降低,當包纏度達到最大(包覆度100%)時,包覆紗的電阻降低了5.54%,其復合材料電阻降低了10.4%;當外加電壓為2.2 V時,包纏度最大的包覆紗溫度為522 ℃,相比于未包覆的碳纖維束的43.8 ℃增加了19.2%,同樣的電壓下,包纏度最大的包覆紗復合材料溫度為123.47 ℃,比碳纖維復合材料溫度(114.85 ℃)增加了7.5%。顯示了蠶絲包覆對碳纖維及其復合材料的電熱性能有顯著的提升作用。
關鍵詞: 碳纖維;蠶絲;包覆紗;復合材料;電熱性能
中圖分類號: TS102.33;TB332文獻標志碼: A文章編號: 10017003(2022)05000107
引用頁碼: 051101DOI: 10.3969/j.issn.1001-7003.2022.05.001
碳纖維(CF)除了具有優(yōu)異的機械性能外,還具有良好的電熱性能,無論是以復合材料的形式還是作為智能紡織品的形式,碳纖維正在從航空航天等國防軍事領域擴大到汽車制造、電子電氣等民用領域[1-3]。碳纖維屬于亂層石墨結構[4],在石墨同一片層的碳環(huán)中,所有碳原子形成一個巨大的π鍵,而這個大π鍵中的所有電子均能夠在層內自由流動,在電場作用下就會發(fā)生定向移動而產生電流[5],因此碳纖維材料良好的導電性能,其電阻率一般為(1.0~1.5)×10-3/cm[6]。與傳統(tǒng)金屬加熱器件相比,碳纖維具有密度小、加熱效果好等特點,然而由于層狀石墨結構的缺陷及在使用過程中不可避免地會出現(xiàn)磨損斷裂情況,存在碳纖維的電熱性能發(fā)揮不充分,在使用過程中易磨損斷裂的問題,影響其在電加熱領域應用的范圍[7]。因此,常常采用化學試劑對碳纖維進行表面處理,提高其電熱性能。
通過高溫處理來提高石墨化程度、在碳纖維表面摻雜導電粒子等方法來提高碳纖維的導電導熱已有大量的研究[8-12]。Cao等[13]將硫酸鎳和氯化鎳作為鎳源,采用電鍍法在碳纖維表面鍍上0.49 μm的鎳層來提高碳纖維的電熱性能,當施加1.75 V電壓時,未鍍鎳的12 K碳纖維束為140.1 ℃,而鍍鎳碳纖維束最高可以達到166 ℃的溫度,其復合材料的電熱轉化率也比未表面處理的高出32.5%,使碳纖維復合材料在電加熱除冰方面具有更好的應用前景。Qin等[14]將碳纖維浸入到穩(wěn)定的石墨烯納米片懸浮液中,制備了石墨烯納米片涂層的碳纖維/環(huán)氧樹脂復合材料,使復合材料的電導率增加了165%。Du等[15]將碳纖維在乙醇火焰中低溫(450 ℃)原位生長碳納米管,使得碳纖維橫向和沿纖方向上的電導率分別提高了170%和70%,而拉伸性能無明顯下降,但這些對碳纖維的表面處理,均需要通過化學方法實現(xiàn),一方面需要消耗較多的能量,另一方面存在增加環(huán)境負荷的風險。
蠶絲作為柔性有機天然纖維,由內層的絲素蛋白和外層的絲膠蛋白組成,在拉伸強度、斷裂伸長率及能量吸收方面均表現(xiàn)出優(yōu)異的性能[16-18],由氨基酸組成的絲膠與環(huán)氧樹脂中的氨基結合形成牢固的化學鍵,與環(huán)氧樹脂基體的黏合性能高于其他植物纖維。為此,本文采用空心錠子紡絲方法將蠶絲包纏在碳纖維束外,使松散的碳纖維束變得緊實,制備一系列不同包纏度的蠶絲/碳纖維包覆紗,之后制備蠶絲/碳纖維包覆紗增強環(huán)氧樹脂復合材料(簡稱SCFRP),研究了不同包纏度的蠶絲/碳纖維包覆紗及其復合材料的電熱性能,以期在不提高碳纖維含量的情況下,提高碳纖維及其復合材料電熱性能,為進一步提高碳纖維及其復合材料的電熱性能提供新途徑。
1實驗
1.1材料與試劑
直徑7 μm的3 K聚丙烯腈基碳纖維(T300B,日本東麗公司),22.2/24.4 dtex生絲(湖州大東吳絲綢有限公司),雙酚A型環(huán)氧樹脂(AM-8927A)、胺類固化劑(AM-8927B)(上海惠柏新材料科技股份有限公司),導電銀膠(深圳奧斯邦股份有限公司),小型中空錠子紡絲系統(tǒng)(實驗室自制)。
1.2方法
1.2.1蠶絲/碳纖維包覆紗的制備
蠶絲包覆碳纖維的制備如圖1所示,碳纖維束經過引導后以恒定速率向上穿過空心圓筒,空心圓筒上的蠶絲與空心軸以相同的速度順時針旋轉(Z向)。經過一次包纏后,以同樣的方法,將空心圓筒的旋轉方向改為逆時針方向旋轉(S向),將蠶絲第二次包覆在已經用蠶絲包覆后的碳纖維束外,得到兩次包纏方向不同的包覆紗。通過控制Z向和S向蠶絲根數及空心圓筒旋轉速率得到一系列不同包纏度和包纏圈數的蠶絲/碳纖維包覆紗,命名為S1CF~S4CF,如圖2所示。包覆參數如表1所示。
1.2.2蠶絲/碳纖維包覆紗環(huán)氧樹脂復合材料的制備
首先將20束碳纖維和蠶絲/碳纖維包覆紗分別平鋪在不銹鋼模具里并施加一定的張力使其處于伸直狀態(tài),放入60 ℃烘箱干燥12 h。之后將環(huán)氧樹脂AM-8927A、胺類固化劑AM-8927B按照10︰3質量比混合均勻,在450 r/min速率下攪拌10 min,放置于真空烘箱中除去氣泡,緩慢地澆注在事先準備好的模具中。最后將其置于真空烘箱中100 ℃固化3 h,再在150 ℃下固化15 min,冷卻脫模后得到包覆紗環(huán)氧樹脂復合材料,命名為CFRP和S1CFRP~S4CFRP,如圖3所示。復合材料中碳纖維和蠶絲體積分數如表2所示。
1.3儀器與設備
采用Ultra-55場發(fā)射掃描電鏡(FE-SEM,德國蔡司公司)表征碳纖維束及包覆紗的表面形貌;采用美國Instron 3367萬能材料試驗機測量包覆前后碳纖維束的拉伸強度;利用直流穩(wěn)壓電源(MS-6050)探討碳纖維束、不同包纏度包覆紗及其復合材料電熱性能;紅外熱成像儀(VarioCAM hr head 620,德國InfraTec公司)用以記錄碳纖維和包覆紗及其復合材料的電加熱溫度。
1.4電熱性能測試
纖維束電熱性能的測試:纖維束總長為12 cm,兩端分別浸潤1 cm的導電銀膠,之后連接直流穩(wěn)壓電源,施加1~6 V電壓測試紗線電阻,并用紅外熱成像儀每隔1 s記錄下纖維束溫度。
復合材料電熱性能的測試:復合材料樣條尺寸為100 mm×10 mm×4 mm,制樣時兩端分別預留1 cm的纖維束并浸潤導電銀膠,之后連接直流穩(wěn)壓電源,施加0.2~2.2 V電壓測試復合材料電阻,并用紅外熱成像儀每隔10 s記錄復合材料溫度,每組的有效樣本容量為5個。
2結果與分析
2.1碳纖維束及包覆紗的結構
采用空心錠子紡絲法制備得到的碳纖維束包覆紗和碳纖維束的SEM圖,如圖4所示。由圖4(a)可以看出,未包覆的碳纖維束呈扁平狀,寬度約為2.2 mm,纖維束中碳纖維單絲松散排列且伴隨著單絲斷裂,單絲間存在間隙。圖4(b~e)是不同包纏度包覆紗的SEM表面形貌,圖4(f)是S4C包覆紗的截面圖,可以看出蠶絲呈螺旋狀緊密包覆在碳纖維束表面,松散扁平的碳纖維束呈現(xiàn)出更加緊實的圓柱狀結構,直徑約為470 μm,碳纖維單絲之間的間隙大幅減小。
2.2蠶絲包覆對碳纖維導電性能的影響
通過直流穩(wěn)壓電源測試碳纖維束及包覆紗的導電性能,結果如圖5所示。由圖5碳纖維束與包覆紗的電壓-電流擬合曲線可以看出,電流隨施加的電壓線性增加,表明施加電壓后包覆前后的碳纖維束穩(wěn)定性。未包覆的碳纖維的電阻為16.96 Ω,與Zhao等[20]的測量值接近,而包覆后的碳纖維束電阻降低且隨包纏度的增加而減小,包覆紗S4CF的電阻為16.02 Ω,比未包覆的碳纖維的電阻降低了5.54%。由于未包覆的碳纖維單絲松散分布,在使用過程中會發(fā)生單絲斷裂,導致碳纖維束的電阻及電阻的離散度增加。而包覆后的碳纖維束單絲緊密堆積,單絲與單絲之間緊密接觸[21],并且包纏度越高,單絲與單絲接觸程度越大,從而使電阻減小。同時,由于蠶絲的存在,在使用過程中可以減少碳纖維的損傷,從而增加穩(wěn)定性。
2.3蠶絲包覆對碳纖維電熱性能的影響
經過蠶絲包覆前后的碳纖維束電熱性能如圖6所示。由于蠶絲的分解溫度在200 ℃左右,因此設定最大外加電壓為6 V,其中圖6(a)表示碳纖維束及包覆紗溫度與電壓的擬合曲線,施加電壓后,碳晶分子在微電流作用下做“布朗運動”,產生不規(guī)則碰撞摩擦,將電能轉換為熱能[22-23]??梢钥闯隼w維束發(fā)熱溫度與電壓的二次方成正比,這與Cao等[13]通過對碳纖維進行化學鍍鎳得到的結果類似,而本文的物理方法可以更低碳。當外加電壓為1 V時,碳纖維束的溫度為30.4 ℃,S4CF包覆紗的溫度為33.1 ℃,包覆前后溫度差別較小。隨著外加電壓增加,包覆紗溫度增長較快而碳纖維束溫度增長緩慢。當外加電壓為2.2 V時,S4CF包覆紗的溫度為52.2 ℃,相較于碳纖維束43.8 ℃增加了19.2%。當外加電壓達到6 V時,S4CF包覆紗的溫度為183.5 ℃,相較于碳纖維束138.9 ℃增加了321%。這主要是由于未包覆的碳纖維束電阻較大,而包覆紗電阻較小,由焦耳定律可知,當電壓一定時,電阻越小產生的焦耳熱越多,因此溫度也就越高;另一方面,纖維束的溫度不僅受焦耳熱影響,同時還受散熱過程的影響,相較于未包覆松散的碳纖維束,包覆紗結構更為緊密,從而導致更少的熱耗散。
圖6(b)是紗線在6 V外加電壓下的升溫降溫特性,時間為60 s。由圖6(b)可以看出,當施加外加電壓時,紗線的溫度迅速升高并在20 s內達到平衡狀態(tài),并在撤銷外加電壓的20 s內恢復到初始溫度。因此,盡管經過蠶絲的包覆,碳纖維束也能表現(xiàn)出快速的溫度響應,并且可以達到更高的溫度。
本文選取電加熱性能最好的包覆紗S4CF進行電加熱循環(huán)測試,每次施加6 V電壓,保持60 s后停止供電,40 s后再次供電,循環(huán)5次得到時間-溫度曲線,如圖7所示。
由圖7可以看出,在6 V的電壓下,雖然在180 ℃的高溫下溫度有所波動,但斷續(xù)改變電壓時,溫度響應和平衡溫度保持穩(wěn)定,5個循環(huán)的最高溫度范圍沒有太大差異,展示了經過蠶絲包覆后的碳纖維束的有效電加熱行為。
2.4蠶絲包覆對碳纖維復合材料導電性能的影響
圖8是碳纖維復合材料和包覆紗復合材料的電壓-電流擬合曲線。由圖8可以看出,與紗線趨勢類似,電流隨施加的電壓線性增加且包纏度越大復合材料的電阻越小,同時復合材料的電阻相對于單根紗線大幅減小,這是由于復合材料不止一束纖維,多根纖維束的并聯(lián)使得復合材料的電阻大幅降低。當碳纖維含量為5.6%時,CFRP的電阻為0.96 Ω,而包纏度最大的包覆紗S4C增強復合材料S4CFRP的電阻為0.86 Ω,降低了10.4%,降幅接近之前包覆紗5.54%的兩倍。原因在于復合材料內的纖維束含量較多,可達數十束,在復合材料制備過程中碳纖維單絲的斷裂數量增加,而經過蠶絲包覆后的碳纖維束由于外層蠶絲的保護,在使用過程中碳纖維單絲斷裂數量較少,因此包覆紗復合材料的電阻降幅較大,有利于提高復合材料的導電性能。
2.5蠶絲包覆對碳纖維復合材料電熱性能的影響
圖9顯示了碳纖維束及包覆紗復合材料電熱性能。電流通過碳纖維束產生熱量并傳遞給環(huán)氧樹脂,由于選用的環(huán)氧樹脂玻璃化轉變溫度為130 ℃,因此對復合材料設定最大外加電壓為2.2 V。其中圖9(a)表示了碳纖維束及包覆紗復合材料電壓-溫度的擬合曲線,可以看出,與紗線電壓-溫度曲線類似,也遵循焦耳定律的二次方關系。值得注意的是,在外加電壓僅為2.2 V時,CFRP的溫度為114.85 ℃,而包纏度最大的包覆紗S4C增強復合材料S4CFRP的溫度為123.47 ℃,增加了7.5%。這是由于包覆紗復合材料的電阻小于碳纖維復合材料電阻,因此在外加電壓相同的情況下,包覆紗復合材料的電加熱溫度大于碳纖維復合材料電加熱溫度。
圖9(b)是復合材料在2.2 V外加電壓下的升溫降溫特性,時間為1 200 s。由圖9(b)可以看出,由于復合材料體積較大并且環(huán)氧樹脂導熱性能差,整個復合材料的升溫降溫速率較慢,在400 s時才達到平衡溫度。當溫度達到平衡狀態(tài)時,包覆紗復合材料的平衡溫度相差不大,這是由于碳纖維在經過蠶絲的包纏后,在使用過程中減少了單絲斷裂數量,因此包纏度對紗線電阻影響較小。同時當纖維束作為增強材料增強復合材料時,復合材料通過環(huán)氧樹脂與外界進行熱交換,而蠶絲在復合材料內部不參與熱交換,因此包纏度對復合材料最高平衡溫度影響較小。而復合材料經過1 200 s的降溫時長,即從最高平衡溫度降低到室溫,則展現(xiàn)出良好的保溫作用。
本文選取電加熱性能最好的復合材料S4CFRP進行電加熱循環(huán)測試,每次施加2.2 V電壓,保持1 200 s后停止供電,經過1 200 s后再次供電,循環(huán)5次,得到時間-溫度曲線,如圖10所示。
與包覆紗電加熱循環(huán)曲線相似,由圖10可以看出,在2.2 V的電壓下,熱量經過外層環(huán)氧樹脂的傳遞后使得波動小于包覆紗。并且斷續(xù)改變電壓時,溫度響應和平衡溫度保持穩(wěn)定,5個循環(huán)的最高溫度范圍沒有太大差異,展示了經過蠶絲包覆后的碳纖維復合材料的有效電加熱行為。
3結論
本文采用空心錠子紡絲法將蠶絲包覆在碳纖維束表面,制備了一系列包纏度不同的蠶絲/碳纖維包覆紗,進一步將制備得到的包覆紗用以增強環(huán)氧樹脂得到包覆紗環(huán)氧樹脂復合材料(S1CFRP~S4CFRP),并探究蠶絲包覆前后及包纏度對碳纖維束及其復合材料的電熱性能,可以得出以下結果。
1) 蠶絲包覆有利于降低碳纖維及其復合材料電阻,最大包纏度的S4C包覆紗電阻(16.02 Ω)比未包覆碳纖維束的電阻(1669 Ω)降低了5.54%;最大包纏度的S4C包覆紗復合材料電阻(0.86 Ω)比碳纖維復合材料的電阻(0.96 Ω)降低了10.4%。
2) 蠶絲包覆有利于增加碳纖維及其復合材料電加熱溫度,當外加電壓為2.2 V時,最大包纏度包覆紗(S4CF)的溫度為52.2 ℃,相較于碳纖維束43.8 ℃增加了19.2%;當外加電壓達到6 V時,最大包纏度包覆紗的溫度為183.5 ℃,相較于碳纖維束138.9 ℃增加了32.1%;在外加電壓為2.2 V時,最大包纏度的包覆紗制備復合材料(S4CFRP)溫度(123.47 ℃)比碳纖維復合材料溫度(114.85 ℃)增加了7.5%,表明蠶絲包覆碳纖維可以有效提高碳纖維及其復合材料的電熱性能。
《絲綢》官網下載中國知網下載
參考文獻:
[1]樊星. 碳纖維復合材料的應用現(xiàn)狀與發(fā)展趨勢[J]. 化學工業(yè), 2019, 37(4): 12-16.FAN Xing. Application status and development trend of carbon fiber reinforced plastic[J]. Chemical Industry, 2019, 37(4): 12-16.
[2]張菡英, 劉明. 碳纖維復合材料的發(fā)展及應用[J]. 工程塑料應用, 2015, 43(11): 132-135.ZHANG Hanying, LIU Ming. Development and applications of carbon fiber reinforced polymer[J]. Engineering Plastics Application, 2015, 43(11): 132-135.
[3]LIU S, LI Y, XIAO S, et al. Self-resistive electrical heating for rapid repairing of carbon fiber reinforced composite parts[J]. Journal of Reinforced Plastics and Composites, 2019, 38(11): 495-505.
[4]上官倩芡, 蔡泖華. 碳纖維及其復合材料的發(fā)展及應用[J]. 上海師范大學學報(自然科學版), 2008(3): 275-279.SHANGGUAN Qianqian, CAI Maohua. Development and applications of carbon fiber and its composites[J]. Journal of Shanghai Normal University (Natural Sciences), 2008(3): 275-279.
[5]賀福. 碳纖維的電熱性能及其應用[J]. 化工新型材料, 2005(6): 7-8.HE Fu. The electrothermal property and application of carbon fiber[J]. New Chemical Materials, 2005(6): 7-8.
[6]譚進峰. 碳纖維絲在風力發(fā)電機葉片防除冰中的應用方式研究[D]. 重慶: 重慶大學, 2018.TAN Jinfeng. Study on the Application of Carbon Fiber in Anti-icing and De-icing of Wind Turbine Blades[D]. Chongqing: Chongqing University, 2018.
[7]YANG C Q, WU Z S, HUANG H. Electrical properties of different types of carbon fiber reinforced plastics (CFRPs) and hybrid CFRPs[J]. Carbon, 2007, 45(15): 3027-3035.
[8]HUANG P, LAU K, FOX B, et al. Surface modification of carbon fibre using graphene-related materials for multifunctional composites[J]. Composites Part B: Engineering, 2018, 133: 240-257.
[9]FALLAH P, RAJAGOPALAN S, MCDONALD A, et al. Development of hybrid metallic coatings on carbon fiber-reinforced polymers (CFRPs) by cold spray deposition of copper-assisted copper electroplating process[J]. Surface and Coatings Technology, 2020, 400: 126231.
[10]周榮鑫, 葛燁倩. 碳納米纖維負極材料制備及其電化學性能[J]. 現(xiàn)代紡織技術, 2022, 30(1): 41-46.ZHOU Rongxin, GE Yeqian. Preparation and electrochemical properties of carbon nanofiber anode materials[J]. Advanced Textile Technology, 2022, 30(1): 41-46.
[11]楊洪斌, 岑浩, 傅雅琴. 硅溶膠改性碳纖維對其復合材料界面性能的影響[J]. 現(xiàn)代紡織技術, 2013, 21(4): 4-7.YANG Hongbin, CEN Hao, FU Yaqin. Effect of carbon fiber modified with silica sol on interfacial properties of carbon fiber composites[J]. Advanced Textile Technology, 2013, 21(4): 4-7.
[12]XIONG Y, HU J, NIE X, et al. One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite: Influence of graphene coating[J]. Materials & Design, 2020, 191: 108633.
[13]CAO Y, FARHA F I, GE D, et al. Highly effective E-heating performance of nickel coated carbon fiber and its composites for de-icing application[J]. Composite Structures, 2019, 229: 111397.
[14]QIN W, VAUTARD F, DRAZAL L T, et al. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J]. Composites Part B: Engineering, 2015, 69: 335-341.
[15]DU X, XU F, LIU H Y, et al. Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low temperature flame growth of carbon nanotubes[J]. RSC Advances, 2016, 6(54): 48896-48904.
[16]SHAO Z, VOLLRATH F. Surprising strength of silkworm silk[J]. Nature, 2002, 418(6899): 741.
[17]SHAH D U, PORTER D, VOLLRATH F. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites[J]. Composites Science and Technology, 2014, 101: 173-183.
[18]ROCKWOOD D N, PREDA R C, YUCEL T, et al. Materials fabrication from Bombyx mori silk fibroin[J]. Nature Protocols, 2011, 6(10): 1612-1631.
[19]敖利民, 高福坤. 包纏紗線密度、混紡比及包覆度的計算方法研究[C]. 北京: 第十七屆全國新型紡紗學術會論文集, 2014: 240-246.AO Liming, GAO Fukun. Study on calculation method of wrapped yarn density, blended ratio and wrapping degree[C]. Beijing: Papers of the 17th National New Spinning Academic Conference, 2014: 240-246.
[20]ZHAO Q, ZHANG K, ZHU S, et al. Review on the electrical resistance/conductivity of carbon fiber reinforced polymer[J]. Applied Sciences, 2019, 9(11): 2390.
[21]CHEN L, HAO L, LIU S, et al. Modulus distribution in polyacrylonitrile-based carbon fiber monofilaments[J]. Carbon, 2020, 157: 47-54.
[22]趙明. 短碳纖維電熱板[J]. 河南建材, 2002(3): 30.ZHAO Ming. Short carbon fiber electric heating plate[J]. Henan Building Materials, 2002(3): 30.
[23]王艷偉, 吳忠其, 孫偉圣, 等. 碳纖維電加熱地板研究進展與展望[J]. 中國人造板, 2016, 23(1): 5-8.WANG Yanwei, WU Zhongqi, SUN Weisheng, et al. Research progress and prospect of carbon fiber electricity-heating flooring[J]. China Wood-Based Panels, 2016, 23(1): 5-8.
Effects of silk wrapping on electrothermal properties of the carbon fiber bundle and its composites
HE Rui SHEN Jianxiang ZHANG Zihang NI Qingqing FU Yaqin
(1.School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.Jinfuchun Group Co., Ltd., Hangzhou 311400, China)
Abstract: Boasting excellent mechanical and electrical properties, carbon fibers (CF), whether as a smart textile or in the form of composite materials, are expanding from national defense and military fields such as aerospace to civil fields such as automobile manufacturing. Carbon fibers are of disordered graphite structure, in which all the carbon atoms form a π bond in the same carbon ring, and all the electrons in the π bond can flow freely in this layer. Under the action of an electric field, the carbon fiber material has good conductivity due to the action of the directional movement and current. Compared with the traditional metal heating devices, carbon fibers have the characteristics of low density and good heating effect. However, due to the defects of the layered graphite structure and the inevitable wear and fracture during use, the electrothermal performance of carbon fibers has not been fully exerted, and they are easy to wear and fracture during use, which affects their application in the electrothermal field. In order to overcome this problem, many methods have been adopted to improve the conductivity of carbon fibers, especially by high-temperature treatment and doping conductive particles on the surface of carbon fibers to improve the graphitization degree of carbon fibers, and by electroplating to improve the conductivity of carbon fibers. While these methods can greatly increase the electrical conductivity of carbon fibers, all of these techniques have their own disadvantages. On the one hand, they require much energy. On the other hand, the surface treatment of carbon fibers needs to be achieved by chemical methods, and there is a risk of increasing the environmental load.
As a flexible organic natural fiber, silk is composed of silk fibroin and sericin, which shows excellent properties in strength, elongation at break and energy absorption. Sericin, which is made up of amino acids, bonds to the amino groups in the epoxy to form strong bonds with the epoxy matrix more effectively than other plant fibers. In this paper, the hollow spindle spinning method was used to wrap the silk around the carbon fiber bundles to make the loose carbon fiber bundles compact and to prepare a series of carbon fiber coated yarns with different wrapping degrees, then silk/carbon fiber coated yarn reinforced epoxy composites (SCFRP) were prepared, and the electrothermal properties of silk/carbon fiber coated yarns and their composites with different wrapping degrees were studied, in order to improve the electrothermal properties of carbon fibers and their composites without increasing the content of carbon fibers. The morphology of silk-coated carbon fiber composite filaments is observed by scanning electron microscope (SEM), and the mechanical properties of the covered yarns were tested by the universal material testing machine, the electrothermal properties of carbon fiber bundles and coated yarns and their composites were investigated by means of a DC power supply and an infrared thermal imager. The results show that the electrical resistance of the carbon fiber composite filament coated with silk decreases with the increase of the silk wrapping degree. When the wrapping degree reaches the maximum (100%), the resistance of the coated yarns is 16.02 Ω, with a decline of 5.54%, and the composite resistance (0.86 Ω) is reduced by 10.4%. When the applied voltage is 2.2 V, the temperature of the coated yarns with the largest wrapped degree is 52.2 ℃, 19.2% higher than that of the uncoated carbon fiber bundle at 43.8 ℃. At the same voltage, the temperature of the composite with the largest wrapping degree is 123.47 ℃, with an increase of 7.5%compared with the temperature (114.85 ℃) of carbon fiber composites.
The contact degree between carbon fiber monofilaments can be increased by the coating of silk and the electric heating properties can be increased with the decrease of the resistance, which indicate that the electrothermal properties of carbon fiber and its composites can be significantly improved by silk coating. This provides a new idea for the application of carbon fiber and the preparation of multifunctional composites.
Key words: carbon fibers; silk; coated yarns; composites; electrothermal properties